End of training
Browse files
README.md
CHANGED
@@ -23,7 +23,7 @@ model-index:
|
|
23 |
metrics:
|
24 |
- name: Wer
|
25 |
type: wer
|
26 |
-
value:
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -33,8 +33,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
33 |
|
34 |
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the audiofolder dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
-
- Loss: 1.
|
37 |
-
- Wer:
|
38 |
|
39 |
## Model description
|
40 |
|
@@ -53,45 +53,28 @@ More information needed
|
|
53 |
### Training hyperparameters
|
54 |
|
55 |
The following hyperparameters were used during training:
|
56 |
-
- learning_rate:
|
57 |
- train_batch_size: 16
|
58 |
- eval_batch_size: 8
|
59 |
- seed: 42
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
-
- lr_scheduler_warmup_steps:
|
63 |
-
- training_steps:
|
64 |
- mixed_precision_training: Native AMP
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
-
| Training Loss | Epoch
|
69 |
-
|
70 |
-
|
|
71 |
-
|
|
72 |
-
|
|
73 |
-
|
|
74 |
-
|
|
75 |
-
|
|
76 |
-
|
|
77 |
-
|
|
78 |
-
| 3.9103 | 3.6 | 90 | 3.3555 | 148.3788 |
|
79 |
-
| 3.4058 | 4.0 | 100 | 3.1750 | 166.2116 |
|
80 |
-
| 3.4058 | 4.4 | 110 | 2.9982 | 163.3390 |
|
81 |
-
| 3.4058 | 4.8 | 120 | 2.8273 | 156.1433 |
|
82 |
-
| 2.9337 | 5.2 | 130 | 2.6632 | 171.3879 |
|
83 |
-
| 2.9337 | 5.6 | 140 | 2.5056 | 156.8828 |
|
84 |
-
| 2.4999 | 6.0 | 150 | 2.3768 | 132.7645 |
|
85 |
-
| 2.4999 | 6.4 | 160 | 2.2670 | 117.0933 |
|
86 |
-
| 2.4999 | 6.8 | 170 | 2.1677 | 109.2719 |
|
87 |
-
| 2.1661 | 7.2 | 180 | 2.0791 | 111.1775 |
|
88 |
-
| 2.1661 | 7.6 | 190 | 1.9999 | 99.6587 |
|
89 |
-
| 1.9126 | 8.0 | 200 | 1.9264 | 100.7110 |
|
90 |
-
| 1.9126 | 8.4 | 210 | 1.8584 | 99.9431 |
|
91 |
-
| 1.9126 | 8.8 | 220 | 1.7963 | 102.2184 |
|
92 |
-
| 1.7087 | 9.2 | 230 | 1.7424 | 100.3129 |
|
93 |
-
| 1.7087 | 9.6 | 240 | 1.6920 | 102.0478 |
|
94 |
-
| 1.5403 | 10.0 | 250 | 1.6423 | 88.4243 |
|
95 |
|
96 |
|
97 |
### Framework versions
|
|
|
23 |
metrics:
|
24 |
- name: Wer
|
25 |
type: wer
|
26 |
+
value: 65.37832712052841
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
33 |
|
34 |
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the audiofolder dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 1.3225
|
37 |
+
- Wer: 65.3783
|
38 |
|
39 |
## Model description
|
40 |
|
|
|
53 |
### Training hyperparameters
|
54 |
|
55 |
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 1e-05
|
57 |
- train_batch_size: 16
|
58 |
- eval_batch_size: 8
|
59 |
- seed: 42
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
+
- lr_scheduler_warmup_steps: 500
|
63 |
+
- training_steps: 4000
|
64 |
- mixed_precision_training: Native AMP
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
69 |
+
|:-------------:|:-------:|:----:|:---------------:|:-------:|
|
70 |
+
| 0.6326 | 7.5758 | 500 | 0.8675 | 71.1922 |
|
71 |
+
| 0.1649 | 15.1515 | 1000 | 0.8976 | 65.7903 |
|
72 |
+
| 0.0284 | 22.7273 | 1500 | 1.0661 | 66.8563 |
|
73 |
+
| 0.0067 | 30.3030 | 2000 | 1.1925 | 66.7517 |
|
74 |
+
| 0.0034 | 37.8788 | 2500 | 1.2540 | 68.6221 |
|
75 |
+
| 0.0022 | 45.4545 | 3000 | 1.2904 | 67.0721 |
|
76 |
+
| 0.0018 | 53.0303 | 3500 | 1.3139 | 67.5038 |
|
77 |
+
| 0.0017 | 60.6061 | 4000 | 1.3225 | 65.3783 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
|
80 |
### Framework versions
|