nithinraok commited on
Commit
37664aa
1 Parent(s): 8d3063e

update diarization numbers to show on papers with code

Browse files
Files changed (1) hide show
  1. README.md +6 -62
README.md CHANGED
@@ -47,7 +47,7 @@ model-index:
47
  type: Speaker Diarization
48
  name: speaker-diarization
49
  dataset:
50
- name: AMI (MixHeadset)
51
  type: ami_diarization
52
  config: oracle-vad-known-number-of-speakers
53
  split: test
@@ -56,26 +56,12 @@ model-index:
56
  metrics:
57
  - name: Test DER
58
  type: der
59
- value: 1.73
60
  - task:
61
  type: Speaker Diarization
62
  name: speaker-diarization
63
  dataset:
64
- name: AMI (MixHeadset)
65
- type: ami_diarization
66
- config: oracle-vad-unknown-number-of-speakers
67
- split: test
68
- args:
69
- language: en
70
- metrics:
71
- - name: Test DER
72
- type: der
73
- value: 1.89
74
- - task:
75
- type: Speaker Diarization
76
- name: speaker-diarization
77
- dataset:
78
- name: AMI (Lapel)
79
  type: ami_diarization
80
  config: oracle-vad-known-number-of-speakers
81
  split: test
@@ -89,21 +75,7 @@ model-index:
89
  type: Speaker Diarization
90
  name: speaker-diarization
91
  dataset:
92
- name: AMI (Lapel)
93
- type: ami_diarization
94
- config: oracle-vad-unknown-number-of-speakers
95
- split: test
96
- args:
97
- language: en
98
- metrics:
99
- - name: Test DER
100
- type: der
101
- value: 2.03
102
- - task:
103
- type: Speaker Diarization
104
- name: speaker-diarization
105
- dataset:
106
- name: CH109
107
  type: callhome_diarization
108
  config: oracle-vad-known-number-of-speakers
109
  split: test
@@ -117,21 +89,7 @@ model-index:
117
  type: Speaker Diarization
118
  name: speaker-diarization
119
  dataset:
120
- name: CH109
121
- type: callhome_diarization
122
- config: oracle-vad-unknown-number-of-speakers
123
- split: test
124
- args:
125
- language: en
126
- metrics:
127
- - name: Test DER
128
- type: der
129
- value: 1.63
130
- - task:
131
- type: Speaker Diarization
132
- name: speaker-diarization
133
- dataset:
134
- name: NIST SRE 2000
135
  type: nist-sre_diarization
136
  config: oracle-vad-known-number-of-speakers
137
  split: test
@@ -141,20 +99,6 @@ model-index:
141
  - name: Test DER
142
  type: der
143
  value: 6.73
144
- - task:
145
- type: Speaker Diarization
146
- name: speaker-diarization
147
- dataset:
148
- name: NIST SRE 2000
149
- type: nist-sre_diarization
150
- config: oracle-vad-unknown-number-of-speakers
151
- split: test
152
- args:
153
- language: en
154
- metrics:
155
- - name: Test DER
156
- type: der
157
- value: 5.38
158
  ---
159
 
160
  # NVIDIA TitaNet-Large (en-US)
@@ -176,7 +120,7 @@ See the [model architecture](#model-architecture) section and [NeMo documentatio
176
 
177
  ## NVIDIA NeMo: Training
178
 
179
- To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed latest Pytorch version.
180
  ```
181
  pip install nemo_toolkit['all']
182
  ```
 
47
  type: Speaker Diarization
48
  name: speaker-diarization
49
  dataset:
50
+ name: ami-mixheadset
51
  type: ami_diarization
52
  config: oracle-vad-known-number-of-speakers
53
  split: test
 
56
  metrics:
57
  - name: Test DER
58
  type: der
59
+ value: 1.73
60
  - task:
61
  type: Speaker Diarization
62
  name: speaker-diarization
63
  dataset:
64
+ name: ami-lapel
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
  type: ami_diarization
66
  config: oracle-vad-known-number-of-speakers
67
  split: test
 
75
  type: Speaker Diarization
76
  name: speaker-diarization
77
  dataset:
78
+ name: ch109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
  type: callhome_diarization
80
  config: oracle-vad-known-number-of-speakers
81
  split: test
 
89
  type: Speaker Diarization
90
  name: speaker-diarization
91
  dataset:
92
+ name: nist-sre-2000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
  type: nist-sre_diarization
94
  config: oracle-vad-known-number-of-speakers
95
  split: test
 
99
  - name: Test DER
100
  type: der
101
  value: 6.73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
  ---
103
 
104
  # NVIDIA TitaNet-Large (en-US)
 
120
 
121
  ## NVIDIA NeMo: Training
122
 
123
+ To train, fine-tune or play with the model you will need to install [NVIDIA NeMo](https://github.com/NVIDIA/NeMo). We recommend you install it after you've installed the latest Pytorch version.
124
  ```
125
  pip install nemo_toolkit['all']
126
  ```