Theo Viel
commited on
Commit
·
9b6b8b8
1
Parent(s):
ac85b57
rerun demo
Browse files- .gitattributes +2 -0
- Demo.ipynb +2 -2
- README.md +9 -5
- post_processing/table_struct_pp.py +1 -230
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.ipynb filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
Demo.ipynb
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e656cf3a473450457a118dcee7f0c65db9167b9aab09554cb3247f6ee1ebf3ec
|
| 3 |
+
size 779791
|
README.md
CHANGED
|
@@ -90,7 +90,7 @@ Ideal for:
|
|
| 90 |
**Architecture Type**: YOLOX <br>
|
| 91 |
**Network Architecture**: DarkNet53 Backbone \+ FPN Decoupled head (one 1x1 convolution \+ 2 parallel 3x3 convolutions (one for the classification and one for the bounding box prediction). YOLOX is a single-stage object detector that improves on Yolo-v3. <br>
|
| 92 |
**This model was developed based on the Yolo architecture** <br>
|
| 93 |
-
**Number of model parameters**:
|
| 94 |
|
| 95 |
### Input
|
| 96 |
|
|
@@ -159,16 +159,20 @@ with torch.inference_mode():
|
|
| 159 |
x = model.preprocess(img)
|
| 160 |
preds = model(x, img.shape)[0]
|
| 161 |
|
| 162 |
-
print(preds)
|
| 163 |
-
|
| 164 |
# Post-processing
|
| 165 |
boxes, labels, scores = postprocess_preds_table_structure(preds, model.threshold, model.labels)
|
| 166 |
|
| 167 |
# Plot
|
| 168 |
boxes_plot, confs = reformat_for_plotting(boxes, labels, scores, img.shape, model.num_classes)
|
| 169 |
|
| 170 |
-
plt.figure(figsize=(
|
| 171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
plt.show()
|
| 173 |
```
|
| 174 |
|
|
|
|
| 90 |
**Architecture Type**: YOLOX <br>
|
| 91 |
**Network Architecture**: DarkNet53 Backbone \+ FPN Decoupled head (one 1x1 convolution \+ 2 parallel 3x3 convolutions (one for the classification and one for the bounding box prediction). YOLOX is a single-stage object detector that improves on Yolo-v3. <br>
|
| 92 |
**This model was developed based on the Yolo architecture** <br>
|
| 93 |
+
**Number of model parameters**: 5.4e7 <br>
|
| 94 |
|
| 95 |
### Input
|
| 96 |
|
|
|
|
| 159 |
x = model.preprocess(img)
|
| 160 |
preds = model(x, img.shape)[0]
|
| 161 |
|
|
|
|
|
|
|
| 162 |
# Post-processing
|
| 163 |
boxes, labels, scores = postprocess_preds_table_structure(preds, model.threshold, model.labels)
|
| 164 |
|
| 165 |
# Plot
|
| 166 |
boxes_plot, confs = reformat_for_plotting(boxes, labels, scores, img.shape, model.num_classes)
|
| 167 |
|
| 168 |
+
plt.figure(figsize=(30, 15))
|
| 169 |
+
for i in range(1, 4):
|
| 170 |
+
boxes_plot_c = [b if j == i else [] for j, b in enumerate(boxes_plot)]
|
| 171 |
+
confs_c = [c if j == i else [] for j, c in enumerate(confs)]
|
| 172 |
+
|
| 173 |
+
plt.subplot(1, 3, i)
|
| 174 |
+
plt.title(model.labels[i])
|
| 175 |
+
plot_sample(img, boxes_plot_c, confs_c, labels=model.labels, show_text=False)
|
| 176 |
plt.show()
|
| 177 |
```
|
| 178 |
|
post_processing/table_struct_pp.py
CHANGED
|
@@ -1,230 +1 @@
|
|
| 1 |
-
|
| 2 |
-
import numpy.typing as npt
|
| 3 |
-
from typing import List, Tuple, Optional
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
def expand_boxes(
|
| 7 |
-
boxes: npt.NDArray[np.float64],
|
| 8 |
-
r_x: Tuple[float, float] = (1, 1),
|
| 9 |
-
r_y: Tuple[float, float] = (1, 1),
|
| 10 |
-
size_agnostic: bool = True,
|
| 11 |
-
) -> npt.NDArray[np.float64]:
|
| 12 |
-
"""
|
| 13 |
-
Expands bounding boxes by a specified ratio.
|
| 14 |
-
Expected box format is normalized [x_min, y_min, x_max, y_max].
|
| 15 |
-
|
| 16 |
-
Args:
|
| 17 |
-
boxes (numpy.ndarray): Array of bounding boxes with shape (N, 4).
|
| 18 |
-
r_x (tuple, optional): Left, right expansion ratios. Defaults to (1, 1) (no expansion).
|
| 19 |
-
r_y (tuple, optional): Up, down expansion ratios. Defaults to (1, 1) (no expansion).
|
| 20 |
-
size_agnostic (bool, optional): Expand independently of the box shape. Defaults to True.
|
| 21 |
-
|
| 22 |
-
Returns:
|
| 23 |
-
numpy.ndarray: Adjusted bounding boxes clipped to the [0, 1] range.
|
| 24 |
-
"""
|
| 25 |
-
old_boxes = boxes.copy()
|
| 26 |
-
|
| 27 |
-
if not size_agnostic:
|
| 28 |
-
h = boxes[:, 3] - boxes[:, 1]
|
| 29 |
-
w = boxes[:, 2] - boxes[:, 0]
|
| 30 |
-
else:
|
| 31 |
-
h, w = 1, 1
|
| 32 |
-
|
| 33 |
-
boxes[:, 0] -= w * (r_x[0] - 1) # left
|
| 34 |
-
boxes[:, 2] += w * (r_x[1] - 1) # right
|
| 35 |
-
boxes[:, 1] -= h * (r_y[0] - 1) # up
|
| 36 |
-
boxes[:, 3] += h * (r_y[1] - 1) # down
|
| 37 |
-
|
| 38 |
-
boxes = np.clip(boxes, 0, 1)
|
| 39 |
-
|
| 40 |
-
# Enforce non-overlapping boxes
|
| 41 |
-
for i in range(len(boxes)):
|
| 42 |
-
for j in range(i + 1, len(boxes)):
|
| 43 |
-
iou = bb_iou_array(boxes[i][None], boxes[j])[0]
|
| 44 |
-
old_iou = bb_iou_array(old_boxes[i][None], old_boxes[j])[0]
|
| 45 |
-
# print(iou, old_iou)
|
| 46 |
-
if iou > 0.05 and old_iou < 0.1:
|
| 47 |
-
if boxes[i, 1] < boxes[j, 1]: # i above j
|
| 48 |
-
boxes[j, 1] = min(old_boxes[j, 1], boxes[i, 3])
|
| 49 |
-
if old_iou > 0:
|
| 50 |
-
boxes[i, 3] = max(old_boxes[i, 3], boxes[j, 1])
|
| 51 |
-
else:
|
| 52 |
-
boxes[i, 1] = min(old_boxes[i, 1], boxes[j, 3])
|
| 53 |
-
if old_iou > 0:
|
| 54 |
-
boxes[j, 3] = max(old_boxes[j, 3], boxes[i, 1])
|
| 55 |
-
|
| 56 |
-
return boxes
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
def merge_boxes(
|
| 60 |
-
b1: npt.NDArray[np.float64], b2: npt.NDArray[np.float64]
|
| 61 |
-
) -> npt.NDArray[np.float64]:
|
| 62 |
-
"""
|
| 63 |
-
Merges two bounding boxes into a single box that encompasses both.
|
| 64 |
-
|
| 65 |
-
Args:
|
| 66 |
-
b1 (numpy.ndarray): First bounding box [x_min, y_min, x_max, y_max].
|
| 67 |
-
b2 (numpy.ndarray): Second bounding box [x_min, y_min, x_max, y_max].
|
| 68 |
-
|
| 69 |
-
Returns:
|
| 70 |
-
numpy.ndarray: A single bounding box that covers both input boxes.
|
| 71 |
-
"""
|
| 72 |
-
b = b1.copy()
|
| 73 |
-
b[0] = min(b1[0], b2[0])
|
| 74 |
-
b[1] = min(b1[1], b2[1])
|
| 75 |
-
b[2] = max(b1[2], b2[2])
|
| 76 |
-
b[3] = max(b1[3], b2[3])
|
| 77 |
-
return b
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
def bb_iou_array(
|
| 81 |
-
boxes: npt.NDArray[np.float64], new_box: npt.NDArray[np.float64]
|
| 82 |
-
) -> npt.NDArray[np.float64]:
|
| 83 |
-
"""
|
| 84 |
-
Calculates the Intersection over Union (IoU) between a box and an array of boxes.
|
| 85 |
-
|
| 86 |
-
Args:
|
| 87 |
-
boxes (numpy.ndarray): Array of bounding boxes with shape (N, 4).
|
| 88 |
-
new_box (numpy.ndarray): A single bounding box [x_min, y_min, x_max, y_max].
|
| 89 |
-
|
| 90 |
-
Returns:
|
| 91 |
-
numpy.ndarray: Array of IoU values between the new_box and each box in the array.
|
| 92 |
-
"""
|
| 93 |
-
# bb interesection over union
|
| 94 |
-
xA = np.maximum(boxes[:, 0], new_box[0])
|
| 95 |
-
yA = np.maximum(boxes[:, 1], new_box[1])
|
| 96 |
-
xB = np.minimum(boxes[:, 2], new_box[2])
|
| 97 |
-
yB = np.minimum(boxes[:, 3], new_box[3])
|
| 98 |
-
|
| 99 |
-
interArea = np.maximum(xB - xA, 0) * np.maximum(yB - yA, 0)
|
| 100 |
-
|
| 101 |
-
# compute the area of both the prediction and ground-truth rectangles
|
| 102 |
-
boxAArea = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
|
| 103 |
-
boxBArea = (new_box[2] - new_box[0]) * (new_box[3] - new_box[1])
|
| 104 |
-
|
| 105 |
-
iou = interArea / (boxAArea + boxBArea - interArea)
|
| 106 |
-
|
| 107 |
-
return iou
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
def match_with_title(
|
| 111 |
-
box: npt.NDArray[np.float64],
|
| 112 |
-
title_boxes: npt.NDArray[np.float64],
|
| 113 |
-
match_dist: float = 0.1,
|
| 114 |
-
delta: float = 1.,
|
| 115 |
-
already_matched: List[int] = [],
|
| 116 |
-
) -> Tuple[Optional[npt.NDArray[np.float64]], Optional[List[int]]]:
|
| 117 |
-
"""
|
| 118 |
-
Matches a bounding box with a title bounding box based on IoU or proximity.
|
| 119 |
-
|
| 120 |
-
Args:
|
| 121 |
-
box (numpy.ndarray): Bounding box to match with title [x_min, y_min, x_max, y_max].
|
| 122 |
-
title_boxes (numpy.ndarray): Array of title bounding boxes with shape (N, 4).
|
| 123 |
-
match_dist (float, optional): Maximum distance for matching. Defaults to 0.1.
|
| 124 |
-
delta (float, optional): Multiplier for matching several titles. Defaults to 1..
|
| 125 |
-
already_matched (list, optional): List of already matched title indices. Defaults to [].
|
| 126 |
-
|
| 127 |
-
Returns:
|
| 128 |
-
tuple or None: If matched, returns a tuple of (merged_bbox, updated_title_boxes).
|
| 129 |
-
If no match is found, returns None, None.
|
| 130 |
-
"""
|
| 131 |
-
if not len(title_boxes):
|
| 132 |
-
return None, None
|
| 133 |
-
|
| 134 |
-
dist_above = np.abs(title_boxes[:, 3] - box[1])
|
| 135 |
-
dist_below = np.abs(box[3] - title_boxes[:, 1])
|
| 136 |
-
|
| 137 |
-
dist_left = np.abs(title_boxes[:, 0] - box[0])
|
| 138 |
-
dist_center = np.abs(title_boxes[:, 0] + title_boxes[:, 2] - box[0] - box[2]) / 2
|
| 139 |
-
|
| 140 |
-
dists = np.min([dist_above, dist_below], 0)
|
| 141 |
-
dists += np.min([dist_left, dist_center], 0) / 2
|
| 142 |
-
|
| 143 |
-
ious = bb_iou_array(title_boxes, box)
|
| 144 |
-
dists = np.where(ious > 0, min(match_dist - 0.01, np.min(dists)) / delta, dists)
|
| 145 |
-
|
| 146 |
-
if len(already_matched):
|
| 147 |
-
dists[already_matched] = match_dist * 10 # Remove already matched titles
|
| 148 |
-
|
| 149 |
-
matches = None
|
| 150 |
-
if np.min(dists) <= match_dist:
|
| 151 |
-
matches = np.where(
|
| 152 |
-
dists <= min(match_dist, np.min(dists) * delta)
|
| 153 |
-
)[0]
|
| 154 |
-
|
| 155 |
-
if matches is not None:
|
| 156 |
-
new_bbox = box
|
| 157 |
-
for match in matches:
|
| 158 |
-
new_bbox = merge_boxes(new_bbox, title_boxes[match])
|
| 159 |
-
return new_bbox, list(matches)
|
| 160 |
-
else:
|
| 161 |
-
return None, None
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
def match_boxes_with_title(
|
| 165 |
-
boxes: npt.NDArray[np.float64],
|
| 166 |
-
confs: npt.NDArray[np.float64],
|
| 167 |
-
labels: npt.NDArray[np.int_],
|
| 168 |
-
classes: List[str],
|
| 169 |
-
to_match_labels: List[str] = ["chart"],
|
| 170 |
-
remove_matched_titles: bool = False,
|
| 171 |
-
match_dist: float = 0.1,
|
| 172 |
-
) -> Tuple[
|
| 173 |
-
npt.NDArray[np.float64],
|
| 174 |
-
npt.NDArray[np.float64],
|
| 175 |
-
npt.NDArray[np.int_],
|
| 176 |
-
List[int],
|
| 177 |
-
]:
|
| 178 |
-
"""
|
| 179 |
-
Matches charts with title.
|
| 180 |
-
|
| 181 |
-
Args:
|
| 182 |
-
boxes (numpy.ndarray): Array of bounding boxes with shape (N, 4).
|
| 183 |
-
confs (numpy.ndarray): Array of confidence scores with shape (N,).
|
| 184 |
-
labels (numpy.ndarray): Array of labels with shape (N,).
|
| 185 |
-
classes (list): List of class names.
|
| 186 |
-
to_match_labels (list): List of class names to match with titles.
|
| 187 |
-
remove_matched_titles (bool): Whether to remove matched titles from the boxes.
|
| 188 |
-
|
| 189 |
-
Returns:
|
| 190 |
-
boxes (numpy.ndarray): Array of bounding boxes with shape (M, 4).
|
| 191 |
-
confs (numpy.ndarray): Array of confidence scores with shape (M,).
|
| 192 |
-
labels (numpy.ndarray): Array of labels with shape (M,).
|
| 193 |
-
found_title (list): List of indices of matched titles.
|
| 194 |
-
no_found_title (list): List of indices of unmatched titles.
|
| 195 |
-
match_dist (float, optional): Maximum distance for matching. Defaults to 0.1.
|
| 196 |
-
"""
|
| 197 |
-
# Put titles at the end
|
| 198 |
-
title_ids = np.where(labels == classes.index("title"))[0]
|
| 199 |
-
order = np.concatenate([np.delete(np.arange(len(boxes)), title_ids), title_ids])
|
| 200 |
-
boxes = boxes[order]
|
| 201 |
-
confs = confs[order]
|
| 202 |
-
labels = labels[order]
|
| 203 |
-
|
| 204 |
-
# Ids
|
| 205 |
-
title_ids = np.where(labels == classes.index("title"))[0]
|
| 206 |
-
to_match = np.where(np.isin(labels, [classes.index(c) for c in to_match_labels]))[0]
|
| 207 |
-
|
| 208 |
-
# Matching
|
| 209 |
-
found_title, already_matched = [], []
|
| 210 |
-
for i in range(len(boxes)):
|
| 211 |
-
if i not in to_match:
|
| 212 |
-
continue
|
| 213 |
-
merged_box, matched_title_ids = match_with_title(
|
| 214 |
-
boxes[i],
|
| 215 |
-
boxes[title_ids],
|
| 216 |
-
already_matched=already_matched,
|
| 217 |
-
match_dist=match_dist,
|
| 218 |
-
)
|
| 219 |
-
if matched_title_ids is not None:
|
| 220 |
-
# print(f'Merged {classes[int(labels[i])]} at idx #{i} with title {matched_title_ids[-1]}') # noqa
|
| 221 |
-
boxes[i] = merged_box
|
| 222 |
-
already_matched += matched_title_ids
|
| 223 |
-
found_title.append(i)
|
| 224 |
-
|
| 225 |
-
if remove_matched_titles and len(already_matched):
|
| 226 |
-
boxes = np.delete(boxes, title_ids[already_matched], axis=0)
|
| 227 |
-
confs = np.delete(confs, title_ids[already_matched], axis=0)
|
| 228 |
-
labels = np.delete(labels, title_ids[already_matched], axis=0)
|
| 229 |
-
|
| 230 |
-
return boxes, confs, labels, found_title
|
|
|
|
| 1 |
+
# TODO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|