Update llama_bidirectional_model.py
Browse files- llama_bidirectional_model.py +1 -99
llama_bidirectional_model.py
CHANGED
|
@@ -12,13 +12,12 @@ from transformers.modeling_outputs import (
|
|
| 12 |
)
|
| 13 |
from transformers.models.llama.configuration_llama import LlamaConfig
|
| 14 |
from transformers.models.llama.modeling_llama import (
|
| 15 |
-
LlamaForSequenceClassification,
|
| 16 |
LlamaModel,
|
| 17 |
LlamaPreTrainedModel,
|
| 18 |
)
|
| 19 |
from transformers.utils import logging
|
| 20 |
|
| 21 |
-
|
| 22 |
|
| 23 |
logger = logging.get_logger(__name__)
|
| 24 |
|
|
@@ -56,100 +55,3 @@ class LlamaBidirectionalModel(LlamaModel):
|
|
| 56 |
return causal_mask
|
| 57 |
|
| 58 |
|
| 59 |
-
class LlamaBidirectionalForSequenceClassification(LlamaForSequenceClassification):
|
| 60 |
-
config_class = LlamaBidirectionalConfig
|
| 61 |
-
|
| 62 |
-
def __init__(self, config):
|
| 63 |
-
super().__init__(config)
|
| 64 |
-
# Releasing the parameters of LlamaModel
|
| 65 |
-
# created by parent LlamaForSequenceClassification
|
| 66 |
-
del self.model
|
| 67 |
-
|
| 68 |
-
self.model = LlamaBidirectionalModel(config)
|
| 69 |
-
|
| 70 |
-
# Initialize weights and apply final processing
|
| 71 |
-
self.post_init()
|
| 72 |
-
|
| 73 |
-
def forward(
|
| 74 |
-
self,
|
| 75 |
-
input_ids: Optional[torch.LongTensor] = None,
|
| 76 |
-
attention_mask: Optional[torch.Tensor] = None,
|
| 77 |
-
position_ids: Optional[torch.LongTensor] = None,
|
| 78 |
-
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 79 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 80 |
-
labels: Optional[torch.LongTensor] = None,
|
| 81 |
-
use_cache: Optional[bool] = None,
|
| 82 |
-
output_attentions: Optional[bool] = None,
|
| 83 |
-
output_hidden_states: Optional[bool] = None,
|
| 84 |
-
return_dict: Optional[bool] = None,
|
| 85 |
-
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 86 |
-
r"""
|
| 87 |
-
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 88 |
-
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 89 |
-
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 90 |
-
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 91 |
-
"""
|
| 92 |
-
return_dict = (
|
| 93 |
-
return_dict if return_dict is not None else self.config.use_return_dict
|
| 94 |
-
)
|
| 95 |
-
|
| 96 |
-
transformer_outputs = self.model(
|
| 97 |
-
input_ids,
|
| 98 |
-
attention_mask=attention_mask,
|
| 99 |
-
position_ids=position_ids,
|
| 100 |
-
past_key_values=past_key_values,
|
| 101 |
-
inputs_embeds=inputs_embeds,
|
| 102 |
-
use_cache=use_cache,
|
| 103 |
-
output_attentions=output_attentions,
|
| 104 |
-
output_hidden_states=output_hidden_states,
|
| 105 |
-
return_dict=return_dict,
|
| 106 |
-
)
|
| 107 |
-
hidden_states = transformer_outputs[0]
|
| 108 |
-
|
| 109 |
-
pooled_hidden_states = pool(
|
| 110 |
-
last_hidden_states=hidden_states,
|
| 111 |
-
attention_mask=attention_mask,
|
| 112 |
-
pool_type=self.config.pooling,
|
| 113 |
-
)
|
| 114 |
-
|
| 115 |
-
pooled_logits = self.score(pooled_hidden_states)
|
| 116 |
-
pooled_logits = pooled_logits / self.config.temperature
|
| 117 |
-
|
| 118 |
-
loss = None
|
| 119 |
-
if labels is not None:
|
| 120 |
-
labels = labels.to(logits.device)
|
| 121 |
-
if self.config.problem_type is None:
|
| 122 |
-
if self.num_labels == 1:
|
| 123 |
-
self.config.problem_type = "regression"
|
| 124 |
-
elif self.num_labels > 1 and (
|
| 125 |
-
labels.dtype == torch.long or labels.dtype == torch.int
|
| 126 |
-
):
|
| 127 |
-
self.config.problem_type = "single_label_classification"
|
| 128 |
-
else:
|
| 129 |
-
self.config.problem_type = "multi_label_classification"
|
| 130 |
-
|
| 131 |
-
if self.config.problem_type == "regression":
|
| 132 |
-
loss_fct = MSELoss()
|
| 133 |
-
if self.num_labels == 1:
|
| 134 |
-
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 135 |
-
else:
|
| 136 |
-
loss = loss_fct(pooled_logits, labels)
|
| 137 |
-
elif self.config.problem_type == "single_label_classification":
|
| 138 |
-
loss_fct = CrossEntropyLoss()
|
| 139 |
-
loss = loss_fct(
|
| 140 |
-
pooled_logits.view(-1, self.num_labels), labels.view(-1)
|
| 141 |
-
)
|
| 142 |
-
elif self.config.problem_type == "multi_label_classification":
|
| 143 |
-
loss_fct = BCEWithLogitsLoss()
|
| 144 |
-
loss = loss_fct(pooled_logits, labels)
|
| 145 |
-
if not return_dict:
|
| 146 |
-
output = (pooled_logits,) + transformer_outputs[1:]
|
| 147 |
-
return ((loss,) + output) if loss is not None else output
|
| 148 |
-
|
| 149 |
-
return SequenceClassifierOutputWithPast(
|
| 150 |
-
loss=loss,
|
| 151 |
-
logits=pooled_logits,
|
| 152 |
-
past_key_values=transformer_outputs.past_key_values,
|
| 153 |
-
hidden_states=transformer_outputs.hidden_states,
|
| 154 |
-
attentions=transformer_outputs.attentions,
|
| 155 |
-
)
|
|
|
|
| 12 |
)
|
| 13 |
from transformers.models.llama.configuration_llama import LlamaConfig
|
| 14 |
from transformers.models.llama.modeling_llama import (
|
|
|
|
| 15 |
LlamaModel,
|
| 16 |
LlamaPreTrainedModel,
|
| 17 |
)
|
| 18 |
from transformers.utils import logging
|
| 19 |
|
| 20 |
+
|
| 21 |
|
| 22 |
logger = logging.get_logger(__name__)
|
| 23 |
|
|
|
|
| 55 |
return causal_mask
|
| 56 |
|
| 57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|