Delete quick_test_video.py
Browse files- quick_test_video.py +0 -83
quick_test_video.py
DELETED
|
@@ -1,83 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM, AutoImageProcessor, AutoProcessor
|
| 3 |
-
from PIL import Image
|
| 4 |
-
|
| 5 |
-
import video_io
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
model_path = "/lustre/fsw/portfolios/llmservice/users/charlwang/vlm-hf-code/_ga_ckpt/iter200_hf"
|
| 9 |
-
device = "cuda:0"
|
| 10 |
-
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, device_map=device, torch_dtype=torch.bfloat16).eval()
|
| 11 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 12 |
-
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
| 13 |
-
image_processor = AutoImageProcessor.from_pretrained(model_path, trust_remote_code=True)
|
| 14 |
-
processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True)
|
| 15 |
-
|
| 16 |
-
generation_config = dict(max_new_tokens=1024, do_sample=False, eos_token_id=tokenizer.eos_token_id)
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
video_path = "images/demo.mp4"
|
| 20 |
-
video_fps = 1
|
| 21 |
-
video_nframe = 8
|
| 22 |
-
video_nframe_max = -1
|
| 23 |
-
|
| 24 |
-
# Get frames and metadata
|
| 25 |
-
image_urls, metadata = video_io.maybe_path_or_url_to_data_urls(
|
| 26 |
-
video_path,
|
| 27 |
-
fps=max(0, int(video_fps)),
|
| 28 |
-
nframe=max(0, int(video_nframe)),
|
| 29 |
-
nframe_max=int(video_nframe_max),
|
| 30 |
-
)
|
| 31 |
-
frames = [video_io.pil_image_from_base64(image_url) for image_url in image_urls]
|
| 32 |
-
|
| 33 |
-
print(f"Metadata: {metadata}")
|
| 34 |
-
|
| 35 |
-
messages = [
|
| 36 |
-
{
|
| 37 |
-
"role": "system",
|
| 38 |
-
"content": "/no_think"
|
| 39 |
-
},
|
| 40 |
-
{
|
| 41 |
-
"role": "user",
|
| 42 |
-
"content": [
|
| 43 |
-
{
|
| 44 |
-
"type": "video",
|
| 45 |
-
"video": f"file://{video_path}",
|
| 46 |
-
},
|
| 47 |
-
{
|
| 48 |
-
"type": "text",
|
| 49 |
-
"text": "\nDescribe what you see.",
|
| 50 |
-
},
|
| 51 |
-
],
|
| 52 |
-
}
|
| 53 |
-
]
|
| 54 |
-
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 55 |
-
|
| 56 |
-
# Process with FPS metadata
|
| 57 |
-
if metadata:
|
| 58 |
-
inputs = processor(
|
| 59 |
-
text=[prompt],
|
| 60 |
-
videos=frames,
|
| 61 |
-
videos_kwargs={'video_metadata': metadata},
|
| 62 |
-
return_tensors="pt",
|
| 63 |
-
)
|
| 64 |
-
else:
|
| 65 |
-
inputs = processor(
|
| 66 |
-
text=[prompt],
|
| 67 |
-
videos=frames,
|
| 68 |
-
return_tensors="pt",
|
| 69 |
-
)
|
| 70 |
-
inputs = inputs.to(device)
|
| 71 |
-
|
| 72 |
-
# Inference: Generation of the output
|
| 73 |
-
model.video_pruning_rate = 0.75
|
| 74 |
-
generated_ids = model.generate(
|
| 75 |
-
pixel_values_videos=inputs.pixel_values_videos,
|
| 76 |
-
input_ids=inputs.input_ids,
|
| 77 |
-
attention_mask=inputs.attention_mask,
|
| 78 |
-
max_new_tokens=128,
|
| 79 |
-
)
|
| 80 |
-
output_text = processor.batch_decode(
|
| 81 |
-
generated_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False
|
| 82 |
-
)
|
| 83 |
-
print(f"Prompt: {prompt}\nOutput: {output_text[0]}\n\n\n")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|