Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,168 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Global Context Vision Transformer (GC ViT)
|
2 |
+
|
3 |
+
This model contains the official PyTorch implementation of **Global Context Vision Transformers** (ICML2023) \
|
4 |
+
\
|
5 |
+
[Global Context Vision
|
6 |
+
Transformers](https://arxiv.org/pdf/2206.09959.pdf) \
|
7 |
+
[Ali Hatamizadeh](https://research.nvidia.com/person/ali-hatamizadeh),
|
8 |
+
[Hongxu (Danny) Yin](https://scholar.princeton.edu/hongxu),
|
9 |
+
[Greg Heinrich](https://developer.nvidia.com/blog/author/gheinrich/),
|
10 |
+
[Jan Kautz](https://jankautz.com/),
|
11 |
+
and [Pavlo Molchanov](https://www.pmolchanov.com/).
|
12 |
+
|
13 |
+
GC ViT achieves state-of-the-art results across image classification, object detection and semantic segmentation tasks. On ImageNet-1K dataset for classification, GC ViT variants with `51M`, `90M` and `201M` parameters achieve `84.3`, `85.9` and `85.7` Top-1 accuracy, respectively, surpassing comparably-sized prior art such as CNN-based ConvNeXt and ViT-based Swin Transformer.
|
14 |
+
|
15 |
+
<p align="center">
|
16 |
+
<img src="https://github.com/NVlabs/GCVit/assets/26806394/d1820d6d-3aef-470e-a1d3-af370f1c1f77" width=63% height=63%
|
17 |
+
class="center">
|
18 |
+
</p>
|
19 |
+
|
20 |
+
|
21 |
+
The architecture of GC ViT is demonstrated in the following:
|
22 |
+
|
23 |
+
![gc_vit](https://github.com/NVlabs/GCVit/assets/26806394/86ca853e-56bc-4907-b3e3-0c4611ef9073)
|
24 |
+
|
25 |
+
|
26 |
+
## Introduction
|
27 |
+
|
28 |
+
**GC ViT** leverages global context self-attention modules, joint with local self-attention, to effectively yet efficiently model both long and short-range spatial interactions, without the need for expensive
|
29 |
+
operations such as computing attention masks or shifting local windows.
|
30 |
+
|
31 |
+
|
32 |
+
<p align="center">
|
33 |
+
<img src="https://github.com/NVlabs/GCVit/assets/26806394/da64f22a-e7af-4577-8884-b08ba4e24e49" width=72% height=72%
|
34 |
+
class="center">
|
35 |
+
</p>
|
36 |
+
|
37 |
+
|
38 |
+
## ImageNet Benchmarks
|
39 |
+
|
40 |
+
|
41 |
+
**ImageNet-1K Pretrained Models**
|
42 |
+
|
43 |
+
<table>
|
44 |
+
<tr>
|
45 |
+
<th>Model Variant</th>
|
46 |
+
<th>Acc@1</th>
|
47 |
+
<th>#Params(M)</th>
|
48 |
+
<th>FLOPs(G)</th>
|
49 |
+
<th>Download</th>
|
50 |
+
</tr>
|
51 |
+
<tr>
|
52 |
+
<td>GC ViT-XXT</td>
|
53 |
+
<th>79.9</th>
|
54 |
+
<td>12</td>
|
55 |
+
<td>2.1</td>
|
56 |
+
<td><a href="https://drive.google.com/uc?export=download&id=1apSIWQCa5VhWLJws8ugMTuyKzyayw4Eh">model</a></td>
|
57 |
+
</tr>
|
58 |
+
<tr>
|
59 |
+
<td>GC ViT-XT</td>
|
60 |
+
<th>82.0</th>
|
61 |
+
<td>20</td>
|
62 |
+
<td>2.6</td>
|
63 |
+
<td><a href="https://drive.google.com/uc?export=download&id=1OgSbX73AXmE0beStoJf2Jtda1yin9t9m">model</a></td>
|
64 |
+
</tr>
|
65 |
+
<tr>
|
66 |
+
<td>GC ViT-T</td>
|
67 |
+
<th>83.5</th>
|
68 |
+
<td>28</td>
|
69 |
+
<td>4.7</td>
|
70 |
+
<td><a href="https://drive.google.com/uc?export=download&id=11M6AsxKLhfOpD12Nm_c7lOvIIAn9cljy">model</a></td>
|
71 |
+
</tr>
|
72 |
+
<tr>
|
73 |
+
<td>GC ViT-T2</td>
|
74 |
+
<th>83.7</th>
|
75 |
+
<td>34</td>
|
76 |
+
<td>5.5</td>
|
77 |
+
<td><a href="https://drive.google.com/uc?export=download&id=1cTD8VemWFiwAx0FB9cRMT-P4vRuylvmQ">model</a></td>
|
78 |
+
</tr>
|
79 |
+
<tr>
|
80 |
+
<td>GC ViT-S</td>
|
81 |
+
<th>84.3</th>
|
82 |
+
<td>51</td>
|
83 |
+
<td>8.5</td>
|
84 |
+
<td><a href="https://drive.google.com/uc?export=download&id=1Nn6ABKmYjylyWC0I41Q3oExrn4fTzO9Y">model</a></td>
|
85 |
+
</tr>
|
86 |
+
<tr>
|
87 |
+
<td>GC ViT-S2</td>
|
88 |
+
<th>84.8</th>
|
89 |
+
<td>68</td>
|
90 |
+
<td>10.7</td>
|
91 |
+
<td><a href="https://drive.google.com/uc?export=download&id=1E5TtYpTqILznjBLLBTlO5CGq343RbEan">model</a></td>
|
92 |
+
</tr>
|
93 |
+
<tr>
|
94 |
+
<td>GC ViT-B</td>
|
95 |
+
<th>85.0</th>
|
96 |
+
<td>90</td>
|
97 |
+
<td>14.8</td>
|
98 |
+
<td><a href="https://drive.google.com/uc?export=download&id=1PF7qfxKLcv_ASOMetDP75n8lC50gaqyH">model</a></td>
|
99 |
+
</tr>
|
100 |
+
|
101 |
+
<tr>
|
102 |
+
<td>GC ViT-L</td>
|
103 |
+
<th>85.7</th>
|
104 |
+
<td>201</td>
|
105 |
+
<td>32.6</td>
|
106 |
+
<td><a href="https://drive.google.com/uc?export=download&id=1Lkz1nWKTwCCUR7yQJM6zu_xwN1TR0mxS">model</a></td>
|
107 |
+
</tr>
|
108 |
+
|
109 |
+
</table>
|
110 |
+
|
111 |
+
|
112 |
+
**ImageNet-21K Pretrained Models**
|
113 |
+
|
114 |
+
<table>
|
115 |
+
<tr>
|
116 |
+
<th>Model Variant</th>
|
117 |
+
<th>Resolution</th>
|
118 |
+
<th>Acc@1</th>
|
119 |
+
<th>#Params(M)</th>
|
120 |
+
<th>FLOPs(G)</th>
|
121 |
+
<th>Download</th>
|
122 |
+
</tr>
|
123 |
+
<tr>
|
124 |
+
<td>GC ViT-L</td>
|
125 |
+
<td>224 x 224</td>
|
126 |
+
<th>86.6</th>
|
127 |
+
<td>201</td>
|
128 |
+
<td>32.6</td>
|
129 |
+
<td><a href="https://drive.google.com/uc?export=download&id=1maGDr6mJkLyRTUkspMzCgSlhDzNRFGEf">model</a></td>
|
130 |
+
</tr>
|
131 |
+
<tr>
|
132 |
+
<td>GC ViT-L</td>
|
133 |
+
<td>384 x 384</td>
|
134 |
+
<th>87.4</th>
|
135 |
+
<td>201</td>
|
136 |
+
<td>120.4</td>
|
137 |
+
<td><a href="https://drive.google.com/uc?export=download&id=1P-IEhvQbJ3FjnunVkM1Z9dEpKw-tsuWv">model</a></td>
|
138 |
+
</tr>
|
139 |
+
|
140 |
+
</table>
|
141 |
+
|
142 |
+
|
143 |
+
## Citation
|
144 |
+
|
145 |
+
Please consider citing GC ViT paper if it is useful for your work:
|
146 |
+
|
147 |
+
```
|
148 |
+
@inproceedings{hatamizadeh2023global,
|
149 |
+
title={Global context vision transformers},
|
150 |
+
author={Hatamizadeh, Ali and Yin, Hongxu and Heinrich, Greg and Kautz, Jan and Molchanov, Pavlo},
|
151 |
+
booktitle={International Conference on Machine Learning},
|
152 |
+
pages={12633--12646},
|
153 |
+
year={2023},
|
154 |
+
organization={PMLR}
|
155 |
+
}
|
156 |
+
```
|
157 |
+
|
158 |
+
## Licenses
|
159 |
+
|
160 |
+
Copyright © 2023, NVIDIA Corporation. All rights reserved.
|
161 |
+
|
162 |
+
This work is made available under the Nvidia Source Code License-NC. Click [here](LICENSE) to view a copy of this license.
|
163 |
+
|
164 |
+
The pre-trained models are shared under [CC-BY-NC-SA-4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/). If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
|
165 |
+
|
166 |
+
For license information regarding the timm, please refer to its [repository](https://github.com/rwightman/pytorch-image-models).
|
167 |
+
|
168 |
+
For license information regarding the ImageNet dataset, please refer to the ImageNet [official website](https://www.image-net.org/).
|