Eagle2-9B / demo.py
Zhiding's picture
init
288b99c
raw
history blame
16.6 kB
"""
A model worker executes the model.
"""
from transformers import AutoModel, AutoTokenizer, TextIteratorStreamer, AutoConfig
import argparse
import base64
import json
import os
import decord
import threading
import time
from io import BytesIO
from threading import Thread
import math
import requests
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
import numpy as np
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
SIGLIP_MEAN = (0.5, 0.5, 0.5)
SIGLIP_STD = (0.5, 0.5, 0.5)
def get_seq_frames(total_num_frames, desired_num_frames=-1, stride=-1):
"""
Calculate the indices of frames to extract from a video.
Parameters:
total_num_frames (int): Total number of frames in the video.
desired_num_frames (int): Desired number of frames to extract.
Returns:
list: List of indices of frames to extract.
"""
assert desired_num_frames > 0 or stride > 0 and not (desired_num_frames > 0 and stride > 0)
if stride > 0:
return list(range(0, total_num_frames, stride))
# Calculate the size of each segment from which a frame will be extracted
seg_size = float(total_num_frames - 1) / desired_num_frames
seq = []
for i in range(desired_num_frames):
# Calculate the start and end indices of each segment
start = int(np.round(seg_size * i))
end = int(np.round(seg_size * (i + 1)))
# Append the middle index of the segment to the list
seq.append((start + end) // 2)
return seq
def build_video_prompt(meta_list, num_frames, time_position=False):
# if time_position is True, the frame_timestamp is used.
# 1. pass time_position, 2. use env TIME_POSITION
time_position = os.environ.get("TIME_POSITION", time_position)
prefix = f"This is a video:\n"
for i in range(num_frames):
if time_position:
frame_txt = f"Frame {i+1} sampled at {meta_list[i]:.2f} seconds: <image>\n"
else:
frame_txt = f"Frame {i+1}: <image>\n"
prefix += frame_txt
return prefix
def load_video(video_path, num_frames=64, frame_cache_root=None):
if isinstance(video_path, str):
video = decord.VideoReader(video_path)
elif isinstance(video_path, dict):
assert False, 'we not support vidoe: "video_path" as input'
fps = video.get_avg_fps()
sampled_frames = get_seq_frames(len(video), num_frames)
samepld_timestamps = [i / fps for i in sampled_frames]
frames = video.get_batch(sampled_frames).asnumpy()
images = [Image.fromarray(frame) for frame in frames]
return images, build_video_prompt(samepld_timestamps, len(images), time_position=True)
def load_image(image):
if isinstance(image, str) and os.path.exists(image):
return Image.open(image)
elif isinstance(image, dict):
if 'disk_path' in image:
return Image.open(image['disk_path'])
elif 'base64' in image:
return Image.open(BytesIO(base64.b64decode(image['base64'])))
elif 'url' in image:
response = requests.get(image['url'])
return Image.open(BytesIO(response.content))
elif 'bytes' in image:
return Image.open(BytesIO(image['bytes']))
else:
raise ValueError(f'Invalid image: {image}')
else:
raise ValueError(f'Invalid image: {image}')
def build_transform(input_size, norm_type='imagenet'):
if norm_type == 'imagenet':
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
elif norm_type == 'siglip':
MEAN, STD = SIGLIP_MEAN, SIGLIP_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
"""
previous version mainly foucs on ratio.
We also consider area ratio here.
"""
best_factor = float('-inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
area_ratio = (ratio[0]*ratio[1]*image_size*image_size)/ area
"""
new area > 60% of original image area is enough.
"""
factor_based_on_area_n_ratio = min((ratio[0]*ratio[1]*image_size*image_size)/ area, 0.6)* \
min(target_aspect_ratio/aspect_ratio, aspect_ratio/target_aspect_ratio)
if factor_based_on_area_n_ratio > best_factor:
best_factor = factor_based_on_area_n_ratio
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def split_model(model_path, device):
device_map = {}
world_size = torch.cuda.device_count()
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
num_layers = config.llm_config.num_hidden_layers
num_layers_per_gpu_ = math.floor(num_layers / (world_size - 1))
num_layers_per_gpu = [num_layers_per_gpu_] * world_size
num_layers_per_gpu[device] = num_layers - num_layers_per_gpu_ * (world_size-1)
layer_cnt = 0
for i, num_layer in enumerate(num_layers_per_gpu):
for j in range(num_layer):
device_map[f'language_model.model.layers.{layer_cnt}'] = i
layer_cnt += 1
device_map['vision_model'] = device
device_map['mlp1'] = device
device_map['language_model.model.tok_embeddings'] = device
device_map['language_model.model.embed_tokens'] = device
device_map['language_model.output'] = device
device_map['language_model.model.norm'] = device
device_map['language_model.lm_head'] = device
device_map['language_model.model.rotary_emb'] = device
device_map[f'language_model.model.layers.{num_layers - 1}'] = device
return device_map
class ModelWorker:
def __init__(self, model_path, model_name,
load_8bit, device):
if model_path.endswith('/'):
model_path = model_path[:-1]
if model_name is None:
model_paths = model_path.split('/')
if model_paths[-1].startswith('checkpoint-'):
self.model_name = model_paths[-2] + '_' + model_paths[-1]
else:
self.model_name = model_paths[-1]
else:
self.model_name = model_name
print(f'Loading the model {self.model_name}')
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False)
tokens_to_keep = ['<box>', '</box>', '<ref>', '</ref>']
tokenizer.additional_special_tokens = [item for item in tokenizer.additional_special_tokens if item not in tokens_to_keep]
self.tokenizer = tokenizer
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
model_type = config.vision_config.model_type
self.device = torch.cuda.current_device()
if model_type == 'siglip_vision_model':
self.norm_type = 'siglip'
elif model_type == 'MOB':
self.norm_type = 'siglip'
else:
self.norm_type = 'imagenet'
if any(x in model_path.lower() for x in ['34b']):
device_map = split_model(model_path, self.device)
else:
device_map = None
if device_map is not None:
self.model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
device_map=device_map,
trust_remote_code=True,
load_in_8bit=load_8bit).eval()
else:
self.model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16,
trust_remote_code=True,
load_in_8bit=load_8bit).eval()
if not load_8bit and device_map is None:
self.model = self.model.to(device)
self.load_8bit = load_8bit
self.model_path = model_path
self.image_size = self.model.config.force_image_size
self.context_len = tokenizer.model_max_length
self.per_tile_len = 256
def reload_model(self):
del self.model
torch.cuda.empty_cache()
if self.device == 'auto':
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
# This can make distributed deployment work properly
self.model = AutoModel.from_pretrained(
self.model_path,
load_in_8bit=self.load_8bit,
torch_dtype=torch.bfloat16,
device_map=self.device_map,
trust_remote_code=True).eval()
else:
self.model = AutoModel.from_pretrained(
self.model_path,
load_in_8bit=self.load_8bit,
torch_dtype=torch.bfloat16,
trust_remote_code=True).eval()
if not self.load_8bit and not self.device == 'auto':
self.model = self.model.cuda()
@torch.inference_mode()
def generate(self, params):
system_message = params['prompt'][0]['content']
send_messages = params['prompt'][1:]
max_input_tiles = params['max_input_tiles']
temperature = params['temperature']
top_p = params['top_p']
max_new_tokens = params['max_new_tokens']
repetition_penalty = params['repetition_penalty']
video_frame_num = params.get('video_frame_num', 64)
do_sample = True if temperature > 0.0 else False
global_image_cnt = 0
history, pil_images, max_input_tile_list = [], [], []
for message in send_messages:
if message['role'] == 'user':
prefix = ''
if 'image' in message:
for image_data in message['image']:
pil_images.append(load_image(image_data))
prefix = prefix + f'<image {global_image_cnt + 1}><image>\n'
global_image_cnt += 1
max_input_tile_list.append(max_input_tiles)
if 'video' in message:
for video_data in message['video']:
video_frames, tmp_prefix = load_video(video_data, num_frames=video_frame_num)
pil_images.extend(video_frames)
prefix = prefix + tmp_prefix
global_image_cnt += len(video_frames)
max_input_tile_list.extend([1] * len(video_frames))
content = prefix + message['content']
history.append([content, ])
else:
history[-1].append(message['content'])
question, history = history[-1][0], history[:-1]
if global_image_cnt == 1:
question = question.replace('<image 1><image>\n', '<image>\n')
history = [[item[0].replace('<image 1><image>\n', '<image>\n'), item[1]] for item in history]
try:
assert len(max_input_tile_list) == len(pil_images), 'The number of max_input_tile_list and pil_images should be the same.'
except Exception as e:
from IPython import embed; embed()
exit()
print(f'Error: {e}')
print(f'max_input_tile_list: {max_input_tile_list}, pil_images: {pil_images}')
# raise e
old_system_message = self.model.system_message
self.model.system_message = system_message
transform = build_transform(input_size=self.image_size, norm_type=self.norm_type)
if len(pil_images) > 0:
max_input_tiles_limited_by_contect = params['max_input_tiles']
while True:
image_tiles = []
for current_max_input_tiles, pil_image in zip(max_input_tile_list, pil_images):
if self.model.config.dynamic_image_size:
tiles = dynamic_preprocess(
pil_image, image_size=self.image_size, max_num=min(current_max_input_tiles, max_input_tiles_limited_by_contect),
use_thumbnail=self.model.config.use_thumbnail)
else:
tiles = [pil_image]
image_tiles += tiles
if (len(image_tiles) * self.per_tile_len < self.context_len):
break
else:
max_input_tiles_limited_by_contect -= 2
if max_input_tiles_limited_by_contect < 1:
break
pixel_values = [transform(item) for item in image_tiles]
pixel_values = torch.stack(pixel_values).to(self.model.device, dtype=torch.bfloat16)
else:
pixel_values = None
generation_config = dict(
num_beams=1,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
temperature=temperature,
repetition_penalty=repetition_penalty,
max_length=self.context_len,
top_p=top_p,
)
response = self.model.chat(
tokenizer=self.tokenizer,
pixel_values=pixel_values,
question=question,
history=history,
return_history=False,
generation_config=generation_config,
)
self.model.system_message = old_system_message
return {'text': response, 'error_code': 0}
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model-path', type=str, default='nvidia/Eagle2-9B')
parser.add_argument('--model-name', type=str, default='Eagle2-9B')
parser.add_argument('--device', type=str, default='cuda')
parser.add_argument('--load-8bit', action='store_true')
args = parser.parse_args()
print(f'args: {args}')
worker = ModelWorker(
args.model_path,
args.model_name,
args.load_8bit,
args.device)
prompt = [
{'role': 'system', 'content': 'You are a helpful assistant.'},
{'role': 'user', 'content': 'Describe this image in details.',
'image':[
{'url': 'https://www.nvidia.com/content/dam/en-zz/Solutions/about-nvidia/logo-and-brand/01-nvidia-logo-vert-500x200-2c50-d@2x.png'}
]
}
]
params = {
'prompt': prompt,
'max_input_tiles': 24,
'temperature': 0.7,
'top_p': 1.0,
'max_new_tokens': 4096,
'repetition_penalty': 1.0,
}
print(worker.generate(params))