Upload model
Browse files- block.py +309 -0
- config.json +198 -0
- conv.py +339 -0
- hf_model.py +84 -0
- model.py +1341 -0
- pytorch_model.bin +3 -0
block.py
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
2 |
+
"""
|
3 |
+
Block modules
|
4 |
+
"""
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from timm.models.layers import DropPath
|
10 |
+
|
11 |
+
from .conv import Conv, DWConv, GhostConv, LightConv, RepConv
|
12 |
+
# from .transformer import TransformerBlock
|
13 |
+
|
14 |
+
__all__ = ('DFL', 'HGBlock', 'HGStem', 'SPP', 'SPPF', 'C1', 'C2', 'C3', 'C2f', 'C3x', 'C3TR', 'C3Ghost',
|
15 |
+
'GhostBottleneck', 'Bottleneck', 'BottleneckCSP', 'Proto', 'RepC3')
|
16 |
+
|
17 |
+
|
18 |
+
class DFL(nn.Module):
|
19 |
+
"""
|
20 |
+
Integral module of Distribution Focal Loss (DFL).
|
21 |
+
Proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
|
22 |
+
"""
|
23 |
+
|
24 |
+
def __init__(self, c1=16):
|
25 |
+
"""Initialize a convolutional layer with a given number of input channels."""
|
26 |
+
super().__init__()
|
27 |
+
self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)
|
28 |
+
x = torch.arange(c1, dtype=torch.float)
|
29 |
+
self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))
|
30 |
+
self.c1 = c1
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
"""Applies a transformer layer on input tensor 'x' and returns a tensor."""
|
34 |
+
b, c, a = x.shape # batch, channels, anchors
|
35 |
+
return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)
|
36 |
+
# return self.conv(x.view(b, self.c1, 4, a).softmax(1)).view(b, 4, a)
|
37 |
+
|
38 |
+
|
39 |
+
class Proto(nn.Module):
|
40 |
+
"""YOLOv8 mask Proto module for segmentation models."""
|
41 |
+
|
42 |
+
def __init__(self, c1, c_=256, c2=32): # ch_in, number of protos, number of masks
|
43 |
+
super().__init__()
|
44 |
+
self.cv1 = Conv(c1, c_, k=3)
|
45 |
+
self.upsample = nn.ConvTranspose2d(c_, c_, 2, 2, 0, bias=True) # nn.Upsample(scale_factor=2, mode='nearest')
|
46 |
+
self.cv2 = Conv(c_, c_, k=3)
|
47 |
+
self.cv3 = Conv(c_, c2)
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
"""Performs a forward pass through layers using an upsampled input image."""
|
51 |
+
return self.cv3(self.cv2(self.upsample(self.cv1(x))))
|
52 |
+
|
53 |
+
|
54 |
+
class HGStem(nn.Module):
|
55 |
+
"""StemBlock of PPHGNetV2 with 5 convolutions and one maxpool2d.
|
56 |
+
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
|
57 |
+
"""
|
58 |
+
|
59 |
+
def __init__(self, c1, cm, c2):
|
60 |
+
super().__init__()
|
61 |
+
self.stem1 = Conv(c1, cm, 3, 2, act=nn.ReLU())
|
62 |
+
self.stem2a = Conv(cm, cm // 2, 2, 1, 0, act=nn.ReLU())
|
63 |
+
self.stem2b = Conv(cm // 2, cm, 2, 1, 0, act=nn.ReLU())
|
64 |
+
self.stem3 = Conv(cm * 2, cm, 3, 2, act=nn.ReLU())
|
65 |
+
self.stem4 = Conv(cm, c2, 1, 1, act=nn.ReLU())
|
66 |
+
self.pool = nn.MaxPool2d(kernel_size=2, stride=1, padding=0, ceil_mode=True)
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
"""Forward pass of a PPHGNetV2 backbone layer."""
|
70 |
+
x = self.stem1(x)
|
71 |
+
x = F.pad(x, [0, 1, 0, 1])
|
72 |
+
x2 = self.stem2a(x)
|
73 |
+
x2 = F.pad(x2, [0, 1, 0, 1])
|
74 |
+
x2 = self.stem2b(x2)
|
75 |
+
x1 = self.pool(x)
|
76 |
+
x = torch.cat([x1, x2], dim=1)
|
77 |
+
x = self.stem3(x)
|
78 |
+
x = self.stem4(x)
|
79 |
+
return x
|
80 |
+
|
81 |
+
|
82 |
+
class HGBlock(nn.Module):
|
83 |
+
"""HG_Block of PPHGNetV2 with 2 convolutions and LightConv.
|
84 |
+
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
|
85 |
+
"""
|
86 |
+
|
87 |
+
def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
|
88 |
+
super().__init__()
|
89 |
+
block = LightConv if lightconv else Conv
|
90 |
+
self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
|
91 |
+
self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act) # squeeze conv
|
92 |
+
self.ec = Conv(c2 // 2, c2, 1, 1, act=act) # excitation conv
|
93 |
+
self.add = shortcut and c1 == c2
|
94 |
+
|
95 |
+
def forward(self, x):
|
96 |
+
"""Forward pass of a PPHGNetV2 backbone layer."""
|
97 |
+
y = [x]
|
98 |
+
y.extend(m(y[-1]) for m in self.m)
|
99 |
+
y = self.ec(self.sc(torch.cat(y, 1)))
|
100 |
+
return y + x if self.add else y
|
101 |
+
|
102 |
+
|
103 |
+
class SPP(nn.Module):
|
104 |
+
"""Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729."""
|
105 |
+
|
106 |
+
def __init__(self, c1, c2, k=(5, 9, 13)):
|
107 |
+
"""Initialize the SPP layer with input/output channels and pooling kernel sizes."""
|
108 |
+
super().__init__()
|
109 |
+
c_ = c1 // 2 # hidden channels
|
110 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
111 |
+
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
|
112 |
+
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
|
113 |
+
|
114 |
+
def forward(self, x):
|
115 |
+
"""Forward pass of the SPP layer, performing spatial pyramid pooling."""
|
116 |
+
x = self.cv1(x)
|
117 |
+
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
|
118 |
+
|
119 |
+
|
120 |
+
class SPPF(nn.Module):
|
121 |
+
"""Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher."""
|
122 |
+
|
123 |
+
def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
|
124 |
+
super().__init__()
|
125 |
+
c_ = c1 // 2 # hidden channels
|
126 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
127 |
+
self.cv2 = Conv(c_ * 4, c2, 1, 1)
|
128 |
+
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
|
129 |
+
|
130 |
+
def forward(self, x):
|
131 |
+
"""Forward pass through Ghost Convolution block."""
|
132 |
+
x = self.cv1(x)
|
133 |
+
y1 = self.m(x)
|
134 |
+
y2 = self.m(y1)
|
135 |
+
return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
|
136 |
+
|
137 |
+
|
138 |
+
class C1(nn.Module):
|
139 |
+
"""CSP Bottleneck with 1 convolution."""
|
140 |
+
|
141 |
+
def __init__(self, c1, c2, n=1): # ch_in, ch_out, number
|
142 |
+
super().__init__()
|
143 |
+
self.cv1 = Conv(c1, c2, 1, 1)
|
144 |
+
self.m = nn.Sequential(*(Conv(c2, c2, 3) for _ in range(n)))
|
145 |
+
|
146 |
+
def forward(self, x):
|
147 |
+
"""Applies cross-convolutions to input in the C3 module."""
|
148 |
+
y = self.cv1(x)
|
149 |
+
return self.m(y) + y
|
150 |
+
|
151 |
+
|
152 |
+
class C2(nn.Module):
|
153 |
+
"""CSP Bottleneck with 2 convolutions."""
|
154 |
+
|
155 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
156 |
+
super().__init__()
|
157 |
+
self.c = int(c2 * e) # hidden channels
|
158 |
+
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
|
159 |
+
self.cv2 = Conv(2 * self.c, c2, 1) # optional act=FReLU(c2)
|
160 |
+
# self.attention = ChannelAttention(2 * self.c) # or SpatialAttention()
|
161 |
+
self.m = nn.Sequential(*(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n)))
|
162 |
+
|
163 |
+
def forward(self, x):
|
164 |
+
"""Forward pass through the CSP bottleneck with 2 convolutions."""
|
165 |
+
a, b = self.cv1(x).chunk(2, 1)
|
166 |
+
return self.cv2(torch.cat((self.m(a), b), 1))
|
167 |
+
|
168 |
+
|
169 |
+
class C2f(nn.Module):
|
170 |
+
"""Faster Implementation of CSP Bottleneck with 2 convolutions."""
|
171 |
+
|
172 |
+
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, drop_path=None): # ch_in, ch_out, number, shortcut, groups, expansion
|
173 |
+
super().__init__()
|
174 |
+
if drop_path is None:
|
175 |
+
drop_path = [0.0] * n
|
176 |
+
|
177 |
+
self.c = int(c2 * e) # hidden channels
|
178 |
+
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
|
179 |
+
self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
|
180 |
+
self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0, drop_path=drop_path[i]) for i in range(n))
|
181 |
+
|
182 |
+
def forward(self, x):
|
183 |
+
"""Forward pass through C2f layer."""
|
184 |
+
y = list(self.cv1(x).chunk(2, 1))
|
185 |
+
y.extend(m(y[-1]) for m in self.m)
|
186 |
+
return self.cv2(torch.cat(y, 1))
|
187 |
+
|
188 |
+
def forward_split(self, x):
|
189 |
+
"""Forward pass using split() instead of chunk()."""
|
190 |
+
y = list(self.cv1(x).split((self.c, self.c), 1))
|
191 |
+
y.extend(m(y[-1]) for m in self.m)
|
192 |
+
return self.cv2(torch.cat(y, 1))
|
193 |
+
|
194 |
+
|
195 |
+
class C3(nn.Module):
|
196 |
+
"""CSP Bottleneck with 3 convolutions."""
|
197 |
+
|
198 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
199 |
+
super().__init__()
|
200 |
+
c_ = int(c2 * e) # hidden channels
|
201 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
202 |
+
self.cv2 = Conv(c1, c_, 1, 1)
|
203 |
+
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
|
204 |
+
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))
|
205 |
+
|
206 |
+
def forward(self, x):
|
207 |
+
"""Forward pass through the CSP bottleneck with 2 convolutions."""
|
208 |
+
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
|
209 |
+
|
210 |
+
|
211 |
+
class C3x(C3):
|
212 |
+
"""C3 module with cross-convolutions."""
|
213 |
+
|
214 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
215 |
+
"""Initialize C3TR instance and set default parameters."""
|
216 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
217 |
+
self.c_ = int(c2 * e)
|
218 |
+
self.m = nn.Sequential(*(Bottleneck(self.c_, self.c_, shortcut, g, k=((1, 3), (3, 1)), e=1) for _ in range(n)))
|
219 |
+
|
220 |
+
|
221 |
+
class RepC3(nn.Module):
|
222 |
+
"""Rep C3."""
|
223 |
+
|
224 |
+
def __init__(self, c1, c2, n=3, e=1.0):
|
225 |
+
super().__init__()
|
226 |
+
c_ = int(c2 * e) # hidden channels
|
227 |
+
self.cv1 = Conv(c1, c2, 1, 1)
|
228 |
+
self.cv2 = Conv(c1, c2, 1, 1)
|
229 |
+
self.m = nn.Sequential(*[RepConv(c_, c_) for _ in range(n)])
|
230 |
+
self.cv3 = Conv(c_, c2, 1, 1) if c_ != c2 else nn.Identity()
|
231 |
+
|
232 |
+
def forward(self, x):
|
233 |
+
"""Forward pass of RT-DETR neck layer."""
|
234 |
+
return self.cv3(self.m(self.cv1(x)) + self.cv2(x))
|
235 |
+
|
236 |
+
|
237 |
+
class C3TR(C3):
|
238 |
+
"""C3 module with TransformerBlock()."""
|
239 |
+
|
240 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
241 |
+
"""Initialize C3Ghost module with GhostBottleneck()."""
|
242 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
243 |
+
c_ = int(c2 * e)
|
244 |
+
self.m = TransformerBlock(c_, c_, 4, n)
|
245 |
+
|
246 |
+
|
247 |
+
class C3Ghost(C3):
|
248 |
+
"""C3 module with GhostBottleneck()."""
|
249 |
+
|
250 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
251 |
+
"""Initialize 'SPP' module with various pooling sizes for spatial pyramid pooling."""
|
252 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
253 |
+
c_ = int(c2 * e) # hidden channels
|
254 |
+
self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
|
255 |
+
|
256 |
+
|
257 |
+
class GhostBottleneck(nn.Module):
|
258 |
+
"""Ghost Bottleneck https://github.com/huawei-noah/ghostnet."""
|
259 |
+
|
260 |
+
def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride
|
261 |
+
super().__init__()
|
262 |
+
c_ = c2 // 2
|
263 |
+
self.conv = nn.Sequential(
|
264 |
+
GhostConv(c1, c_, 1, 1), # pw
|
265 |
+
DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw
|
266 |
+
GhostConv(c_, c2, 1, 1, act=False)) # pw-linear
|
267 |
+
self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1,
|
268 |
+
act=False)) if s == 2 else nn.Identity()
|
269 |
+
|
270 |
+
def forward(self, x):
|
271 |
+
"""Applies skip connection and concatenation to input tensor."""
|
272 |
+
return self.conv(x) + self.shortcut(x)
|
273 |
+
|
274 |
+
|
275 |
+
class Bottleneck(nn.Module):
|
276 |
+
"""Standard bottleneck."""
|
277 |
+
|
278 |
+
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5, drop_path=0.0): # ch_in, ch_out, shortcut, groups, kernels, expand
|
279 |
+
super().__init__()
|
280 |
+
c_ = int(c2 * e) # hidden channels
|
281 |
+
self.cv1 = Conv(c1, c_, k[0], 1)
|
282 |
+
self.cv2 = Conv(c_, c2, k[1], 1, g=g)
|
283 |
+
self.add = shortcut and c1 == c2
|
284 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
285 |
+
|
286 |
+
def forward(self, x):
|
287 |
+
"""'forward()' applies the YOLOv5 FPN to input data."""
|
288 |
+
return x + self.drop_path1(self.cv2(self.cv1(x))) if self.add else self.cv2(self.cv1(x))
|
289 |
+
|
290 |
+
|
291 |
+
class BottleneckCSP(nn.Module):
|
292 |
+
"""CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks."""
|
293 |
+
|
294 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
295 |
+
super().__init__()
|
296 |
+
c_ = int(c2 * e) # hidden channels
|
297 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
298 |
+
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
|
299 |
+
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
|
300 |
+
self.cv4 = Conv(2 * c_, c2, 1, 1)
|
301 |
+
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
|
302 |
+
self.act = nn.SiLU()
|
303 |
+
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
304 |
+
|
305 |
+
def forward(self, x):
|
306 |
+
"""Applies a CSP bottleneck with 3 convolutions."""
|
307 |
+
y1 = self.cv3(self.m(self.cv1(x)))
|
308 |
+
y2 = self.cv2(x)
|
309 |
+
return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
|
config.json
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"ERADIOModel"
|
4 |
+
],
|
5 |
+
"args": {
|
6 |
+
"aa": null,
|
7 |
+
"amp": true,
|
8 |
+
"amp_dtype": "bfloat16",
|
9 |
+
"amp_impl": "native",
|
10 |
+
"aug_repeats": 0,
|
11 |
+
"aug_splits": 0,
|
12 |
+
"batch_size": 32,
|
13 |
+
"bn_eps": null,
|
14 |
+
"bn_momentum": null,
|
15 |
+
"cache": "/lustre/fs3/portfolios/llmservice/users/gheinrich/cache/",
|
16 |
+
"cache_dir": null,
|
17 |
+
"channels_last": false,
|
18 |
+
"checkpoint_hist": 3,
|
19 |
+
"class_map": "",
|
20 |
+
"clip_grad": null,
|
21 |
+
"clip_mode": "norm",
|
22 |
+
"coco_annotations_file": "/datasets/coco2017-adlsa/annotations/captions_val2017.json",
|
23 |
+
"coco_image_dir": "/datasets/coco2017-adlsa/val2017",
|
24 |
+
"color_jitter": 0.4,
|
25 |
+
"cooldown_epochs": 0,
|
26 |
+
"cpe_max_size": null,
|
27 |
+
"crd_loss": false,
|
28 |
+
"crd_loss_weight": 0.8,
|
29 |
+
"crop_pct": null,
|
30 |
+
"cutmix": 0.0,
|
31 |
+
"cutmix_minmax": null,
|
32 |
+
"data_dir": "/lustre/fsw/portfolios/llmservice/projects/llmservice_nlp_fm/datasets/classification/imagenet-21k/webdataset",
|
33 |
+
"dataset": "nvgpt4",
|
34 |
+
"dataset_download": false,
|
35 |
+
"debug_full_knn": false,
|
36 |
+
"decay_epochs": 90,
|
37 |
+
"decay_milestones": [
|
38 |
+
90,
|
39 |
+
180,
|
40 |
+
270
|
41 |
+
],
|
42 |
+
"decay_rate": 0.1,
|
43 |
+
"device": "cuda:0",
|
44 |
+
"dist_bn": "reduce",
|
45 |
+
"distributed": true,
|
46 |
+
"drop": 0.0,
|
47 |
+
"drop_block": null,
|
48 |
+
"drop_connect": null,
|
49 |
+
"drop_path": null,
|
50 |
+
"epoch_repeats": 0.0,
|
51 |
+
"epochs": 300,
|
52 |
+
"eval_metric": "knn_top1",
|
53 |
+
"eval_teacher": false,
|
54 |
+
"eval_teacher_only": false,
|
55 |
+
"eval_throughput": false,
|
56 |
+
"experiment": "checkpoints",
|
57 |
+
"fast_norm": false,
|
58 |
+
"feature_summarizer": "cls_token",
|
59 |
+
"feature_upscale_factor": null,
|
60 |
+
"fuser": "",
|
61 |
+
"gp": null,
|
62 |
+
"grad_accum_steps": 1,
|
63 |
+
"grad_checkpointing": false,
|
64 |
+
"head_init_bias": null,
|
65 |
+
"head_init_scale": null,
|
66 |
+
"hflip": 0.5,
|
67 |
+
"img_size": null,
|
68 |
+
"in_chans": 3,
|
69 |
+
"initial_checkpoint": "",
|
70 |
+
"input_size": null,
|
71 |
+
"interpolation": "",
|
72 |
+
"layer_decay": null,
|
73 |
+
"local_rank": 0,
|
74 |
+
"log_interval": 50,
|
75 |
+
"log_mlflow": false,
|
76 |
+
"log_wandb": true,
|
77 |
+
"loss": "cosine",
|
78 |
+
"lr": 0.001,
|
79 |
+
"lr_base": 0.1,
|
80 |
+
"lr_base_scale": "",
|
81 |
+
"lr_base_size": 256,
|
82 |
+
"lr_cycle_decay": 0.5,
|
83 |
+
"lr_cycle_limit": 1,
|
84 |
+
"lr_cycle_mul": 1.0,
|
85 |
+
"lr_k_decay": 1.0,
|
86 |
+
"lr_noise": null,
|
87 |
+
"lr_noise_pct": 0.67,
|
88 |
+
"lr_noise_std": 1.0,
|
89 |
+
"mean": null,
|
90 |
+
"min_lr": 0,
|
91 |
+
"mixup": 0.0,
|
92 |
+
"mixup_mode": "batch",
|
93 |
+
"mixup_off_epoch": 0,
|
94 |
+
"mixup_prob": 1.0,
|
95 |
+
"mixup_switch_prob": 0.5,
|
96 |
+
"mlp_hidden_size": 1024,
|
97 |
+
"model": "fastervit2_large_fullres",
|
98 |
+
"model_ema": false,
|
99 |
+
"model_ema_decay": 0.9998,
|
100 |
+
"model_ema_force_cpu": false,
|
101 |
+
"model_kwargs": {
|
102 |
+
"return_full_features": true
|
103 |
+
},
|
104 |
+
"momentum": 0.9,
|
105 |
+
"no_aug": false,
|
106 |
+
"no_ddp_bb": false,
|
107 |
+
"no_prefetcher": false,
|
108 |
+
"no_resume_opt": false,
|
109 |
+
"num_classes": 0,
|
110 |
+
"opt": "fusedlamb",
|
111 |
+
"opt_betas": null,
|
112 |
+
"opt_eps": null,
|
113 |
+
"opt_kwargs": {},
|
114 |
+
"output": "/lustre/fs3/portfolios/llmservice/users/gheinrich/results/evfm/19-11-23-fastervit2-l-fullres",
|
115 |
+
"patience_epochs": 10,
|
116 |
+
"pin_mem": false,
|
117 |
+
"prefetcher": false,
|
118 |
+
"pretrained": false,
|
119 |
+
"rank": 0,
|
120 |
+
"ratio": [
|
121 |
+
0.75,
|
122 |
+
1.3333333333333333
|
123 |
+
],
|
124 |
+
"recount": 1,
|
125 |
+
"recovery_interval": 0,
|
126 |
+
"remode": "pixel",
|
127 |
+
"reprob": 0.0,
|
128 |
+
"resplit": false,
|
129 |
+
"resume": "/lustre/fs3/portfolios/llmservice/users/gheinrich/results/evfm/19-11-23-fastervit2-l-fullres/checkpoints/last.pth.tar",
|
130 |
+
"return_full_features": true,
|
131 |
+
"save_images": false,
|
132 |
+
"scale": [
|
133 |
+
0.5,
|
134 |
+
1.0
|
135 |
+
],
|
136 |
+
"sched": "cosine",
|
137 |
+
"sched_on_updates": true,
|
138 |
+
"seed": 42,
|
139 |
+
"smoothing": 0.1,
|
140 |
+
"split_bn": false,
|
141 |
+
"start_epoch": null,
|
142 |
+
"std": null,
|
143 |
+
"steps_per_epoch": 2000,
|
144 |
+
"sync_bn": false,
|
145 |
+
"synchronize_step": false,
|
146 |
+
"teachers": [
|
147 |
+
{
|
148 |
+
"batch_size": 32,
|
149 |
+
"config": "open_clip_vit-h-14_res224.yaml",
|
150 |
+
"fd_loss_weight": 1.0,
|
151 |
+
"feature_distillation": true,
|
152 |
+
"sample_rate": 8,
|
153 |
+
"summary_loss_weight": 1.0
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"batch_size": 32,
|
157 |
+
"config": "dinov2_vit-g-14_res224.yaml",
|
158 |
+
"fd_loss_weight": 4.0,
|
159 |
+
"feature_distillation": true,
|
160 |
+
"sample_rate": 8,
|
161 |
+
"summary_loss_weight": 1.0
|
162 |
+
}
|
163 |
+
],
|
164 |
+
"torchcompile": null,
|
165 |
+
"torchscript": false,
|
166 |
+
"train_interpolation": "random",
|
167 |
+
"train_split": "train",
|
168 |
+
"tta": 0,
|
169 |
+
"use_coco": false,
|
170 |
+
"use_multi_epochs_loader": false,
|
171 |
+
"val_data_dir": "/lustre/fsw/portfolios/llmservice/projects/llmservice_nlp_fm/datasets/classification/imagenet-1k/webdataset",
|
172 |
+
"val_img_size": 224,
|
173 |
+
"val_split": "val",
|
174 |
+
"validation_batch_size": 32,
|
175 |
+
"vflip": 0.0,
|
176 |
+
"wandb_entity": "",
|
177 |
+
"wandb_group": "backbones",
|
178 |
+
"wandb_job_type": "",
|
179 |
+
"wandb_name": "",
|
180 |
+
"wandb_project": "",
|
181 |
+
"warmup_epochs": 2.5,
|
182 |
+
"warmup_lr": 1e-05,
|
183 |
+
"warmup_prefix": false,
|
184 |
+
"weight_decay": 2e-05,
|
185 |
+
"worker_seeding": "all",
|
186 |
+
"workers": 4,
|
187 |
+
"world_size": 32
|
188 |
+
},
|
189 |
+
"auto_map": {
|
190 |
+
"AutoConfig": "hf_model.ERADIOConfig",
|
191 |
+
"AutoModel": "hf_model.ERADIOModel"
|
192 |
+
},
|
193 |
+
"return_spatial_features": true,
|
194 |
+
"return_summary": true,
|
195 |
+
"torch_dtype": "float32",
|
196 |
+
"transformers_version": "4.29.0",
|
197 |
+
"version": "v1"
|
198 |
+
}
|
conv.py
ADDED
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
2 |
+
"""
|
3 |
+
Convolution modules
|
4 |
+
"""
|
5 |
+
|
6 |
+
import math
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
|
12 |
+
__all__ = ('Conv', 'LightConv', 'DWConv', 'DWConvTranspose2d', 'ConvTranspose', 'Focus', 'GhostConv',
|
13 |
+
'ChannelAttention', 'SpatialAttention', 'CBAM', 'Concat', 'RepConv')
|
14 |
+
|
15 |
+
|
16 |
+
def autopad(k, p=None, d=1): # kernel, padding, dilation
|
17 |
+
"""Pad to 'same' shape outputs."""
|
18 |
+
if d > 1:
|
19 |
+
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
|
20 |
+
if p is None:
|
21 |
+
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
|
22 |
+
return p
|
23 |
+
|
24 |
+
# Pavlo's implementation with switch to deploy
|
25 |
+
class Conv(nn.Module):
|
26 |
+
default_act = nn.SiLU() # default activation
|
27 |
+
|
28 |
+
def __init__(self, a, b, kernel_size=1, stride=1, padding=None, g=1, dilation=1, bn_weight_init=1, bias=False, act=True):
|
29 |
+
super().__init__()
|
30 |
+
|
31 |
+
self.conv = torch.nn.Conv2d(a, b, kernel_size, stride, autopad(kernel_size, padding, dilation), dilation, g, bias=False)
|
32 |
+
if 1:
|
33 |
+
self.bn = torch.nn.BatchNorm2d(b)
|
34 |
+
torch.nn.init.constant_(self.bn.weight, bn_weight_init)
|
35 |
+
torch.nn.init.constant_(self.bn.bias, 0)
|
36 |
+
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
|
37 |
+
|
38 |
+
|
39 |
+
def forward(self,x):
|
40 |
+
x = self.conv(x)
|
41 |
+
x = self.bn(x)
|
42 |
+
x = self.act(x)
|
43 |
+
return x
|
44 |
+
|
45 |
+
@torch.no_grad()
|
46 |
+
def switch_to_deploy(self):
|
47 |
+
if not isinstance(self.bn, nn.Identity):
|
48 |
+
# return 1
|
49 |
+
c, bn = self.conv, self.bn
|
50 |
+
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
|
51 |
+
w = c.weight * w[:, None, None, None]
|
52 |
+
b = bn.bias - bn.running_mean * bn.weight / \
|
53 |
+
(bn.running_var + bn.eps)**0.5
|
54 |
+
# m = torch.nn.Conv2d(w.size(1) * c.groups,
|
55 |
+
# w.size(0),
|
56 |
+
# w.shape[2:],
|
57 |
+
# stride=c.stride,
|
58 |
+
# padding=c.padding,
|
59 |
+
# dilation=c.dilation,
|
60 |
+
# groups=c.groups)
|
61 |
+
self.conv.weight.data.copy_(w)
|
62 |
+
self.conv.bias = nn.Parameter(b)
|
63 |
+
# self.conv.bias.data.copy_(b)
|
64 |
+
# self.conv = m.to(c.weight.device)
|
65 |
+
self.bn = nn.Identity()
|
66 |
+
|
67 |
+
# class Conv(nn.Module):
|
68 |
+
# """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
|
69 |
+
# default_act = nn.SiLU() # default activation
|
70 |
+
|
71 |
+
# def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
|
72 |
+
# """Initialize Conv layer with given arguments including activation."""
|
73 |
+
# super().__init__()
|
74 |
+
# self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
|
75 |
+
# self.bn = nn.BatchNorm2d(c2)
|
76 |
+
# self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
|
77 |
+
|
78 |
+
# def forward(self, x):
|
79 |
+
# """Apply convolution, batch normalization and activation to input tensor."""
|
80 |
+
# return self.act(self.bn(self.conv(x)))
|
81 |
+
|
82 |
+
# def forward_fuse(self, x):
|
83 |
+
# """Perform transposed convolution of 2D data."""
|
84 |
+
# return self.act(self.conv(x))
|
85 |
+
|
86 |
+
|
87 |
+
class Conv2(Conv):
|
88 |
+
"""Simplified RepConv module with Conv fusing."""
|
89 |
+
|
90 |
+
def __init__(self, c1, c2, k=3, s=1, p=None, g=1, d=1, act=True):
|
91 |
+
"""Initialize Conv layer with given arguments including activation."""
|
92 |
+
super().__init__(c1, c2, k, s, p, g=g, d=d, act=act)
|
93 |
+
self.cv2 = nn.Conv2d(c1, c2, 1, s, autopad(1, p, d), groups=g, dilation=d, bias=False) # add 1x1 conv
|
94 |
+
|
95 |
+
def forward(self, x):
|
96 |
+
"""Apply convolution, batch normalization and activation to input tensor."""
|
97 |
+
return self.act(self.bn(self.conv(x) + self.cv2(x)))
|
98 |
+
|
99 |
+
def fuse_convs(self):
|
100 |
+
"""Fuse parallel convolutions."""
|
101 |
+
w = torch.zeros_like(self.conv.weight.data)
|
102 |
+
i = [x // 2 for x in w.shape[2:]]
|
103 |
+
w[:, :, i[0]:i[0] + 1, i[1]:i[1] + 1] = self.cv2.weight.data.clone()
|
104 |
+
self.conv.weight.data += w
|
105 |
+
self.__delattr__('cv2')
|
106 |
+
|
107 |
+
|
108 |
+
class LightConv(nn.Module):
|
109 |
+
"""Light convolution with args(ch_in, ch_out, kernel).
|
110 |
+
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
|
111 |
+
"""
|
112 |
+
|
113 |
+
def __init__(self, c1, c2, k=1, act=nn.ReLU()):
|
114 |
+
"""Initialize Conv layer with given arguments including activation."""
|
115 |
+
super().__init__()
|
116 |
+
self.conv1 = Conv(c1, c2, 1, act=False)
|
117 |
+
self.conv2 = DWConv(c2, c2, k, act=act)
|
118 |
+
|
119 |
+
def forward(self, x):
|
120 |
+
"""Apply 2 convolutions to input tensor."""
|
121 |
+
return self.conv2(self.conv1(x))
|
122 |
+
|
123 |
+
|
124 |
+
class DWConv(Conv):
|
125 |
+
"""Depth-wise convolution."""
|
126 |
+
|
127 |
+
def __init__(self, c1, c2, k=1, s=1, d=1, act=True): # ch_in, ch_out, kernel, stride, dilation, activation
|
128 |
+
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)
|
129 |
+
|
130 |
+
|
131 |
+
class DWConvTranspose2d(nn.ConvTranspose2d):
|
132 |
+
"""Depth-wise transpose convolution."""
|
133 |
+
|
134 |
+
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out
|
135 |
+
super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
|
136 |
+
|
137 |
+
|
138 |
+
class ConvTranspose(nn.Module):
|
139 |
+
"""Convolution transpose 2d layer."""
|
140 |
+
default_act = nn.SiLU() # default activation
|
141 |
+
|
142 |
+
def __init__(self, c1, c2, k=2, s=2, p=0, bn=True, act=True):
|
143 |
+
"""Initialize ConvTranspose2d layer with batch normalization and activation function."""
|
144 |
+
super().__init__()
|
145 |
+
self.conv_transpose = nn.ConvTranspose2d(c1, c2, k, s, p, bias=not bn)
|
146 |
+
self.bn = nn.BatchNorm2d(c2) if bn else nn.Identity()
|
147 |
+
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
|
148 |
+
|
149 |
+
def forward(self, x):
|
150 |
+
"""Applies transposed convolutions, batch normalization and activation to input."""
|
151 |
+
return self.act(self.bn(self.conv_transpose(x)))
|
152 |
+
|
153 |
+
def forward_fuse(self, x):
|
154 |
+
"""Applies activation and convolution transpose operation to input."""
|
155 |
+
return self.act(self.conv_transpose(x))
|
156 |
+
|
157 |
+
|
158 |
+
class Focus(nn.Module):
|
159 |
+
"""Focus wh information into c-space."""
|
160 |
+
|
161 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
|
162 |
+
super().__init__()
|
163 |
+
self.conv = Conv(c1 * 4, c2, k, s, p, g, act=act)
|
164 |
+
# self.contract = Contract(gain=2)
|
165 |
+
|
166 |
+
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
|
167 |
+
return self.conv(torch.cat((x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]), 1))
|
168 |
+
# return self.conv(self.contract(x))
|
169 |
+
|
170 |
+
|
171 |
+
class GhostConv(nn.Module):
|
172 |
+
"""Ghost Convolution https://github.com/huawei-noah/ghostnet."""
|
173 |
+
|
174 |
+
def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups
|
175 |
+
super().__init__()
|
176 |
+
c_ = c2 // 2 # hidden channels
|
177 |
+
self.cv1 = Conv(c1, c_, k, s, None, g, act=act)
|
178 |
+
self.cv2 = Conv(c_, c_, 5, 1, None, c_, act=act)
|
179 |
+
|
180 |
+
def forward(self, x):
|
181 |
+
"""Forward propagation through a Ghost Bottleneck layer with skip connection."""
|
182 |
+
y = self.cv1(x)
|
183 |
+
return torch.cat((y, self.cv2(y)), 1)
|
184 |
+
|
185 |
+
|
186 |
+
class RepConv(nn.Module):
|
187 |
+
"""RepConv is a basic rep-style block, including training and deploy status
|
188 |
+
This code is based on https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py
|
189 |
+
"""
|
190 |
+
default_act = nn.SiLU() # default activation
|
191 |
+
|
192 |
+
def __init__(self, c1, c2, k=3, s=1, p=1, g=1, d=1, act=True, bn=False, deploy=False):
|
193 |
+
super().__init__()
|
194 |
+
assert k == 3 and p == 1
|
195 |
+
self.g = g
|
196 |
+
self.c1 = c1
|
197 |
+
self.c2 = c2
|
198 |
+
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
|
199 |
+
|
200 |
+
self.bn = nn.BatchNorm2d(num_features=c1) if bn and c2 == c1 and s == 1 else None
|
201 |
+
self.conv1 = Conv(c1, c2, k, s, p=p, g=g, act=False)
|
202 |
+
self.conv2 = Conv(c1, c2, 1, s, p=(p - k // 2), g=g, act=False)
|
203 |
+
|
204 |
+
def forward_fuse(self, x):
|
205 |
+
"""Forward process"""
|
206 |
+
return self.act(self.conv(x))
|
207 |
+
|
208 |
+
def forward(self, x):
|
209 |
+
"""Forward process"""
|
210 |
+
id_out = 0 if self.bn is None else self.bn(x)
|
211 |
+
return self.act(self.conv1(x) + self.conv2(x) + id_out)
|
212 |
+
|
213 |
+
def get_equivalent_kernel_bias(self):
|
214 |
+
kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1)
|
215 |
+
kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2)
|
216 |
+
kernelid, biasid = self._fuse_bn_tensor(self.bn)
|
217 |
+
return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
|
218 |
+
|
219 |
+
def _avg_to_3x3_tensor(self, avgp):
|
220 |
+
channels = self.c1
|
221 |
+
groups = self.g
|
222 |
+
kernel_size = avgp.kernel_size
|
223 |
+
input_dim = channels // groups
|
224 |
+
k = torch.zeros((channels, input_dim, kernel_size, kernel_size))
|
225 |
+
k[np.arange(channels), np.tile(np.arange(input_dim), groups), :, :] = 1.0 / kernel_size ** 2
|
226 |
+
return k
|
227 |
+
|
228 |
+
def _pad_1x1_to_3x3_tensor(self, kernel1x1):
|
229 |
+
if kernel1x1 is None:
|
230 |
+
return 0
|
231 |
+
else:
|
232 |
+
return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])
|
233 |
+
|
234 |
+
def _fuse_bn_tensor(self, branch):
|
235 |
+
if branch is None:
|
236 |
+
return 0, 0
|
237 |
+
if isinstance(branch, Conv):
|
238 |
+
kernel = branch.conv.weight
|
239 |
+
running_mean = branch.bn.running_mean
|
240 |
+
running_var = branch.bn.running_var
|
241 |
+
gamma = branch.bn.weight
|
242 |
+
beta = branch.bn.bias
|
243 |
+
eps = branch.bn.eps
|
244 |
+
elif isinstance(branch, nn.BatchNorm2d):
|
245 |
+
if not hasattr(self, 'id_tensor'):
|
246 |
+
input_dim = self.c1 // self.g
|
247 |
+
kernel_value = np.zeros((self.c1, input_dim, 3, 3), dtype=np.float32)
|
248 |
+
for i in range(self.c1):
|
249 |
+
kernel_value[i, i % input_dim, 1, 1] = 1
|
250 |
+
self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
|
251 |
+
kernel = self.id_tensor
|
252 |
+
running_mean = branch.running_mean
|
253 |
+
running_var = branch.running_var
|
254 |
+
gamma = branch.weight
|
255 |
+
beta = branch.bias
|
256 |
+
eps = branch.eps
|
257 |
+
std = (running_var + eps).sqrt()
|
258 |
+
t = (gamma / std).reshape(-1, 1, 1, 1)
|
259 |
+
return kernel * t, beta - running_mean * gamma / std
|
260 |
+
|
261 |
+
def fuse_convs(self):
|
262 |
+
if hasattr(self, 'conv'):
|
263 |
+
return
|
264 |
+
kernel, bias = self.get_equivalent_kernel_bias()
|
265 |
+
self.conv = nn.Conv2d(in_channels=self.conv1.conv.in_channels,
|
266 |
+
out_channels=self.conv1.conv.out_channels,
|
267 |
+
kernel_size=self.conv1.conv.kernel_size,
|
268 |
+
stride=self.conv1.conv.stride,
|
269 |
+
padding=self.conv1.conv.padding,
|
270 |
+
dilation=self.conv1.conv.dilation,
|
271 |
+
groups=self.conv1.conv.groups,
|
272 |
+
bias=True).requires_grad_(False)
|
273 |
+
self.conv.weight.data = kernel
|
274 |
+
self.conv.bias.data = bias
|
275 |
+
for para in self.parameters():
|
276 |
+
para.detach_()
|
277 |
+
self.__delattr__('conv1')
|
278 |
+
self.__delattr__('conv2')
|
279 |
+
if hasattr(self, 'nm'):
|
280 |
+
self.__delattr__('nm')
|
281 |
+
if hasattr(self, 'bn'):
|
282 |
+
self.__delattr__('bn')
|
283 |
+
if hasattr(self, 'id_tensor'):
|
284 |
+
self.__delattr__('id_tensor')
|
285 |
+
|
286 |
+
|
287 |
+
class ChannelAttention(nn.Module):
|
288 |
+
"""Channel-attention module https://github.com/open-mmlab/mmdetection/tree/v3.0.0rc1/configs/rtmdet."""
|
289 |
+
|
290 |
+
def __init__(self, channels: int) -> None:
|
291 |
+
super().__init__()
|
292 |
+
self.pool = nn.AdaptiveAvgPool2d(1)
|
293 |
+
self.fc = nn.Conv2d(channels, channels, 1, 1, 0, bias=True)
|
294 |
+
self.act = nn.Sigmoid()
|
295 |
+
|
296 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
297 |
+
return x * self.act(self.fc(self.pool(x)))
|
298 |
+
|
299 |
+
|
300 |
+
class SpatialAttention(nn.Module):
|
301 |
+
"""Spatial-attention module."""
|
302 |
+
|
303 |
+
def __init__(self, kernel_size=7):
|
304 |
+
"""Initialize Spatial-attention module with kernel size argument."""
|
305 |
+
super().__init__()
|
306 |
+
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
|
307 |
+
padding = 3 if kernel_size == 7 else 1
|
308 |
+
self.cv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
|
309 |
+
self.act = nn.Sigmoid()
|
310 |
+
|
311 |
+
def forward(self, x):
|
312 |
+
"""Apply channel and spatial attention on input for feature recalibration."""
|
313 |
+
return x * self.act(self.cv1(torch.cat([torch.mean(x, 1, keepdim=True), torch.max(x, 1, keepdim=True)[0]], 1)))
|
314 |
+
|
315 |
+
|
316 |
+
class CBAM(nn.Module):
|
317 |
+
"""Convolutional Block Attention Module."""
|
318 |
+
|
319 |
+
def __init__(self, c1, kernel_size=7): # ch_in, kernels
|
320 |
+
super().__init__()
|
321 |
+
self.channel_attention = ChannelAttention(c1)
|
322 |
+
self.spatial_attention = SpatialAttention(kernel_size)
|
323 |
+
|
324 |
+
def forward(self, x):
|
325 |
+
"""Applies the forward pass through C1 module."""
|
326 |
+
return self.spatial_attention(self.channel_attention(x))
|
327 |
+
|
328 |
+
|
329 |
+
class Concat(nn.Module):
|
330 |
+
"""Concatenate a list of tensors along dimension."""
|
331 |
+
|
332 |
+
def __init__(self, dimension=1):
|
333 |
+
"""Concatenates a list of tensors along a specified dimension."""
|
334 |
+
super().__init__()
|
335 |
+
self.d = dimension
|
336 |
+
|
337 |
+
def forward(self, x):
|
338 |
+
"""Forward pass for the YOLOv8 mask Proto module."""
|
339 |
+
return torch.cat(x, self.d)
|
hf_model.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from collections import namedtuple
|
15 |
+
from typing import Optional
|
16 |
+
|
17 |
+
from einops import rearrange
|
18 |
+
import torch
|
19 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
20 |
+
|
21 |
+
#from radio.model import create_model_from_args
|
22 |
+
from radio.input_conditioner import get_default_conditioner, InputConditioner
|
23 |
+
from .model import eradio
|
24 |
+
|
25 |
+
|
26 |
+
class ERADIOConfig(PretrainedConfig):
|
27 |
+
"""Pretrained Hugging Face configuration for ERADIO models."""
|
28 |
+
|
29 |
+
def __init__(
|
30 |
+
self,
|
31 |
+
args: Optional[dict] = None,
|
32 |
+
version: Optional[str] = "v1",
|
33 |
+
return_summary: Optional[bool] = True,
|
34 |
+
return_spatial_features: Optional[bool] = True,
|
35 |
+
**kwargs,
|
36 |
+
):
|
37 |
+
self.args = args
|
38 |
+
self.version = version
|
39 |
+
self.return_summary = return_summary
|
40 |
+
self.return_spatial_features = return_spatial_features
|
41 |
+
super().__init__(**kwargs)
|
42 |
+
|
43 |
+
|
44 |
+
class ERADIOModel(PreTrainedModel):
|
45 |
+
"""Pretrained Hugging Face model for ERADIO.
|
46 |
+
|
47 |
+
This class inherits from PreTrainedModel, which provides
|
48 |
+
HuggingFace's functionality for loading and saving models.
|
49 |
+
"""
|
50 |
+
|
51 |
+
config_class = ERADIOConfig
|
52 |
+
|
53 |
+
def __init__(self, config):
|
54 |
+
super().__init__(config)
|
55 |
+
|
56 |
+
config.args["in_chans"] = 3
|
57 |
+
config.args["num_classes"] = 0
|
58 |
+
config.args["return_full_features"] = config.return_spatial_features
|
59 |
+
|
60 |
+
self.config = config
|
61 |
+
model = eradio(**config.args)
|
62 |
+
self.input_conditioner: InputConditioner = get_default_conditioner()
|
63 |
+
self.return_summary = config.return_summary
|
64 |
+
self.return_spatial_features = config.return_spatial_features
|
65 |
+
self.model = model
|
66 |
+
|
67 |
+
def forward(self, x: torch.Tensor):
|
68 |
+
x = self.input_conditioner(x)
|
69 |
+
y = self.model.forward_features(x)
|
70 |
+
summary, features = self.model.forward_features(x)
|
71 |
+
|
72 |
+
if isinstance(y, tuple):
|
73 |
+
summary, features = y
|
74 |
+
# ERADIO features are spatial tokens.
|
75 |
+
features = rearrange(features, 'b c h w -> b (h w) c')
|
76 |
+
else:
|
77 |
+
summary = y
|
78 |
+
features = None
|
79 |
+
|
80 |
+
if self.return_summary and self.return_spatial_features:
|
81 |
+
return summary, features
|
82 |
+
elif self.return_summary:
|
83 |
+
return summary
|
84 |
+
return features
|
model.py
ADDED
@@ -0,0 +1,1341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
|
3 |
+
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
6 |
+
# and proprietary rights in and to this software, related documentation
|
7 |
+
# and any modifications thereto. Any use, reproduction, disclosure or
|
8 |
+
# distribution of this software and related documentation without an express
|
9 |
+
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
10 |
+
|
11 |
+
# Created by Pavlo Molchanov, LPR - DL Efficiency Research team
|
12 |
+
# based on Fastervit1 from LPR
|
13 |
+
|
14 |
+
import timm
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
from timm.models.registry import register_model
|
18 |
+
|
19 |
+
from timm.models.layers import trunc_normal_, DropPath, LayerNorm2d
|
20 |
+
import numpy as np
|
21 |
+
import torch.nn.functional as F
|
22 |
+
from .block import C2f
|
23 |
+
TRT = False # should help for TRT
|
24 |
+
|
25 |
+
import pickle
|
26 |
+
global bias_indx
|
27 |
+
bias_indx = -1
|
28 |
+
DEBUG = False
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
def pixel_unshuffle(data, factor=2):
|
33 |
+
# performs nn.PixelShuffle(factor) in reverse, torch has some bug for ONNX and TRT, so doing it manually
|
34 |
+
B, C, H, W = data.shape
|
35 |
+
return data.view(B, C, factor, H//factor, factor, W//factor).permute(0,1,2,4,3,5).reshape(B, -1, H//factor, W//factor)
|
36 |
+
|
37 |
+
class SwiGLU(nn.Module):
|
38 |
+
# should be more advanced, but doesnt improve results so far
|
39 |
+
def forward(self, x):
|
40 |
+
x, gate = x.chunk(2, dim=-1)
|
41 |
+
return F.silu(gate) * x
|
42 |
+
|
43 |
+
|
44 |
+
def window_partition(x, window_size):
|
45 |
+
"""
|
46 |
+
Args:
|
47 |
+
x: (B, C, H, W)
|
48 |
+
window_size: window size
|
49 |
+
Returns:
|
50 |
+
windows - local window features (num_windows*B, window_size*window_size, C)
|
51 |
+
(Hp, Wp) - the size of the padded image
|
52 |
+
"""
|
53 |
+
B, C, H, W = x.shape
|
54 |
+
|
55 |
+
if window_size == 0 or (window_size==H and window_size==W):
|
56 |
+
windows = x.flatten(2).transpose(1, 2)
|
57 |
+
Hp, Wp = H, W
|
58 |
+
else:
|
59 |
+
pad_h = (window_size - H % window_size) % window_size
|
60 |
+
pad_w = (window_size - W % window_size) % window_size
|
61 |
+
if pad_h > 0 or pad_w > 0:
|
62 |
+
x = F.pad(x, (0, pad_w, 0, pad_h, 0, 0, 0, 0))
|
63 |
+
Hp, Wp = H + pad_h, W + pad_w
|
64 |
+
|
65 |
+
x = x.view(B, C, Hp // window_size, window_size, Wp // window_size, window_size)
|
66 |
+
windows = x.permute(0, 2, 4, 3, 5, 1).reshape(-1, window_size*window_size, C)
|
67 |
+
|
68 |
+
return windows, (Hp, Wp)
|
69 |
+
|
70 |
+
class Conv2d_BN(nn.Module):
|
71 |
+
'''
|
72 |
+
Conv2d + BN layer with folding capability to speed up inference
|
73 |
+
'''
|
74 |
+
def __init__(self, a, b, kernel_size=1, stride=1, padding=0, dilation=1, groups=1, bn_weight_init=1, bias=False):
|
75 |
+
super().__init__()
|
76 |
+
self.conv = torch.nn.Conv2d(a, b, kernel_size, stride, padding, dilation, groups, bias=False)
|
77 |
+
if 1:
|
78 |
+
self.bn = torch.nn.BatchNorm2d(b)
|
79 |
+
torch.nn.init.constant_(self.bn.weight, bn_weight_init)
|
80 |
+
torch.nn.init.constant_(self.bn.bias, 0)
|
81 |
+
|
82 |
+
def forward(self,x):
|
83 |
+
x = self.conv(x)
|
84 |
+
x = self.bn(x)
|
85 |
+
return x
|
86 |
+
|
87 |
+
@torch.no_grad()
|
88 |
+
def switch_to_deploy(self):
|
89 |
+
|
90 |
+
# return 1
|
91 |
+
if not isinstance(self.bn, nn.Identity):
|
92 |
+
c, bn = self.conv, self.bn
|
93 |
+
w = bn.weight / (bn.running_var + bn.eps) ** 0.5
|
94 |
+
w = c.weight * w[:, None, None, None]
|
95 |
+
b = bn.bias - bn.running_mean * bn.weight / \
|
96 |
+
(bn.running_var + bn.eps)**0.5
|
97 |
+
self.conv.weight.data.copy_(w)
|
98 |
+
self.conv.bias = nn.Parameter(b)
|
99 |
+
self.bn = nn.Identity()
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
def window_reverse(windows, window_size, H, W, pad_hw):
|
104 |
+
"""
|
105 |
+
Args:
|
106 |
+
windows: local window features (num_windows*B, window_size, window_size, C)
|
107 |
+
window_size: Window size
|
108 |
+
H: Height of image
|
109 |
+
W: Width of image
|
110 |
+
pad_w - a tuple of image passing used in windowing step
|
111 |
+
Returns:
|
112 |
+
x: (B, C, H, W)
|
113 |
+
|
114 |
+
"""
|
115 |
+
# print(f"window_reverse, windows.shape {windows.shape}")
|
116 |
+
Hp, Wp = pad_hw
|
117 |
+
if window_size == 0 or (window_size==H and window_size==W):
|
118 |
+
B = int(windows.shape[0] / (Hp * Wp / window_size / window_size))
|
119 |
+
x = windows.transpose(1, 2).view(B, -1, H, W)
|
120 |
+
else:
|
121 |
+
B = int(windows.shape[0] / (Hp * Wp / window_size / window_size))
|
122 |
+
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
|
123 |
+
x = x.permute(0, 5, 1, 3, 2, 4).reshape(B,windows.shape[2], Hp, Wp)
|
124 |
+
|
125 |
+
if Hp > H or Wp > W:
|
126 |
+
x = x[:, :, :H, :W, ].contiguous()
|
127 |
+
|
128 |
+
return x
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
class PosEmbMLPSwinv2D(nn.Module):
|
133 |
+
def __init__(self, window_size, pretrained_window_size, num_heads, seq_length, no_log=False):
|
134 |
+
super().__init__()
|
135 |
+
self.window_size = window_size
|
136 |
+
self.num_heads = num_heads
|
137 |
+
# mlp to generate continuous relative position bias
|
138 |
+
self.cpb_mlp = nn.Sequential(nn.Linear(2, 512, bias=True),
|
139 |
+
nn.ReLU(inplace=True),
|
140 |
+
nn.Linear(512, num_heads, bias=False))
|
141 |
+
|
142 |
+
# get relative_coords_table
|
143 |
+
relative_coords_h = torch.arange(-(self.window_size[0] - 1), self.window_size[0], dtype=torch.float32)
|
144 |
+
relative_coords_w = torch.arange(-(self.window_size[1] - 1), self.window_size[1], dtype=torch.float32)
|
145 |
+
relative_coords_table = torch.stack(
|
146 |
+
torch.meshgrid([relative_coords_h,
|
147 |
+
relative_coords_w])).permute(1, 2, 0).contiguous().unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
|
148 |
+
if pretrained_window_size[0] > 0:
|
149 |
+
relative_coords_table[:, :, :, 0] /= (pretrained_window_size[0] - 1)
|
150 |
+
relative_coords_table[:, :, :, 1] /= (pretrained_window_size[1] - 1)
|
151 |
+
else:
|
152 |
+
relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
|
153 |
+
relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
|
154 |
+
|
155 |
+
if not no_log:
|
156 |
+
relative_coords_table *= 8 # normalize to -8, 8
|
157 |
+
relative_coords_table = torch.sign(relative_coords_table) * torch.log2(
|
158 |
+
torch.abs(relative_coords_table) + 1.0) / np.log2(8)
|
159 |
+
|
160 |
+
self.register_buffer("relative_coords_table", relative_coords_table)
|
161 |
+
|
162 |
+
# get pair-wise relative position index for each token inside the window
|
163 |
+
coords_h = torch.arange(self.window_size[0])
|
164 |
+
coords_w = torch.arange(self.window_size[1])
|
165 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
166 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
167 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
168 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
169 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
170 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
171 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
172 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
173 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
174 |
+
|
175 |
+
self.grid_exists = False
|
176 |
+
|
177 |
+
self.deploy = False
|
178 |
+
|
179 |
+
relative_bias = torch.zeros(1, num_heads, seq_length, seq_length)
|
180 |
+
self.seq_length = seq_length
|
181 |
+
self.register_buffer("relative_bias", relative_bias) #for EMA
|
182 |
+
|
183 |
+
def switch_to_deploy(self):
|
184 |
+
self.deploy = True
|
185 |
+
self.grid_exists = True
|
186 |
+
|
187 |
+
def forward(self, input_tensor):
|
188 |
+
# for efficiency, we want this forward to be folded into a single operation (sum)
|
189 |
+
# if resolution stays the same, then we dont need to recompute MLP layers
|
190 |
+
#
|
191 |
+
# to dynamically adjust patch size over the step
|
192 |
+
# if not (input_tensor.shape[1:] == self.relative_bias.shape[1:]):
|
193 |
+
# self.grid_exists = False
|
194 |
+
|
195 |
+
if self.training: self.grid_exists = False
|
196 |
+
|
197 |
+
if self.deploy and self.grid_exists:
|
198 |
+
input_tensor += self.relative_bias
|
199 |
+
return input_tensor
|
200 |
+
|
201 |
+
if not self.grid_exists:
|
202 |
+
self.grid_exists = True
|
203 |
+
|
204 |
+
relative_position_bias_table = self.cpb_mlp(self.relative_coords_table).view(-1, self.num_heads)
|
205 |
+
relative_position_bias = relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
206 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1],
|
207 |
+
-1) # Wh*Ww,Wh*Ww,nH
|
208 |
+
|
209 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
210 |
+
relative_position_bias = 16 * torch.sigmoid(relative_position_bias)
|
211 |
+
|
212 |
+
self.relative_bias = relative_position_bias.unsqueeze(0)
|
213 |
+
|
214 |
+
input_tensor += self.relative_bias
|
215 |
+
return input_tensor
|
216 |
+
|
217 |
+
|
218 |
+
|
219 |
+
class GRAAttentionBlock(nn.Module):
|
220 |
+
def __init__(self, window_size, dim_in, dim_out,
|
221 |
+
num_heads, drop_path=0., qk_scale=None, qkv_bias=False,
|
222 |
+
norm_layer=nn.LayerNorm, layer_scale=None,
|
223 |
+
use_swiglu=True,
|
224 |
+
subsample_ratio=1, dim_ratio=1, conv_base=False,
|
225 |
+
do_windowing=True, multi_query=False) -> None:
|
226 |
+
super().__init__()
|
227 |
+
|
228 |
+
dim = dim_in
|
229 |
+
# conv_base = True
|
230 |
+
SHUFFLE = True
|
231 |
+
SHUFFLE = False
|
232 |
+
self.do_windowing = do_windowing
|
233 |
+
|
234 |
+
if do_windowing:
|
235 |
+
if SHUFFLE:
|
236 |
+
self.downsample_op = torch.nn.PixelUnshuffle(subsample_ratio) if subsample_ratio>1 else torch.nn.Identity()
|
237 |
+
self.downsample_mixer = nn.Conv2d(dim_in * (subsample_ratio * subsample_ratio), dim_in * (dim_ratio), kernel_size=1, stride=1, padding=0, bias=False) if dim*dim_ratio != dim * subsample_ratio * subsample_ratio else torch.nn.Identity()
|
238 |
+
else:
|
239 |
+
if conv_base:
|
240 |
+
self.downsample_op = nn.Conv2d(dim_in, dim_out, kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
|
241 |
+
self.downsample_mixer = nn.Identity()
|
242 |
+
else:
|
243 |
+
self.downsample_op = nn.AvgPool2d(kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
|
244 |
+
self.downsample_mixer = Conv2d_BN(dim_in, dim_out, kernel_size=1, stride=1) if subsample_ratio > 1 else nn.Identity()
|
245 |
+
|
246 |
+
|
247 |
+
if do_windowing:
|
248 |
+
if SHUFFLE:
|
249 |
+
self.upsample_mixer =nn.Conv2d(dim_in * dim_ratio, dim_in * (subsample_ratio * subsample_ratio), kernel_size=1, stride=1, padding=0, bias=False) if dim*dim_ratio != dim * subsample_ratio * subsample_ratio else torch.nn.Identity()
|
250 |
+
self.upsample_op = torch.nn.PixelShuffle(subsample_ratio) if subsample_ratio>1 else torch.nn.Identity()
|
251 |
+
else:
|
252 |
+
if conv_base:
|
253 |
+
self.upsample_mixer = nn.Identity()
|
254 |
+
self.upsample_op = nn.ConvTranspose2d(dim_in, dim_out, kernel_size=subsample_ratio, stride=subsample_ratio) if subsample_ratio > 1 else nn.Identity()
|
255 |
+
else:
|
256 |
+
self.upsample_mixer = nn.Upsample(scale_factor=subsample_ratio, mode='nearest') if subsample_ratio > 1 else nn.Identity()
|
257 |
+
self.upsample_op = Conv2d_BN(dim_in, dim_out, kernel_size=1, stride=1, padding=0, bias=False) if subsample_ratio > 1 else nn.Identity()
|
258 |
+
|
259 |
+
self.window_size = window_size
|
260 |
+
|
261 |
+
self.norm1 = norm_layer(dim_in)
|
262 |
+
if DEBUG:
|
263 |
+
print(f"GRAAttentionBlock: input_resolution: , window_size: {window_size}, dim_in: {dim_in}, dim_out: {dim_out}, num_heads: {num_heads}, drop_path: {drop_path}, qk_scale: {qk_scale}, qkv_bias: {qkv_bias}, layer_scale: {layer_scale}")
|
264 |
+
|
265 |
+
|
266 |
+
self.attn = WindowAttention(
|
267 |
+
dim_in,
|
268 |
+
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
269 |
+
resolution=window_size,
|
270 |
+
seq_length=window_size**2, dim_out=dim_in, multi_query=multi_query)
|
271 |
+
if DEBUG:
|
272 |
+
print(f"Attention: dim_in: {dim_in}, num_heads: {num_heads}, qkv_bias: {qkv_bias}, qk_scale: {qk_scale}, resolution: {window_size}, seq_length: {window_size**2}, dim_out: {dim_in}")
|
273 |
+
print(f"drop_path: {drop_path}, layer_scale: {layer_scale}")
|
274 |
+
|
275 |
+
self.drop_path1 = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
276 |
+
|
277 |
+
use_layer_scale = layer_scale is not None and type(layer_scale) in [int, float]
|
278 |
+
self.gamma1 = nn.Parameter(layer_scale * torch.ones(dim_in)) if use_layer_scale else 1
|
279 |
+
|
280 |
+
### mlp layer
|
281 |
+
mlp_ratio = 4
|
282 |
+
self.norm2 = norm_layer(dim_in)
|
283 |
+
mlp_hidden_dim = int(dim_in * mlp_ratio)
|
284 |
+
|
285 |
+
activation = nn.GELU if not use_swiglu else SwiGLU
|
286 |
+
mlp_hidden_dim = int((4 * dim_in * 1 / 2) / 64) * 64 if use_swiglu else mlp_hidden_dim
|
287 |
+
|
288 |
+
self.mlp = Mlp(in_features=dim_in, hidden_features=mlp_hidden_dim, act_layer=activation, use_swiglu=use_swiglu)
|
289 |
+
|
290 |
+
self.gamma2 = nn.Parameter(layer_scale * torch.ones(dim_in)) if layer_scale else 1
|
291 |
+
self.drop_path2=DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
292 |
+
if DEBUG:
|
293 |
+
print(f"MLP layer: dim_in: {dim_in}, dim_out: {dim_in}, mlp_hidden_dim: {mlp_hidden_dim}")
|
294 |
+
print(f"drop_path: {drop_path}, layer_scale: {layer_scale}")
|
295 |
+
|
296 |
+
|
297 |
+
def forward(self, x):
|
298 |
+
skip_connection = x
|
299 |
+
|
300 |
+
if self.do_windowing:
|
301 |
+
# performing windowing if required
|
302 |
+
x = self.downsample_op(x)
|
303 |
+
x = self.downsample_mixer(x)
|
304 |
+
|
305 |
+
if self.window_size>0:
|
306 |
+
H, W = x.shape[2], x.shape[3]
|
307 |
+
|
308 |
+
x, pad_hw = window_partition(x, self.window_size)
|
309 |
+
|
310 |
+
# window attention
|
311 |
+
x = x + self.drop_path1(self.gamma1*self.attn(self.norm1(x)))
|
312 |
+
# mlp layer
|
313 |
+
x = x + self.drop_path2(self.gamma2*self.mlp(self.norm2(x)))
|
314 |
+
|
315 |
+
if self.do_windowing:
|
316 |
+
if self.window_size > 0:
|
317 |
+
x = window_reverse(x, self.window_size, H, W, pad_hw)
|
318 |
+
|
319 |
+
x = self.upsample_mixer(x)
|
320 |
+
x = self.upsample_op(x)
|
321 |
+
|
322 |
+
|
323 |
+
if x.shape[2] != skip_connection.shape[2] or x.shape[3] != skip_connection.shape[3]:
|
324 |
+
x = torch.nn.functional.pad(x, ( 0, -x.shape[3] + skip_connection.shape[3], 0, -x.shape[2] + skip_connection.shape[2]))
|
325 |
+
# need to add skip connection because downsampling and upsampling will break residual connection
|
326 |
+
# 0.5 is needed to make sure that the skip connection is not too strong
|
327 |
+
# in case of no downsample / upsample we can show that 0.5 compensates for the residual connection
|
328 |
+
x = 0.5 * x + 0.5 * skip_connection
|
329 |
+
|
330 |
+
return x
|
331 |
+
|
332 |
+
|
333 |
+
|
334 |
+
|
335 |
+
class MultiResolutionAttention(nn.Module):
|
336 |
+
"""
|
337 |
+
MultiResolutionAttention (MRA) module
|
338 |
+
The idea is to use multiple attention blocks with different resolution
|
339 |
+
Feature maps are downsampled / upsampled for each attention block on different blocks
|
340 |
+
Every attention block supports
|
341 |
+
|
342 |
+
"""
|
343 |
+
|
344 |
+
def __init__(self, window_size, sr_ratio,
|
345 |
+
dim, dim_ratio, num_heads,
|
346 |
+
do_windowing=True,
|
347 |
+
layer_scale=1e-5, norm_layer=nn.LayerNorm,
|
348 |
+
drop_path = 0, qkv_bias=False, qk_scale=1.0,
|
349 |
+
use_swiglu=True, multi_query=False, conv_base=False) -> None:
|
350 |
+
"""
|
351 |
+
Args:
|
352 |
+
input_resolution: input image resolution
|
353 |
+
window_size: window size
|
354 |
+
compression_ratio: compression ratio
|
355 |
+
max_depth: maximum depth of the GRA module
|
356 |
+
"""
|
357 |
+
super().__init__()
|
358 |
+
|
359 |
+
depth = len(sr_ratio)
|
360 |
+
|
361 |
+
|
362 |
+
self.attention_blocks = nn.ModuleList()
|
363 |
+
|
364 |
+
|
365 |
+
for i in range(depth):
|
366 |
+
subsample_ratio = sr_ratio[i]
|
367 |
+
if len(window_size) > i:
|
368 |
+
window_size_local = window_size[i]
|
369 |
+
else:
|
370 |
+
window_size_local = window_size[0]
|
371 |
+
|
372 |
+
self.attention_blocks.append(GRAAttentionBlock(window_size=window_size_local,
|
373 |
+
dim_in=dim, dim_out=dim, num_heads=num_heads,
|
374 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, norm_layer=norm_layer,
|
375 |
+
layer_scale=layer_scale, drop_path=drop_path,
|
376 |
+
use_swiglu=use_swiglu, subsample_ratio=subsample_ratio, dim_ratio=dim_ratio,
|
377 |
+
do_windowing=do_windowing, multi_query=multi_query, conv_base=conv_base),
|
378 |
+
)
|
379 |
+
|
380 |
+
|
381 |
+
|
382 |
+
def forward(self, x):
|
383 |
+
|
384 |
+
for attention_block in self.attention_blocks:
|
385 |
+
x = attention_block(x)
|
386 |
+
|
387 |
+
return x
|
388 |
+
|
389 |
+
|
390 |
+
|
391 |
+
class Mlp(nn.Module):
|
392 |
+
"""
|
393 |
+
Multi-Layer Perceptron (MLP) block
|
394 |
+
"""
|
395 |
+
|
396 |
+
def __init__(self,
|
397 |
+
in_features,
|
398 |
+
hidden_features=None,
|
399 |
+
out_features=None,
|
400 |
+
act_layer=nn.GELU,
|
401 |
+
use_swiglu=True,
|
402 |
+
drop=0.):
|
403 |
+
"""
|
404 |
+
Args:
|
405 |
+
in_features: input features dimension.
|
406 |
+
hidden_features: hidden features dimension.
|
407 |
+
out_features: output features dimension.
|
408 |
+
act_layer: activation function.
|
409 |
+
drop: dropout rate.
|
410 |
+
"""
|
411 |
+
|
412 |
+
super().__init__()
|
413 |
+
out_features = out_features or in_features
|
414 |
+
hidden_features = hidden_features or in_features
|
415 |
+
self.fc1 = nn.Linear(in_features, hidden_features * (2 if use_swiglu else 1), bias=False)
|
416 |
+
self.act = act_layer()
|
417 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=False)
|
418 |
+
# self.drop = GaussianDropout(drop)
|
419 |
+
|
420 |
+
def forward(self, x):
|
421 |
+
x_size = x.size()
|
422 |
+
x = x.view(-1, x_size[-1])
|
423 |
+
x = self.fc1(x)
|
424 |
+
x = self.act(x)
|
425 |
+
# x = self.drop(x)
|
426 |
+
x = self.fc2(x)
|
427 |
+
# x = self.drop(x)
|
428 |
+
x = x.view(x_size)
|
429 |
+
return x
|
430 |
+
|
431 |
+
class Downsample(nn.Module):
|
432 |
+
"""
|
433 |
+
Down-sampling block
|
434 |
+
|
435 |
+
Pixel Unshuffle is used for down-sampling, works great accuracy - wise but takes 10% more TRT time
|
436 |
+
"""
|
437 |
+
|
438 |
+
def __init__(self,
|
439 |
+
dim,
|
440 |
+
shuffle = False,
|
441 |
+
):
|
442 |
+
"""
|
443 |
+
Args:
|
444 |
+
dim: feature size dimension.
|
445 |
+
shuffle: idea with
|
446 |
+
keep_dim: bool argument for maintaining the resolution.
|
447 |
+
"""
|
448 |
+
|
449 |
+
super().__init__()
|
450 |
+
dim_out = 2 * dim
|
451 |
+
|
452 |
+
if shuffle:
|
453 |
+
self.norm = lambda x: pixel_unshuffle(x, factor=2)
|
454 |
+
self.reduction = Conv2d_BN(dim*4, dim_out, 1, 1, 0, bias=False)
|
455 |
+
else:
|
456 |
+
#removed layer norm for better, in this formulation we are getting 10% better speed
|
457 |
+
# LayerNorm for high resolution inputs will be a pain as it pools over the entire spatial dimension
|
458 |
+
self.norm = nn.Identity()
|
459 |
+
self.reduction = Conv2d_BN(dim, dim_out, 3, 2, 1, bias=False)
|
460 |
+
|
461 |
+
|
462 |
+
def forward(self, x):
|
463 |
+
x = self.norm(x)
|
464 |
+
x = self.reduction(x)
|
465 |
+
return x
|
466 |
+
|
467 |
+
|
468 |
+
class PatchEmbed(nn.Module):
|
469 |
+
"""
|
470 |
+
Patch embedding block
|
471 |
+
"""
|
472 |
+
|
473 |
+
def __init__(self, in_chans=3, in_dim=64, dim=96, shuffle_down=False):
|
474 |
+
"""
|
475 |
+
Args:
|
476 |
+
in_chans: number of input channels.
|
477 |
+
in_dim: intermediate feature size dimension to speed up stem.
|
478 |
+
dim: final stem channel number
|
479 |
+
shuffle_down: use PixelUnshuffle for down-sampling, effectively increases the receptive field
|
480 |
+
"""
|
481 |
+
|
482 |
+
super().__init__()
|
483 |
+
# shuffle_down = False
|
484 |
+
if not shuffle_down:
|
485 |
+
self.proj = nn.Identity()
|
486 |
+
self.conv_down = nn.Sequential(
|
487 |
+
Conv2d_BN(in_chans, in_dim, 3, 2, 1, bias=False),
|
488 |
+
nn.ReLU(),
|
489 |
+
Conv2d_BN(in_dim, dim, 3, 2, 1, bias=False),
|
490 |
+
nn.ReLU()
|
491 |
+
)
|
492 |
+
else:
|
493 |
+
self.proj = lambda x: pixel_unshuffle(x, factor=4)
|
494 |
+
|
495 |
+
# self.conv_down = nn.Sequential(Conv2d_BN(in_chans*16, in_dim, 3, 1, 1),
|
496 |
+
# nn.SiLU(),
|
497 |
+
# Conv2d_BN(in_dim, dim, 3, 1, 1),
|
498 |
+
# nn.SiLU(),
|
499 |
+
# )
|
500 |
+
self.conv_down = nn.Sequential(Conv2d_BN(in_chans*16, dim, 3, 1, 1),
|
501 |
+
nn.ReLU(),
|
502 |
+
)
|
503 |
+
|
504 |
+
def forward(self, x):
|
505 |
+
x = self.proj(x)
|
506 |
+
x = self.conv_down(x)
|
507 |
+
return x
|
508 |
+
|
509 |
+
|
510 |
+
|
511 |
+
class ConvBlock(nn.Module):
|
512 |
+
"""
|
513 |
+
Convolutional block, used in first couple of stages
|
514 |
+
Experimented with plan resnet-18 like modules, they are the best in terms of throughput
|
515 |
+
Experimented with RepVGG, dont see significant improvement in accuracy
|
516 |
+
Finally, YOLOv8 idea seem to work fine (resnet-18 like block with squeezed feature dimension, and feature concatendation at the end)
|
517 |
+
"""
|
518 |
+
def __init__(self, dim,
|
519 |
+
drop_path=0.,
|
520 |
+
layer_scale=None,
|
521 |
+
kernel_size=3,
|
522 |
+
rep_vgg=False):
|
523 |
+
super().__init__()
|
524 |
+
self.rep_vgg = rep_vgg
|
525 |
+
if not rep_vgg:
|
526 |
+
self.conv1 = Conv2d_BN(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
|
527 |
+
self.act1 = nn.GELU()
|
528 |
+
else:
|
529 |
+
self.conv1 = RepVGGBlock(dim, dim, kernel_size=kernel_size, stride=1, padding=1, groups=1)
|
530 |
+
|
531 |
+
|
532 |
+
if not rep_vgg:
|
533 |
+
self.conv2 = Conv2d_BN(dim, dim, kernel_size=kernel_size, stride=1, padding=1)
|
534 |
+
else:
|
535 |
+
self.conv2 = RepVGGBlock(dim, dim, kernel_size=kernel_size, stride=1, padding=1, groups=1)
|
536 |
+
|
537 |
+
self.layer_scale = layer_scale
|
538 |
+
if layer_scale is not None and type(layer_scale) in [int, float]:
|
539 |
+
self.gamma = nn.Parameter(layer_scale * torch.ones(dim))
|
540 |
+
self.layer_scale = True
|
541 |
+
else:
|
542 |
+
self.layer_scale = False
|
543 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
544 |
+
|
545 |
+
def forward(self, x):
|
546 |
+
input = x
|
547 |
+
if not self.rep_vgg:
|
548 |
+
x = self.conv1(x)
|
549 |
+
x = self.act1(x)
|
550 |
+
x = self.conv2(x)
|
551 |
+
else:
|
552 |
+
x = self.conv1(x)
|
553 |
+
x = self.conv2(x)
|
554 |
+
if self.layer_scale:
|
555 |
+
x = x * self.gamma.view(1, -1, 1, 1)
|
556 |
+
x = input + self.drop_path(x)
|
557 |
+
return x
|
558 |
+
|
559 |
+
|
560 |
+
class WindowAttention(nn.Module):
|
561 |
+
# Windowed Attention from SwinV2
|
562 |
+
# use a MLP trick to deal with various input image resolutions, then fold it to improve speed
|
563 |
+
# tested multi-querry attention, but it is not as good as full attention:
|
564 |
+
# look into palm: https://github.com/lucidrains/PaLM-pytorch/blob/main/palm_pytorch/palm_pytorch.py
|
565 |
+
# single kv attention, mlp in parallel (didnt improve speed)
|
566 |
+
|
567 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, resolution=0,
|
568 |
+
seq_length=0, dim_out=None, multi_query=False):
|
569 |
+
# taken from EdgeViT and tweaked with attention bias.
|
570 |
+
super().__init__()
|
571 |
+
if not dim_out: dim_out = dim
|
572 |
+
self.multi_query = multi_query
|
573 |
+
self.num_heads = num_heads
|
574 |
+
head_dim = dim // num_heads
|
575 |
+
self.head_dim = dim // num_heads
|
576 |
+
|
577 |
+
self.dim_internal = dim
|
578 |
+
|
579 |
+
self.scale = qk_scale or head_dim ** -0.5
|
580 |
+
if not multi_query:
|
581 |
+
if TRT:
|
582 |
+
self.q = nn.Linear(dim, dim, bias=qkv_bias)
|
583 |
+
self.k = nn.Linear(dim, dim, bias=qkv_bias)
|
584 |
+
self.v = nn.Linear(dim, dim, bias=qkv_bias)
|
585 |
+
else:
|
586 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
587 |
+
else:
|
588 |
+
self.qkv = nn.Linear(dim, dim + 2*self.head_dim, bias=qkv_bias)
|
589 |
+
|
590 |
+
self.proj = nn.Linear(dim, dim_out, bias=False)
|
591 |
+
# attention positional bias
|
592 |
+
self.pos_emb_funct = PosEmbMLPSwinv2D(window_size=[resolution, resolution],
|
593 |
+
pretrained_window_size=[resolution, resolution],
|
594 |
+
num_heads=num_heads,
|
595 |
+
seq_length=seq_length)
|
596 |
+
|
597 |
+
self.resolution = resolution
|
598 |
+
|
599 |
+
def forward(self, x):
|
600 |
+
B, N, C = x.shape
|
601 |
+
|
602 |
+
if not self.multi_query:
|
603 |
+
if TRT:
|
604 |
+
q = self.q(x).reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
605 |
+
k = self.k(x).reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
606 |
+
v = self.v(x).reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
607 |
+
else:
|
608 |
+
qkv = self.qkv(x).reshape(B, -1, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
609 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
610 |
+
else:
|
611 |
+
qkv = self.qkv(x)
|
612 |
+
(q, k, v) = qkv.split([self.dim_internal, self.head_dim, self.head_dim], dim=2)
|
613 |
+
|
614 |
+
q = q.reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
615 |
+
k = k.reshape(B, -1, 1, C // self.num_heads).permute(0, 2, 1, 3)
|
616 |
+
v = v.reshape(B, -1, 1, C // self.num_heads).permute(0, 2, 1, 3)
|
617 |
+
|
618 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
619 |
+
|
620 |
+
attn = self.pos_emb_funct(attn)
|
621 |
+
|
622 |
+
attn = attn.softmax(dim=-1)
|
623 |
+
x = (attn @ v).transpose(1, 2).reshape(B, -1, C)
|
624 |
+
x = self.proj(x)
|
625 |
+
return x
|
626 |
+
|
627 |
+
|
628 |
+
|
629 |
+
class FasterViTLayer(nn.Module):
|
630 |
+
"""
|
631 |
+
fastervitlayer
|
632 |
+
"""
|
633 |
+
|
634 |
+
def __init__(self,
|
635 |
+
dim,
|
636 |
+
depth,
|
637 |
+
num_heads,
|
638 |
+
window_size,
|
639 |
+
conv=False,
|
640 |
+
downsample=True,
|
641 |
+
mlp_ratio=4.,
|
642 |
+
qkv_bias=False,
|
643 |
+
qk_scale=None,
|
644 |
+
norm_layer=nn.LayerNorm,
|
645 |
+
drop_path=0.,
|
646 |
+
layer_scale=None,
|
647 |
+
layer_scale_conv=None,
|
648 |
+
sr_dim_ratio=1,
|
649 |
+
sr_ratio=1,
|
650 |
+
multi_query=False,
|
651 |
+
use_swiglu=True,
|
652 |
+
rep_vgg=False,
|
653 |
+
yolo_arch=False,
|
654 |
+
downsample_shuffle=False,
|
655 |
+
conv_base=False,
|
656 |
+
|
657 |
+
):
|
658 |
+
"""
|
659 |
+
Args:
|
660 |
+
dim: feature size dimension.
|
661 |
+
depth: number of layers in each stage.
|
662 |
+
input_resolution: input image resolution.
|
663 |
+
window_size: window size in each stage.
|
664 |
+
downsample: bool argument for down-sampling.
|
665 |
+
mlp_ratio: MLP ratio.
|
666 |
+
num_heads: number of heads in each stage.
|
667 |
+
qkv_bias: bool argument for query, key, value learnable bias.
|
668 |
+
qk_scale: bool argument to scaling query, key.
|
669 |
+
drop: dropout rate.
|
670 |
+
attn_drop: attention dropout rate.
|
671 |
+
drop_path: drop path rate.
|
672 |
+
norm_layer: normalization layer.
|
673 |
+
layer_scale: layer scaling coefficient.
|
674 |
+
"""
|
675 |
+
|
676 |
+
super().__init__()
|
677 |
+
self.conv = conv
|
678 |
+
self.yolo_arch=False
|
679 |
+
if conv:
|
680 |
+
if not yolo_arch:
|
681 |
+
self.blocks = nn.ModuleList([
|
682 |
+
ConvBlock(dim=dim,
|
683 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
684 |
+
layer_scale=layer_scale_conv, rep_vgg=rep_vgg)
|
685 |
+
for i in range(depth)])
|
686 |
+
else:
|
687 |
+
self.blocks = C2f(dim,dim,n=depth,shortcut=True,e=0.5)
|
688 |
+
self.yolo_arch=True
|
689 |
+
else:
|
690 |
+
if not isinstance(window_size, list): window_size = [window_size]
|
691 |
+
self.window_size = window_size[0]
|
692 |
+
self.do_single_windowing = True
|
693 |
+
if not isinstance(sr_ratio, list): sr_ratio = [sr_ratio]
|
694 |
+
if any([sr!=1 for sr in sr_ratio]) or len(set(window_size))>1:
|
695 |
+
self.do_single_windowing = False
|
696 |
+
do_windowing = True
|
697 |
+
else:
|
698 |
+
self.do_single_windowing = True
|
699 |
+
do_windowing = False
|
700 |
+
|
701 |
+
self.blocks = nn.ModuleList()
|
702 |
+
for i in range(depth):
|
703 |
+
|
704 |
+
self.blocks.append(
|
705 |
+
MultiResolutionAttention(window_size=window_size,
|
706 |
+
sr_ratio=sr_ratio,
|
707 |
+
dim=dim,
|
708 |
+
dim_ratio = sr_dim_ratio,
|
709 |
+
num_heads=num_heads,
|
710 |
+
norm_layer=norm_layer,
|
711 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
712 |
+
layer_scale=layer_scale,
|
713 |
+
qkv_bias=qkv_bias,
|
714 |
+
qk_scale=qk_scale,
|
715 |
+
use_swiglu=use_swiglu,
|
716 |
+
do_windowing=do_windowing,
|
717 |
+
multi_query=multi_query,
|
718 |
+
conv_base=conv_base,
|
719 |
+
))
|
720 |
+
|
721 |
+
self.transformer = not conv
|
722 |
+
|
723 |
+
|
724 |
+
self.downsample = None if not downsample else Downsample(dim=dim, shuffle=downsample_shuffle)
|
725 |
+
|
726 |
+
|
727 |
+
|
728 |
+
|
729 |
+
def forward(self, x):
|
730 |
+
B, C, H, W = x.shape
|
731 |
+
|
732 |
+
if self.transformer and self.do_single_windowing:
|
733 |
+
H, W = x.shape[2], x.shape[3]
|
734 |
+
x, pad_hw = window_partition(x, self.window_size)
|
735 |
+
|
736 |
+
if not self.yolo_arch:
|
737 |
+
for bn, blk in enumerate(self.blocks):
|
738 |
+
x = blk(x)
|
739 |
+
else:
|
740 |
+
x = self.blocks(x)
|
741 |
+
|
742 |
+
if self.transformer and self.do_single_windowing:
|
743 |
+
x = window_reverse(x, self.window_size, H, W, pad_hw)
|
744 |
+
|
745 |
+
|
746 |
+
if self.downsample is None:
|
747 |
+
return x, x
|
748 |
+
|
749 |
+
return self.downsample(x), x #changing to output pre downsampled features
|
750 |
+
|
751 |
+
|
752 |
+
class FasterViT(nn.Module):
|
753 |
+
"""
|
754 |
+
FasterViT
|
755 |
+
"""
|
756 |
+
|
757 |
+
def __init__(self,
|
758 |
+
dim,
|
759 |
+
in_dim,
|
760 |
+
depths,
|
761 |
+
window_size,
|
762 |
+
mlp_ratio,
|
763 |
+
num_heads,
|
764 |
+
drop_path_rate=0.2,
|
765 |
+
in_chans=3,
|
766 |
+
num_classes=1000,
|
767 |
+
qkv_bias=False,
|
768 |
+
qk_scale=None,
|
769 |
+
layer_scale=None,
|
770 |
+
layer_scale_conv=None,
|
771 |
+
layer_norm_last=False,
|
772 |
+
sr_ratio = [1, 1, 1, 1],
|
773 |
+
max_depth = -1,
|
774 |
+
conv_base=False,
|
775 |
+
use_swiglu=False,
|
776 |
+
multi_query=False,
|
777 |
+
norm_layer=nn.LayerNorm,
|
778 |
+
rep_vgg=False,
|
779 |
+
drop_uniform=False,
|
780 |
+
yolo_arch=False,
|
781 |
+
shuffle_down=False,
|
782 |
+
downsample_shuffle=False,
|
783 |
+
return_full_features=False,
|
784 |
+
full_features_head_dim=128,
|
785 |
+
neck_start_stage=1,
|
786 |
+
use_neck=False,
|
787 |
+
**kwargs):
|
788 |
+
"""
|
789 |
+
Args:
|
790 |
+
dim: feature size dimension.
|
791 |
+
depths: number of layers in each stage.
|
792 |
+
window_size: window size in each stage.
|
793 |
+
mlp_ratio: MLP ratio.
|
794 |
+
num_heads: number of heads in each stage.
|
795 |
+
drop_path_rate: drop path rate.
|
796 |
+
in_chans: number of input channels.
|
797 |
+
num_classes: number of classes.
|
798 |
+
qkv_bias: bool argument for query, key, value learnable bias.
|
799 |
+
qk_scale: bool argument to scaling query, key.
|
800 |
+
drop_rate: dropout rate.
|
801 |
+
attn_drop_rate: attention dropout rate.
|
802 |
+
norm_layer: normalization layer.
|
803 |
+
layer_scale: layer scaling coefficient.
|
804 |
+
return_full_features: output dense features as well as logits
|
805 |
+
full_features_head_dim: number of channels in the dense features head
|
806 |
+
neck_start_stage: a stage id to start full feature neck. Model has 4 stages, indix starts with 0
|
807 |
+
for 224 resolution, the output of the stage before downsample:
|
808 |
+
stage 0: 56x56, stage 1: 28x28, stage 2: 14x14, stage 3: 7x7
|
809 |
+
use_neck: even for summarization embedding use neck
|
810 |
+
"""
|
811 |
+
super().__init__()
|
812 |
+
|
813 |
+
num_features = int(dim * 2 ** (len(depths) - 1))
|
814 |
+
self.num_classes = num_classes
|
815 |
+
self.patch_embed = PatchEmbed(in_chans=in_chans, in_dim=in_dim, dim=dim, shuffle_down=shuffle_down)
|
816 |
+
# set return_full_features true if we want to return full features from all stages
|
817 |
+
self.return_full_features = return_full_features
|
818 |
+
self.use_neck = use_neck
|
819 |
+
|
820 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
|
821 |
+
if drop_uniform:
|
822 |
+
dpr = [drop_path_rate for x in range(sum(depths))]
|
823 |
+
|
824 |
+
if not isinstance(max_depth, list): max_depth = [max_depth] * len(depths)
|
825 |
+
|
826 |
+
self.levels = nn.ModuleList()
|
827 |
+
for i in range(len(depths)):
|
828 |
+
conv = True if (i == 0 or i == 1) else False
|
829 |
+
|
830 |
+
level = FasterViTLayer(dim=int(dim * 2 ** i),
|
831 |
+
depth=depths[i],
|
832 |
+
num_heads=num_heads[i],
|
833 |
+
window_size=window_size[i],
|
834 |
+
mlp_ratio=mlp_ratio,
|
835 |
+
qkv_bias=qkv_bias,
|
836 |
+
qk_scale=qk_scale,
|
837 |
+
conv=conv,
|
838 |
+
drop_path=dpr[sum(depths[:i]):sum(depths[:i + 1])],
|
839 |
+
downsample=(i < 3),
|
840 |
+
layer_scale=layer_scale,
|
841 |
+
layer_scale_conv=layer_scale_conv,
|
842 |
+
sr_ratio=sr_ratio[i],
|
843 |
+
use_swiglu=use_swiglu,
|
844 |
+
multi_query=multi_query,
|
845 |
+
norm_layer=norm_layer,
|
846 |
+
rep_vgg=rep_vgg,
|
847 |
+
yolo_arch=yolo_arch,
|
848 |
+
downsample_shuffle=downsample_shuffle,
|
849 |
+
conv_base=conv_base)
|
850 |
+
|
851 |
+
self.levels.append(level)
|
852 |
+
|
853 |
+
if self.return_full_features or self.use_neck:
|
854 |
+
# create feature projection layers for segmentation output
|
855 |
+
self.neck_features_proj = nn.ModuleList()
|
856 |
+
self.neck_start_stage = neck_start_stage
|
857 |
+
upsample_ratio = 1
|
858 |
+
for i in range(len(depths)):
|
859 |
+
level_n_features_output = int(dim * 2 ** i)
|
860 |
+
|
861 |
+
if self.neck_start_stage > i: continue
|
862 |
+
|
863 |
+
if (upsample_ratio > 1) or full_features_head_dim!=level_n_features_output:
|
864 |
+
feature_projection = nn.Sequential()
|
865 |
+
# feature_projection.add_module("norm",LayerNorm2d(level_n_features_output)) #slow, but better
|
866 |
+
|
867 |
+
|
868 |
+
if 0 :
|
869 |
+
# Train: 0 [1900/10009 ( 19%)] Loss: 6.113 (6.57) Time: 0.548s, 233.40/s (0.549s, 233.04/s) LR: 1.000e-05 Data: 0.015 (0.013)
|
870 |
+
feature_projection.add_module("norm",nn.BatchNorm2d(level_n_features_output)) #fast, but worse
|
871 |
+
feature_projection.add_module("dconv", nn.ConvTranspose2d(level_n_features_output,
|
872 |
+
full_features_head_dim, kernel_size=upsample_ratio, stride=upsample_ratio))
|
873 |
+
else:
|
874 |
+
# pixel shuffle based upsampling
|
875 |
+
# Train: 0 [1950/10009 ( 19%)] Loss: 6.190 (6.55) Time: 0.540s, 236.85/s (0.548s, 233.38/s) LR: 1.000e-05 Data: 0.015 (0.013)
|
876 |
+
feature_projection.add_module("norm",nn.BatchNorm2d(level_n_features_output)) #fast, but worse
|
877 |
+
feature_projection.add_module("conv", nn.Conv2d(level_n_features_output,
|
878 |
+
full_features_head_dim*upsample_ratio*upsample_ratio, kernel_size=1, stride=1))
|
879 |
+
feature_projection.add_module("upsample_pixelshuffle", nn.PixelShuffle(upsample_ratio))
|
880 |
+
|
881 |
+
else:
|
882 |
+
feature_projection = nn.Sequential()
|
883 |
+
feature_projection.add_module("norm",nn.BatchNorm2d(level_n_features_output))
|
884 |
+
|
885 |
+
|
886 |
+
self.neck_features_proj.append(feature_projection)
|
887 |
+
|
888 |
+
if i>0 and self.levels[i-1].downsample is not None:
|
889 |
+
upsample_ratio *= 2
|
890 |
+
|
891 |
+
|
892 |
+
num_features = full_features_head_dim if (self.return_full_features or self.use_neck) else num_features
|
893 |
+
|
894 |
+
self.num_features = num_features
|
895 |
+
|
896 |
+
self.norm = LayerNorm2d(num_features) if layer_norm_last else nn.BatchNorm2d(num_features)
|
897 |
+
self.avgpool = nn.AdaptiveAvgPool2d(1)
|
898 |
+
self.head = nn.Linear(num_features, num_classes) if num_classes > 0 else nn.Identity()
|
899 |
+
self.apply(self._init_weights)
|
900 |
+
# pass
|
901 |
+
|
902 |
+
def _init_weights(self, m):
|
903 |
+
if isinstance(m, nn.Linear):
|
904 |
+
trunc_normal_(m.weight, std=.02)
|
905 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
906 |
+
nn.init.constant_(m.bias, 0)
|
907 |
+
elif isinstance(m, nn.LayerNorm):
|
908 |
+
nn.init.constant_(m.bias, 0)
|
909 |
+
nn.init.constant_(m.weight, 1.0)
|
910 |
+
elif isinstance(m, LayerNorm2d):
|
911 |
+
nn.init.constant_(m.bias, 0)
|
912 |
+
nn.init.constant_(m.weight, 1.0)
|
913 |
+
elif isinstance(m, nn.BatchNorm2d):
|
914 |
+
nn.init.ones_(m.weight)
|
915 |
+
nn.init.zeros_(m.bias)
|
916 |
+
|
917 |
+
@torch.jit.ignore
|
918 |
+
def no_weight_decay_keywords(self):
|
919 |
+
return {'rpb'}
|
920 |
+
|
921 |
+
def forward_features(self, x):
|
922 |
+
x = self.patch_embed(x)
|
923 |
+
full_features = None
|
924 |
+
for il, level in enumerate(self.levels):
|
925 |
+
x, pre_downsample_x = level(x)
|
926 |
+
|
927 |
+
if self.return_full_features or self.use_neck:
|
928 |
+
if self.neck_start_stage > il: continue
|
929 |
+
if full_features is None:
|
930 |
+
full_features = self.neck_features_proj[il - self.neck_start_stage](pre_downsample_x)
|
931 |
+
else:
|
932 |
+
#upsample torch tensor x to match full_features size, and add to full_features
|
933 |
+
feature_projection = self.neck_features_proj[il - self.neck_start_stage](pre_downsample_x)
|
934 |
+
if feature_projection.shape[2] != full_features.shape[2] or feature_projection.shape[3] != full_features.shape[3]:
|
935 |
+
feature_projection = torch.nn.functional.pad(feature_projection, ( 0, -feature_projection.shape[3] + full_features.shape[3], 0, -feature_projection.shape[2] + full_features.shape[2]))
|
936 |
+
full_features += feature_projection
|
937 |
+
|
938 |
+
# x = self.norm(full_features if (self.return_full_features or self.use_neck) else x)
|
939 |
+
x = self.norm(x) # new version for
|
940 |
+
x = self.avgpool(x)
|
941 |
+
x = torch.flatten(x, 1)
|
942 |
+
|
943 |
+
if not self.return_full_features:
|
944 |
+
return x, None
|
945 |
+
|
946 |
+
return x, full_features
|
947 |
+
|
948 |
+
def forward(self, x):
|
949 |
+
x, full_features = self.forward_features(x)
|
950 |
+
x = self.head(x)
|
951 |
+
if full_features is not None:
|
952 |
+
return x, full_features
|
953 |
+
return x
|
954 |
+
|
955 |
+
def switch_to_deploy(self):
|
956 |
+
'''
|
957 |
+
A method to perform model self-compression
|
958 |
+
merges BN into conv layers
|
959 |
+
converts MLP relative positional bias into precomputed buffers
|
960 |
+
'''
|
961 |
+
for level in [self.patch_embed, self.levels, self.head]:
|
962 |
+
for module in level.modules():
|
963 |
+
if hasattr(module, 'switch_to_deploy'):
|
964 |
+
module.switch_to_deploy()
|
965 |
+
|
966 |
+
@register_model
|
967 |
+
def fastervit2_small(pretrained=False, **kwargs): #,
|
968 |
+
model = FasterViT(depths=[3, 3, 5, 5],
|
969 |
+
num_heads=[2, 4, 8, 16],
|
970 |
+
window_size=[8, 8, [7, 7], 7],
|
971 |
+
dim=96,
|
972 |
+
in_dim=64,
|
973 |
+
mlp_ratio=4,
|
974 |
+
drop_path_rate=0.2,
|
975 |
+
sr_ratio=[1, 1, [1, 2], 1],
|
976 |
+
use_swiglu=False,
|
977 |
+
downsample_shuffle=False,
|
978 |
+
yolo_arch=True,
|
979 |
+
shuffle_down=False,
|
980 |
+
**kwargs)
|
981 |
+
if pretrained:
|
982 |
+
model.load_state_dict(torch.load(pretrained))
|
983 |
+
return model
|
984 |
+
|
985 |
+
@register_model
|
986 |
+
def fastervit2_tiny(pretrained=False, **kwargs): #,
|
987 |
+
model = FasterViT(depths=[1, 3, 4, 5],
|
988 |
+
num_heads=[2, 4, 8, 16],
|
989 |
+
window_size=[8, 8, [7, 7], 7],
|
990 |
+
dim=80,
|
991 |
+
in_dim=64,
|
992 |
+
mlp_ratio=4,
|
993 |
+
drop_path_rate=0.2,
|
994 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
995 |
+
use_swiglu=False,
|
996 |
+
downsample_shuffle=False,
|
997 |
+
yolo_arch=True,
|
998 |
+
shuffle_down=False,
|
999 |
+
**kwargs)
|
1000 |
+
if pretrained:
|
1001 |
+
model.load_state_dict(torch.load(pretrained))
|
1002 |
+
return model
|
1003 |
+
|
1004 |
+
@register_model
|
1005 |
+
def fastervit2_base(pretrained=False, **kwargs):
|
1006 |
+
model = FasterViT(depths=[3, 3, 5, 5],
|
1007 |
+
num_heads=[2, 4, 8, 16],
|
1008 |
+
window_size=[8, 8, [7, 7], 7],
|
1009 |
+
dim=128,
|
1010 |
+
in_dim=64,
|
1011 |
+
mlp_ratio=4,
|
1012 |
+
drop_path_rate=0.2,
|
1013 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
1014 |
+
use_swiglu=False,
|
1015 |
+
yolo_arch=True,
|
1016 |
+
shuffle_down=False,
|
1017 |
+
conv_base=True,
|
1018 |
+
**kwargs)
|
1019 |
+
if pretrained:
|
1020 |
+
model.load_state_dict(torch.load(pretrained))
|
1021 |
+
return model
|
1022 |
+
|
1023 |
+
@register_model
|
1024 |
+
def fastervit2_base_fullres1(pretrained=False, **kwargs):
|
1025 |
+
model = FasterViT(depths=[3, 3, 5, 5],
|
1026 |
+
num_heads=[2, 4, 8, 16],
|
1027 |
+
window_size=[8, 8, [7, 7], 7],
|
1028 |
+
dim=128,
|
1029 |
+
in_dim=64,
|
1030 |
+
mlp_ratio=4,
|
1031 |
+
drop_path_rate=0.2,
|
1032 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
1033 |
+
use_swiglu=False,
|
1034 |
+
yolo_arch=True,
|
1035 |
+
shuffle_down=False,
|
1036 |
+
conv_base=True,
|
1037 |
+
use_neck=True,
|
1038 |
+
full_features_head_dim=1024,
|
1039 |
+
neck_start_stage=2,
|
1040 |
+
**kwargs)
|
1041 |
+
if pretrained:
|
1042 |
+
model.load_state_dict(torch.load(pretrained))
|
1043 |
+
return model
|
1044 |
+
|
1045 |
+
@register_model
|
1046 |
+
def fastervit2_base_fullres2(pretrained=False, **kwargs):
|
1047 |
+
model = FasterViT(depths=[3, 3, 5, 5],
|
1048 |
+
num_heads=[2, 4, 8, 16],
|
1049 |
+
window_size=[8, 8, [7, 7], 7],
|
1050 |
+
dim=128,
|
1051 |
+
in_dim=64,
|
1052 |
+
mlp_ratio=4,
|
1053 |
+
drop_path_rate=0.2,
|
1054 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
1055 |
+
use_swiglu=False,
|
1056 |
+
yolo_arch=True,
|
1057 |
+
shuffle_down=False,
|
1058 |
+
conv_base=True,
|
1059 |
+
use_neck=True,
|
1060 |
+
full_features_head_dim=512,
|
1061 |
+
neck_start_stage=1,
|
1062 |
+
**kwargs)
|
1063 |
+
if pretrained:
|
1064 |
+
model.load_state_dict(torch.load(pretrained))
|
1065 |
+
return model
|
1066 |
+
|
1067 |
+
@register_model
|
1068 |
+
def fastervit2_base_fullres3(pretrained=False, **kwargs):
|
1069 |
+
model = FasterViT(depths=[3, 3, 5, 5],
|
1070 |
+
num_heads=[2, 4, 8, 16],
|
1071 |
+
window_size=[8, 8, [7, 7], 7],
|
1072 |
+
dim=128,
|
1073 |
+
in_dim=64,
|
1074 |
+
mlp_ratio=4,
|
1075 |
+
drop_path_rate=0.2,
|
1076 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
1077 |
+
use_swiglu=False,
|
1078 |
+
yolo_arch=True,
|
1079 |
+
shuffle_down=False,
|
1080 |
+
conv_base=True,
|
1081 |
+
use_neck=True,
|
1082 |
+
full_features_head_dim=256,
|
1083 |
+
neck_start_stage=1,
|
1084 |
+
**kwargs)
|
1085 |
+
if pretrained:
|
1086 |
+
model.load_state_dict(torch.load(pretrained))
|
1087 |
+
return model
|
1088 |
+
|
1089 |
+
@register_model
|
1090 |
+
def fastervit2_base_fullres4(pretrained=False, **kwargs):
|
1091 |
+
model = FasterViT(depths=[3, 3, 5, 5],
|
1092 |
+
num_heads=[2, 4, 8, 16],
|
1093 |
+
window_size=[8, 8, [7, 7], 7],
|
1094 |
+
dim=128,
|
1095 |
+
in_dim=64,
|
1096 |
+
mlp_ratio=4,
|
1097 |
+
drop_path_rate=0.2,
|
1098 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
1099 |
+
use_swiglu=False,
|
1100 |
+
yolo_arch=True,
|
1101 |
+
shuffle_down=False,
|
1102 |
+
conv_base=True,
|
1103 |
+
use_neck=True,
|
1104 |
+
full_features_head_dim=256,
|
1105 |
+
neck_start_stage=2,
|
1106 |
+
**kwargs)
|
1107 |
+
if pretrained:
|
1108 |
+
model.load_state_dict(torch.load(pretrained))
|
1109 |
+
return model
|
1110 |
+
|
1111 |
+
@register_model
|
1112 |
+
def fastervit2_base_fullres5(pretrained=False, **kwargs):
|
1113 |
+
model = FasterViT(depths=[3, 3, 5, 5],
|
1114 |
+
num_heads=[2, 4, 8, 16],
|
1115 |
+
window_size=[8, 8, [7, 7], 7],
|
1116 |
+
dim=128,
|
1117 |
+
in_dim=64,
|
1118 |
+
mlp_ratio=4,
|
1119 |
+
drop_path_rate=0.2,
|
1120 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
1121 |
+
use_swiglu=False,
|
1122 |
+
yolo_arch=True,
|
1123 |
+
shuffle_down=False,
|
1124 |
+
conv_base=True,
|
1125 |
+
use_neck=True,
|
1126 |
+
full_features_head_dim=512,
|
1127 |
+
neck_start_stage=2,
|
1128 |
+
**kwargs)
|
1129 |
+
if pretrained:
|
1130 |
+
model.load_state_dict(torch.load(pretrained))
|
1131 |
+
return model
|
1132 |
+
|
1133 |
+
#pyt: 1934, 4202 TRT
|
1134 |
+
@register_model
|
1135 |
+
def fastervit2_large(pretrained=False, **kwargs):
|
1136 |
+
model = FasterViT(depths=[3, 3, 5, 5],
|
1137 |
+
num_heads=[2, 4, 8, 16],
|
1138 |
+
window_size=[8, 8, [7, 7], 7],
|
1139 |
+
dim=128+64,
|
1140 |
+
in_dim=64,
|
1141 |
+
mlp_ratio=4,
|
1142 |
+
drop_path_rate=0.2,
|
1143 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
1144 |
+
use_swiglu=False,
|
1145 |
+
yolo_arch=True,
|
1146 |
+
shuffle_down=False,
|
1147 |
+
**kwargs)
|
1148 |
+
if pretrained:
|
1149 |
+
model.load_state_dict(torch.load(pretrained))
|
1150 |
+
return model
|
1151 |
+
|
1152 |
+
@register_model
|
1153 |
+
def fastervit2_large_fullres(pretrained=False, **kwargs):
|
1154 |
+
model = FasterViT(depths=[3, 3, 5, 5],
|
1155 |
+
num_heads=[2, 4, 8, 16],
|
1156 |
+
window_size=[None, None, [7, 7], 7],
|
1157 |
+
dim=192,
|
1158 |
+
in_dim=64,
|
1159 |
+
mlp_ratio=4,
|
1160 |
+
drop_path_rate=0.,
|
1161 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
1162 |
+
use_swiglu=False,
|
1163 |
+
yolo_arch=True,
|
1164 |
+
shuffle_down=False,
|
1165 |
+
conv_base=True,
|
1166 |
+
use_neck=True,
|
1167 |
+
full_features_head_dim=1536,
|
1168 |
+
neck_start_stage=2,
|
1169 |
+
**kwargs)
|
1170 |
+
if pretrained:
|
1171 |
+
model.load_state_dict(torch.load(pretrained))
|
1172 |
+
return model
|
1173 |
+
|
1174 |
+
@register_model
|
1175 |
+
def fastervit2_large_fullres_ws8(pretrained=False, **kwargs):
|
1176 |
+
model = FasterViT(depths=[3, 3, 5, 5],
|
1177 |
+
num_heads=[2, 4, 8, 16],
|
1178 |
+
window_size=[None, None, [8, 8], 8],
|
1179 |
+
dim=192,
|
1180 |
+
in_dim=64,
|
1181 |
+
mlp_ratio=4,
|
1182 |
+
drop_path_rate=0.,
|
1183 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
1184 |
+
use_swiglu=False,
|
1185 |
+
yolo_arch=True,
|
1186 |
+
shuffle_down=False,
|
1187 |
+
conv_base=True,
|
1188 |
+
use_neck=True,
|
1189 |
+
full_features_head_dim=1536,
|
1190 |
+
neck_start_stage=2,
|
1191 |
+
**kwargs)
|
1192 |
+
if pretrained:
|
1193 |
+
model.load_state_dict(torch.load(pretrained))
|
1194 |
+
return model
|
1195 |
+
|
1196 |
+
@register_model
|
1197 |
+
def fastervit2_large_fullres_ws16(pretrained=False, **kwargs):
|
1198 |
+
model = FasterViT(depths=[3, 3, 5, 5],
|
1199 |
+
num_heads=[2, 4, 8, 16],
|
1200 |
+
window_size=[None, None, [16, 16], 16],
|
1201 |
+
dim=192,
|
1202 |
+
in_dim=64,
|
1203 |
+
mlp_ratio=4,
|
1204 |
+
drop_path_rate=0.,
|
1205 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
1206 |
+
use_swiglu=False,
|
1207 |
+
yolo_arch=True,
|
1208 |
+
shuffle_down=False,
|
1209 |
+
conv_base=True,
|
1210 |
+
use_neck=True,
|
1211 |
+
full_features_head_dim=1536,
|
1212 |
+
neck_start_stage=2,
|
1213 |
+
**kwargs)
|
1214 |
+
if pretrained:
|
1215 |
+
model.load_state_dict(torch.load(pretrained))
|
1216 |
+
return model
|
1217 |
+
|
1218 |
+
@register_model
|
1219 |
+
def fastervit2_large_fullres_ws32(pretrained=False, **kwargs):
|
1220 |
+
model = FasterViT(depths=[3, 3, 5, 5],
|
1221 |
+
num_heads=[2, 4, 8, 16],
|
1222 |
+
window_size=[None, None, [32, 32], 32],
|
1223 |
+
dim=192,
|
1224 |
+
in_dim=64,
|
1225 |
+
mlp_ratio=4,
|
1226 |
+
drop_path_rate=0.,
|
1227 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
1228 |
+
use_swiglu=False,
|
1229 |
+
yolo_arch=True,
|
1230 |
+
shuffle_down=False,
|
1231 |
+
conv_base=True,
|
1232 |
+
use_neck=True,
|
1233 |
+
full_features_head_dim=1536,
|
1234 |
+
neck_start_stage=2,
|
1235 |
+
**kwargs)
|
1236 |
+
if pretrained:
|
1237 |
+
model.load_state_dict(torch.load(pretrained))
|
1238 |
+
return model
|
1239 |
+
|
1240 |
+
#pyt: 897
|
1241 |
+
@register_model
|
1242 |
+
def fastervit2_xlarge(pretrained=False, **kwargs):
|
1243 |
+
model = FasterViT(depths=[3, 3, 5, 5],
|
1244 |
+
num_heads=[2, 4, 8, 16],
|
1245 |
+
window_size=[8, 8, [7, 7], 7],
|
1246 |
+
dim=128+128+64,
|
1247 |
+
in_dim=64,
|
1248 |
+
mlp_ratio=4,
|
1249 |
+
drop_path_rate=0.2,
|
1250 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
1251 |
+
use_swiglu=False,
|
1252 |
+
yolo_arch=True,
|
1253 |
+
shuffle_down=False,
|
1254 |
+
**kwargs)
|
1255 |
+
if pretrained:
|
1256 |
+
model.load_state_dict(torch.load(pretrained))
|
1257 |
+
return model
|
1258 |
+
|
1259 |
+
|
1260 |
+
#pyt:
|
1261 |
+
@register_model
|
1262 |
+
def fastervit2_huge(pretrained=False, **kwargs):
|
1263 |
+
model = FasterViT(depths=[3, 3, 5, 5],
|
1264 |
+
num_heads=[2, 4, 8, 16],
|
1265 |
+
window_size=[8, 8, [7, 7], 7],
|
1266 |
+
dim=128+128+128+64,
|
1267 |
+
in_dim=64,
|
1268 |
+
mlp_ratio=4,
|
1269 |
+
drop_path_rate=0.2,
|
1270 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
1271 |
+
use_swiglu=False,
|
1272 |
+
yolo_arch=True,
|
1273 |
+
shuffle_down=False,
|
1274 |
+
**kwargs)
|
1275 |
+
if pretrained:
|
1276 |
+
model.load_state_dict(torch.load(pretrained))
|
1277 |
+
return model
|
1278 |
+
|
1279 |
+
|
1280 |
+
@register_model
|
1281 |
+
def fastervit2_xtiny(pretrained=False, **kwargs): #,
|
1282 |
+
model = FasterViT(depths=[1, 3, 4, 5],
|
1283 |
+
num_heads=[2, 4, 8, 16],
|
1284 |
+
window_size=[8, 8, [7, 7], 7],
|
1285 |
+
dim=64,
|
1286 |
+
in_dim=64,
|
1287 |
+
mlp_ratio=4,
|
1288 |
+
drop_path_rate=0.1,
|
1289 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
1290 |
+
use_swiglu=False,
|
1291 |
+
downsample_shuffle=False,
|
1292 |
+
yolo_arch=True,
|
1293 |
+
shuffle_down=False,
|
1294 |
+
**kwargs)
|
1295 |
+
if pretrained:
|
1296 |
+
model.load_state_dict(torch.load(pretrained))
|
1297 |
+
return model
|
1298 |
+
|
1299 |
+
|
1300 |
+
@register_model
|
1301 |
+
def fastervit2_xxtiny_5(pretrained=False, **kwargs): #,
|
1302 |
+
model = FasterViT(depths=[1, 3, 4, 5],
|
1303 |
+
num_heads=[2, 4, 8, 16],
|
1304 |
+
window_size=[8, 8, [7, 7], 7],
|
1305 |
+
dim=48,
|
1306 |
+
in_dim=64,
|
1307 |
+
mlp_ratio=4,
|
1308 |
+
drop_path_rate=0.05,
|
1309 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
1310 |
+
use_swiglu=False,
|
1311 |
+
downsample_shuffle=False,
|
1312 |
+
yolo_arch=True,
|
1313 |
+
shuffle_down=False,
|
1314 |
+
**kwargs)
|
1315 |
+
if pretrained:
|
1316 |
+
model.load_state_dict(torch.load(pretrained))
|
1317 |
+
return model
|
1318 |
+
|
1319 |
+
@register_model
|
1320 |
+
def fastervit2_xxxtiny(pretrained=False, **kwargs): #,
|
1321 |
+
model = FasterViT(depths=[1, 3, 4, 5],
|
1322 |
+
num_heads=[2, 4, 8, 16],
|
1323 |
+
window_size=[8, 8, [7, 7], 7],
|
1324 |
+
dim=32,
|
1325 |
+
in_dim=32,
|
1326 |
+
mlp_ratio=4,
|
1327 |
+
drop_path_rate=0.0,
|
1328 |
+
sr_ratio=[1, 1, [2, 1], 1],
|
1329 |
+
use_swiglu=False,
|
1330 |
+
downsample_shuffle=False,
|
1331 |
+
yolo_arch=True,
|
1332 |
+
shuffle_down=False,
|
1333 |
+
**kwargs)
|
1334 |
+
if pretrained:
|
1335 |
+
model.load_state_dict(torch.load(pretrained))
|
1336 |
+
return model
|
1337 |
+
|
1338 |
+
|
1339 |
+
@register_model
|
1340 |
+
def eradio(pretrained=False, **kwargs):
|
1341 |
+
return fastervit2_large_fullres(pretrained=pretrained, **kwargs)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:115b8f54d0d4999c180718ce138f8078127af9815b6cb507b253e5db10a5723c
|
3 |
+
size 1057766065
|