Batch upload part 1
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +18 -0
- .gitignore +229 -0
- LICENSE +201 -0
- README.md +198 -0
- ablation_qkv.py +170 -0
- assets/book.jpg +0 -0
- assets/cartoon_boy.png +3 -0
- assets/clock.jpg +3 -0
- assets/coffee.png +0 -0
- assets/demo/art1.png +3 -0
- assets/demo/art2.png +3 -0
- assets/demo/book_omini.jpg +0 -0
- assets/demo/clock_omini.jpg +0 -0
- assets/demo/demo_this_is_omini_control.jpg +3 -0
- assets/demo/dreambooth_res.jpg +3 -0
- assets/demo/man_omini.jpg +0 -0
- assets/demo/monalisa_omini.jpg +3 -0
- assets/demo/oranges_omini.jpg +0 -0
- assets/demo/panda_omini.jpg +0 -0
- assets/demo/penguin_omini.jpg +0 -0
- assets/demo/rc_car_omini.jpg +0 -0
- assets/demo/room_corner_canny.jpg +0 -0
- assets/demo/room_corner_coloring.jpg +0 -0
- assets/demo/room_corner_deblurring.jpg +0 -0
- assets/demo/room_corner_depth.jpg +0 -0
- assets/demo/scene_variation.jpg +3 -0
- assets/demo/shirt_omini.jpg +0 -0
- assets/demo/try_on.jpg +3 -0
- assets/monalisa.jpg +3 -0
- assets/ominicontrol_art/DistractedBoyfriend.webp +3 -0
- assets/ominicontrol_art/PulpFiction.jpg +3 -0
- assets/ominicontrol_art/breakingbad.jpg +3 -0
- assets/ominicontrol_art/oiiai.png +3 -0
- assets/oranges.jpg +0 -0
- assets/penguin.jpg +0 -0
- assets/rc_car.jpg +3 -0
- assets/room_corner.jpg +3 -0
- assets/test_in.jpg +0 -0
- assets/test_out.jpg +0 -0
- assets/tshirt.jpg +3 -0
- assets/vase.jpg +0 -0
- assets/vase_hq.jpg +3 -0
- evaluation.py +169 -0
- evaluation_coco.py +250 -0
- evaluation_coco_baseline.py +222 -0
- evaluation_subject_driven.py +362 -0
- examples/combine_with_style_lora.ipynb +235 -0
- examples/inpainting.ipynb +135 -0
- examples/ominicontrol_art.ipynb +218 -0
- examples/spatial.ipynb +191 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,21 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
assets/cartoon_boy.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
assets/clock.jpg filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
assets/monalisa.jpg filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
assets/rc_car.jpg filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
assets/room_corner.jpg filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
assets/tshirt.jpg filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
assets/vase_hq.jpg filter=lfs diff=lfs merge=lfs -text
|
| 43 |
+
assets/demo/art1.png filter=lfs diff=lfs merge=lfs -text
|
| 44 |
+
assets/demo/art2.png filter=lfs diff=lfs merge=lfs -text
|
| 45 |
+
assets/demo/demo_this_is_omini_control.jpg filter=lfs diff=lfs merge=lfs -text
|
| 46 |
+
assets/demo/dreambooth_res.jpg filter=lfs diff=lfs merge=lfs -text
|
| 47 |
+
assets/demo/monalisa_omini.jpg filter=lfs diff=lfs merge=lfs -text
|
| 48 |
+
assets/demo/scene_variation.jpg filter=lfs diff=lfs merge=lfs -text
|
| 49 |
+
assets/demo/try_on.jpg filter=lfs diff=lfs merge=lfs -text
|
| 50 |
+
assets/ominicontrol_art/DistractedBoyfriend.webp filter=lfs diff=lfs merge=lfs -text
|
| 51 |
+
assets/ominicontrol_art/PulpFiction.jpg filter=lfs diff=lfs merge=lfs -text
|
| 52 |
+
assets/ominicontrol_art/breakingbad.jpg filter=lfs diff=lfs merge=lfs -text
|
| 53 |
+
assets/ominicontrol_art/oiiai.png filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
wandb/*
|
| 2 |
+
runs/*
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
# Byte-compiled / optimized / DLL files
|
| 6 |
+
__pycache__/
|
| 7 |
+
*.py[codz]
|
| 8 |
+
*$py.class
|
| 9 |
+
|
| 10 |
+
# C extensions
|
| 11 |
+
*.so
|
| 12 |
+
|
| 13 |
+
# Distribution / packaging
|
| 14 |
+
.Python
|
| 15 |
+
build/
|
| 16 |
+
develop-eggs/
|
| 17 |
+
dist/
|
| 18 |
+
downloads/
|
| 19 |
+
eggs/
|
| 20 |
+
.eggs/
|
| 21 |
+
lib/
|
| 22 |
+
lib64/
|
| 23 |
+
parts/
|
| 24 |
+
sdist/
|
| 25 |
+
var/
|
| 26 |
+
wheels/
|
| 27 |
+
share/python-wheels/
|
| 28 |
+
*.egg-info/
|
| 29 |
+
.installed.cfg
|
| 30 |
+
*.egg
|
| 31 |
+
MANIFEST
|
| 32 |
+
|
| 33 |
+
# PyInstaller
|
| 34 |
+
# Usually these files are written by a python script from a template
|
| 35 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 36 |
+
*.manifest
|
| 37 |
+
*.spec
|
| 38 |
+
|
| 39 |
+
# Installer logs
|
| 40 |
+
pip-log.txt
|
| 41 |
+
pip-delete-this-directory.txt
|
| 42 |
+
|
| 43 |
+
# Unit test / coverage reports
|
| 44 |
+
htmlcov/
|
| 45 |
+
.tox/
|
| 46 |
+
.nox/
|
| 47 |
+
.coverage
|
| 48 |
+
.coverage.*
|
| 49 |
+
.cache
|
| 50 |
+
nosetests.xml
|
| 51 |
+
coverage.xml
|
| 52 |
+
*.cover
|
| 53 |
+
*.py.cover
|
| 54 |
+
.hypothesis/
|
| 55 |
+
.pytest_cache/
|
| 56 |
+
cover/
|
| 57 |
+
|
| 58 |
+
# Translations
|
| 59 |
+
*.mo
|
| 60 |
+
*.pot
|
| 61 |
+
|
| 62 |
+
# Django stuff:
|
| 63 |
+
*.log
|
| 64 |
+
local_settings.py
|
| 65 |
+
db.sqlite3
|
| 66 |
+
db.sqlite3-journal
|
| 67 |
+
|
| 68 |
+
# Flask stuff:
|
| 69 |
+
instance/
|
| 70 |
+
.webassets-cache
|
| 71 |
+
|
| 72 |
+
# Scrapy stuff:
|
| 73 |
+
.scrapy
|
| 74 |
+
|
| 75 |
+
# Sphinx documentation
|
| 76 |
+
docs/_build/
|
| 77 |
+
|
| 78 |
+
# PyBuilder
|
| 79 |
+
.pybuilder/
|
| 80 |
+
target/
|
| 81 |
+
|
| 82 |
+
# Jupyter Notebook
|
| 83 |
+
.ipynb_checkpoints
|
| 84 |
+
|
| 85 |
+
# IPython
|
| 86 |
+
profile_default/
|
| 87 |
+
ipython_config.py
|
| 88 |
+
|
| 89 |
+
# pyenv
|
| 90 |
+
# For a library or package, you might want to ignore these files since the code is
|
| 91 |
+
# intended to run in multiple environments; otherwise, check them in:
|
| 92 |
+
# .python-version
|
| 93 |
+
|
| 94 |
+
# pipenv
|
| 95 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
| 96 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
| 97 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
| 98 |
+
# install all needed dependencies.
|
| 99 |
+
# Pipfile.lock
|
| 100 |
+
|
| 101 |
+
# UV
|
| 102 |
+
# Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
|
| 103 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
| 104 |
+
# commonly ignored for libraries.
|
| 105 |
+
# uv.lock
|
| 106 |
+
|
| 107 |
+
# poetry
|
| 108 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
| 109 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
| 110 |
+
# commonly ignored for libraries.
|
| 111 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
| 112 |
+
# poetry.lock
|
| 113 |
+
# poetry.toml
|
| 114 |
+
|
| 115 |
+
# pdm
|
| 116 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
| 117 |
+
# pdm recommends including project-wide configuration in pdm.toml, but excluding .pdm-python.
|
| 118 |
+
# https://pdm-project.org/en/latest/usage/project/#working-with-version-control
|
| 119 |
+
# pdm.lock
|
| 120 |
+
# pdm.toml
|
| 121 |
+
.pdm-python
|
| 122 |
+
.pdm-build/
|
| 123 |
+
|
| 124 |
+
# pixi
|
| 125 |
+
# Similar to Pipfile.lock, it is generally recommended to include pixi.lock in version control.
|
| 126 |
+
# pixi.lock
|
| 127 |
+
# Pixi creates a virtual environment in the .pixi directory, just like venv module creates one
|
| 128 |
+
# in the .venv directory. It is recommended not to include this directory in version control.
|
| 129 |
+
.pixi
|
| 130 |
+
|
| 131 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
| 132 |
+
__pypackages__/
|
| 133 |
+
|
| 134 |
+
# Celery stuff
|
| 135 |
+
celerybeat-schedule
|
| 136 |
+
celerybeat.pid
|
| 137 |
+
|
| 138 |
+
# Redis
|
| 139 |
+
*.rdb
|
| 140 |
+
*.aof
|
| 141 |
+
*.pid
|
| 142 |
+
|
| 143 |
+
# RabbitMQ
|
| 144 |
+
mnesia/
|
| 145 |
+
rabbitmq/
|
| 146 |
+
rabbitmq-data/
|
| 147 |
+
|
| 148 |
+
# ActiveMQ
|
| 149 |
+
activemq-data/
|
| 150 |
+
|
| 151 |
+
# SageMath parsed files
|
| 152 |
+
*.sage.py
|
| 153 |
+
|
| 154 |
+
# Environments
|
| 155 |
+
.env
|
| 156 |
+
.envrc
|
| 157 |
+
.venv
|
| 158 |
+
env/
|
| 159 |
+
venv/
|
| 160 |
+
ENV/
|
| 161 |
+
env.bak/
|
| 162 |
+
venv.bak/
|
| 163 |
+
|
| 164 |
+
# Spyder project settings
|
| 165 |
+
.spyderproject
|
| 166 |
+
.spyproject
|
| 167 |
+
|
| 168 |
+
# Rope project settings
|
| 169 |
+
.ropeproject
|
| 170 |
+
|
| 171 |
+
# mkdocs documentation
|
| 172 |
+
/site
|
| 173 |
+
|
| 174 |
+
# mypy
|
| 175 |
+
.mypy_cache/
|
| 176 |
+
.dmypy.json
|
| 177 |
+
dmypy.json
|
| 178 |
+
|
| 179 |
+
# Pyre type checker
|
| 180 |
+
.pyre/
|
| 181 |
+
|
| 182 |
+
# pytype static type analyzer
|
| 183 |
+
.pytype/
|
| 184 |
+
|
| 185 |
+
# Cython debug symbols
|
| 186 |
+
cython_debug/
|
| 187 |
+
|
| 188 |
+
# PyCharm
|
| 189 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
| 190 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
| 191 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
| 192 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 193 |
+
# .idea/
|
| 194 |
+
|
| 195 |
+
# Abstra
|
| 196 |
+
# Abstra is an AI-powered process automation framework.
|
| 197 |
+
# Ignore directories containing user credentials, local state, and settings.
|
| 198 |
+
# Learn more at https://abstra.io/docs
|
| 199 |
+
.abstra/
|
| 200 |
+
|
| 201 |
+
# Visual Studio Code
|
| 202 |
+
# Visual Studio Code specific template is maintained in a separate VisualStudioCode.gitignore
|
| 203 |
+
# that can be found at https://github.com/github/gitignore/blob/main/Global/VisualStudioCode.gitignore
|
| 204 |
+
# and can be added to the global gitignore or merged into this file. However, if you prefer,
|
| 205 |
+
# you could uncomment the following to ignore the entire vscode folder
|
| 206 |
+
# .vscode/
|
| 207 |
+
|
| 208 |
+
# Ruff stuff:
|
| 209 |
+
.ruff_cache/
|
| 210 |
+
|
| 211 |
+
# PyPI configuration file
|
| 212 |
+
.pypirc
|
| 213 |
+
|
| 214 |
+
# Marimo
|
| 215 |
+
marimo/_static/
|
| 216 |
+
marimo/_lsp/
|
| 217 |
+
__marimo__/
|
| 218 |
+
|
| 219 |
+
# Streamlit
|
| 220 |
+
.streamlit/secrets.toml
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
# exps/
|
| 224 |
+
# wandb/
|
| 225 |
+
# *.ipynb
|
| 226 |
+
# glue_exp/
|
| 227 |
+
# logs_hyper/
|
| 228 |
+
# # grid/
|
| 229 |
+
# glue22_ex
|
LICENSE
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Apache License
|
| 2 |
+
Version 2.0, January 2004
|
| 3 |
+
http://www.apache.org/licenses/
|
| 4 |
+
|
| 5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
| 6 |
+
|
| 7 |
+
1. Definitions.
|
| 8 |
+
|
| 9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
| 10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
| 11 |
+
|
| 12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
| 13 |
+
the copyright owner that is granting the License.
|
| 14 |
+
|
| 15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
| 16 |
+
other entities that control, are controlled by, or are under common
|
| 17 |
+
control with that entity. For the purposes of this definition,
|
| 18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
| 19 |
+
direction or management of such entity, whether by contract or
|
| 20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
| 21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
| 22 |
+
|
| 23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
| 24 |
+
exercising permissions granted by this License.
|
| 25 |
+
|
| 26 |
+
"Source" form shall mean the preferred form for making modifications,
|
| 27 |
+
including but not limited to software source code, documentation
|
| 28 |
+
source, and configuration files.
|
| 29 |
+
|
| 30 |
+
"Object" form shall mean any form resulting from mechanical
|
| 31 |
+
transformation or translation of a Source form, including but
|
| 32 |
+
not limited to compiled object code, generated documentation,
|
| 33 |
+
and conversions to other media types.
|
| 34 |
+
|
| 35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
| 36 |
+
Object form, made available under the License, as indicated by a
|
| 37 |
+
copyright notice that is included in or attached to the work
|
| 38 |
+
(an example is provided in the Appendix below).
|
| 39 |
+
|
| 40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
| 41 |
+
form, that is based on (or derived from) the Work and for which the
|
| 42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
| 43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
| 44 |
+
of this License, Derivative Works shall not include works that remain
|
| 45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
| 46 |
+
the Work and Derivative Works thereof.
|
| 47 |
+
|
| 48 |
+
"Contribution" shall mean any work of authorship, including
|
| 49 |
+
the original version of the Work and any modifications or additions
|
| 50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
| 51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
| 52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
| 53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
| 54 |
+
means any form of electronic, verbal, or written communication sent
|
| 55 |
+
to the Licensor or its representatives, including but not limited to
|
| 56 |
+
communication on electronic mailing lists, source code control systems,
|
| 57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
| 58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
| 59 |
+
excluding communication that is conspicuously marked or otherwise
|
| 60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
| 61 |
+
|
| 62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
| 63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
| 64 |
+
subsequently incorporated within the Work.
|
| 65 |
+
|
| 66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
| 67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
| 70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
| 71 |
+
Work and such Derivative Works in Source or Object form.
|
| 72 |
+
|
| 73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
| 74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
| 75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
| 76 |
+
(except as stated in this section) patent license to make, have made,
|
| 77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
| 78 |
+
where such license applies only to those patent claims licensable
|
| 79 |
+
by such Contributor that are necessarily infringed by their
|
| 80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
| 81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
| 82 |
+
institute patent litigation against any entity (including a
|
| 83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
| 84 |
+
or a Contribution incorporated within the Work constitutes direct
|
| 85 |
+
or contributory patent infringement, then any patent licenses
|
| 86 |
+
granted to You under this License for that Work shall terminate
|
| 87 |
+
as of the date such litigation is filed.
|
| 88 |
+
|
| 89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
| 90 |
+
Work or Derivative Works thereof in any medium, with or without
|
| 91 |
+
modifications, and in Source or Object form, provided that You
|
| 92 |
+
meet the following conditions:
|
| 93 |
+
|
| 94 |
+
(a) You must give any other recipients of the Work or
|
| 95 |
+
Derivative Works a copy of this License; and
|
| 96 |
+
|
| 97 |
+
(b) You must cause any modified files to carry prominent notices
|
| 98 |
+
stating that You changed the files; and
|
| 99 |
+
|
| 100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
| 101 |
+
that You distribute, all copyright, patent, trademark, and
|
| 102 |
+
attribution notices from the Source form of the Work,
|
| 103 |
+
excluding those notices that do not pertain to any part of
|
| 104 |
+
the Derivative Works; and
|
| 105 |
+
|
| 106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
| 107 |
+
distribution, then any Derivative Works that You distribute must
|
| 108 |
+
include a readable copy of the attribution notices contained
|
| 109 |
+
within such NOTICE file, excluding those notices that do not
|
| 110 |
+
pertain to any part of the Derivative Works, in at least one
|
| 111 |
+
of the following places: within a NOTICE text file distributed
|
| 112 |
+
as part of the Derivative Works; within the Source form or
|
| 113 |
+
documentation, if provided along with the Derivative Works; or,
|
| 114 |
+
within a display generated by the Derivative Works, if and
|
| 115 |
+
wherever such third-party notices normally appear. The contents
|
| 116 |
+
of the NOTICE file are for informational purposes only and
|
| 117 |
+
do not modify the License. You may add Your own attribution
|
| 118 |
+
notices within Derivative Works that You distribute, alongside
|
| 119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
| 120 |
+
that such additional attribution notices cannot be construed
|
| 121 |
+
as modifying the License.
|
| 122 |
+
|
| 123 |
+
You may add Your own copyright statement to Your modifications and
|
| 124 |
+
may provide additional or different license terms and conditions
|
| 125 |
+
for use, reproduction, or distribution of Your modifications, or
|
| 126 |
+
for any such Derivative Works as a whole, provided Your use,
|
| 127 |
+
reproduction, and distribution of the Work otherwise complies with
|
| 128 |
+
the conditions stated in this License.
|
| 129 |
+
|
| 130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
| 131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
| 132 |
+
by You to the Licensor shall be under the terms and conditions of
|
| 133 |
+
this License, without any additional terms or conditions.
|
| 134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
| 135 |
+
the terms of any separate license agreement you may have executed
|
| 136 |
+
with Licensor regarding such Contributions.
|
| 137 |
+
|
| 138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
| 139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
| 140 |
+
except as required for reasonable and customary use in describing the
|
| 141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
| 142 |
+
|
| 143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
| 144 |
+
agreed to in writing, Licensor provides the Work (and each
|
| 145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
| 146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
| 147 |
+
implied, including, without limitation, any warranties or conditions
|
| 148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
| 149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
| 150 |
+
appropriateness of using or redistributing the Work and assume any
|
| 151 |
+
risks associated with Your exercise of permissions under this License.
|
| 152 |
+
|
| 153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
| 154 |
+
whether in tort (including negligence), contract, or otherwise,
|
| 155 |
+
unless required by applicable law (such as deliberate and grossly
|
| 156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
| 157 |
+
liable to You for damages, including any direct, indirect, special,
|
| 158 |
+
incidental, or consequential damages of any character arising as a
|
| 159 |
+
result of this License or out of the use or inability to use the
|
| 160 |
+
Work (including but not limited to damages for loss of goodwill,
|
| 161 |
+
work stoppage, computer failure or malfunction, or any and all
|
| 162 |
+
other commercial damages or losses), even if such Contributor
|
| 163 |
+
has been advised of the possibility of such damages.
|
| 164 |
+
|
| 165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
| 166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
| 167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
| 168 |
+
or other liability obligations and/or rights consistent with this
|
| 169 |
+
License. However, in accepting such obligations, You may act only
|
| 170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
| 171 |
+
of any other Contributor, and only if You agree to indemnify,
|
| 172 |
+
defend, and hold each Contributor harmless for any liability
|
| 173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
| 174 |
+
of your accepting any such warranty or additional liability.
|
| 175 |
+
|
| 176 |
+
END OF TERMS AND CONDITIONS
|
| 177 |
+
|
| 178 |
+
APPENDIX: How to apply the Apache License to your work.
|
| 179 |
+
|
| 180 |
+
To apply the Apache License to your work, attach the following
|
| 181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
| 182 |
+
replaced with your own identifying information. (Don't include
|
| 183 |
+
the brackets!) The text should be enclosed in the appropriate
|
| 184 |
+
comment syntax for the file format. We also recommend that a
|
| 185 |
+
file or class name and description of purpose be included on the
|
| 186 |
+
same "printed page" as the copyright notice for easier
|
| 187 |
+
identification within third-party archives.
|
| 188 |
+
|
| 189 |
+
Copyright [2024] [Zhenxiong Tan]
|
| 190 |
+
|
| 191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
| 192 |
+
you may not use this file except in compliance with the License.
|
| 193 |
+
You may obtain a copy of the License at
|
| 194 |
+
|
| 195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
| 196 |
+
|
| 197 |
+
Unless required by applicable law or agreed to in writing, software
|
| 198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
| 199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 200 |
+
See the License for the specific language governing permissions and
|
| 201 |
+
limitations under the License.
|
README.md
ADDED
|
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# OminiControl
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
<img src='./assets/demo/demo_this_is_omini_control.jpg' width='100%' />
|
| 5 |
+
<br>
|
| 6 |
+
|
| 7 |
+
<a href="https://huggingface.co/Yuanshi/OminiControl"><img src="https://img.shields.io/badge/🤗_HuggingFace-Model-ffbd45.svg" alt="HuggingFace"></a>
|
| 8 |
+
<a href="https://huggingface.co/spaces/Yuanshi/OminiControl"><img src="https://img.shields.io/badge/🤗_HuggingFace-Demo-ffbd45.svg" alt="HuggingFace"></a>
|
| 9 |
+
<a href="https://huggingface.co/spaces/Yuanshi/OminiControl_Art"><img src="https://img.shields.io/badge/🤗_HuggingFace-Demo2-ffbd45.svg" alt="HuggingFace"></a>
|
| 10 |
+
<a href="https://github.com/Yuanshi9815/Subjects200K"><img src="https://img.shields.io/badge/GitHub-Dataset-blue.svg?logo=github&" alt="GitHub"></a>
|
| 11 |
+
<a href="https://huggingface.co/datasets/Yuanshi/Subjects200K"><img src="https://img.shields.io/badge/🤗_HuggingFace-Dataset-ffbd45.svg" alt="HuggingFace"></a>
|
| 12 |
+
<br>
|
| 13 |
+
<a href="https://arxiv.org/abs/2411.15098"><img src="https://img.shields.io/badge/ariXv-OminiControl-A42C25.svg" alt="arXiv"></a>
|
| 14 |
+
<a href="https://arxiv.org/abs/2503.08280"><img src="https://img.shields.io/badge/ariXv-OminiControl2-A42C25.svg" alt="arXiv"></a>
|
| 15 |
+
|
| 16 |
+
> **OminiControl: Minimal and Universal Control for Diffusion Transformer**
|
| 17 |
+
> <br>
|
| 18 |
+
> Zhenxiong Tan,
|
| 19 |
+
> [Songhua Liu](http://121.37.94.87/),
|
| 20 |
+
> [Xingyi Yang](https://adamdad.github.io/),
|
| 21 |
+
> Qiaochu Xue,
|
| 22 |
+
> and
|
| 23 |
+
> [Xinchao Wang](https://sites.google.com/site/sitexinchaowang/)
|
| 24 |
+
> <br>
|
| 25 |
+
> [xML Lab](https://sites.google.com/view/xml-nus), National University of Singapore
|
| 26 |
+
> <br>
|
| 27 |
+
|
| 28 |
+
> **OminiControl2: Efficient Conditioning for Diffusion Transformers**
|
| 29 |
+
> <br>
|
| 30 |
+
> Zhenxiong Tan,
|
| 31 |
+
> Qiaochu Xue,
|
| 32 |
+
> [Xingyi Yang](https://adamdad.github.io/),
|
| 33 |
+
> [Songhua Liu](http://121.37.94.87/),
|
| 34 |
+
> and
|
| 35 |
+
> [Xinchao Wang](https://sites.google.com/site/sitexinchaowang/)
|
| 36 |
+
> <br>
|
| 37 |
+
> [xML Lab](https://sites.google.com/view/xml-nus), National University of Singapore
|
| 38 |
+
> <br>
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
## Features
|
| 43 |
+
|
| 44 |
+
OminiControl is a minimal yet powerful universal control framework for Diffusion Transformer models like [FLUX](https://github.com/black-forest-labs/flux).
|
| 45 |
+
|
| 46 |
+
* **Universal Control 🌐**: A unified control framework that supports both subject-driven control and spatial control (such as edge-guided and in-painting generation).
|
| 47 |
+
|
| 48 |
+
* **Minimal Design 🚀**: Injects control signals while preserving original model structure. Only introduces 0.1% additional parameters to the base model.
|
| 49 |
+
|
| 50 |
+
## News
|
| 51 |
+
- **2025-05-12**: ⭐️ The code of [OminiControl2](https://arxiv.org/abs/2503.08280) is released. It introduces a new efficient conditioning method for diffusion transformers. (Check out the training code [here](./train)).
|
| 52 |
+
- **2025-05-12**: Support custom style LoRA. (Check out the [example](./examples/combine_with_style_lora.ipynb)).
|
| 53 |
+
- **2025-04-09**: ⭐️ [OminiControl Art](https://huggingface.co/spaces/Yuanshi/OminiControl_Art) is released. It can stylize any image with a artistic style. (Check out the [demo](https://huggingface.co/spaces/Yuanshi/OminiControl_Art) and [inference examples](./examples/ominicontrol_art.ipynb)).
|
| 54 |
+
- **2024-12-26**: Training code are released. Now you can create your own OminiControl model by customizing any control tasks (3D, multi-view, pose-guided, try-on, etc.) with the FLUX model. Check the [training folder](./train) for more details.
|
| 55 |
+
|
| 56 |
+
## Quick Start
|
| 57 |
+
### Setup (Optional)
|
| 58 |
+
1. **Environment setup**
|
| 59 |
+
```bash
|
| 60 |
+
conda create -n omini python=3.12
|
| 61 |
+
conda activate omini
|
| 62 |
+
```
|
| 63 |
+
2. **Requirements installation**
|
| 64 |
+
```bash
|
| 65 |
+
pip install -r requirements.txt
|
| 66 |
+
```
|
| 67 |
+
### Usage example
|
| 68 |
+
1. Subject-driven generation: `examples/subject.ipynb`
|
| 69 |
+
2. In-painting: `examples/inpainting.ipynb`
|
| 70 |
+
3. Canny edge to image, depth to image, colorization, deblurring: `examples/spatial.ipynb`
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
### Guidelines for subject-driven generation
|
| 74 |
+
1. Input images are automatically center-cropped and resized to 512x512 resolution.
|
| 75 |
+
2. When writing prompts, refer to the subject using phrases like `this item`, `the object`, or `it`. e.g.
|
| 76 |
+
1. *A close up view of this item. It is placed on a wooden table.*
|
| 77 |
+
2. *A young lady is wearing this shirt.*
|
| 78 |
+
3. The model primarily works with objects rather than human subjects currently, due to the absence of human data in training.
|
| 79 |
+
|
| 80 |
+
## Generated samples
|
| 81 |
+
### Subject-driven generation
|
| 82 |
+
<a href="https://huggingface.co/spaces/Yuanshi/OminiControl"><img src="https://img.shields.io/badge/🤗_HuggingFace-Space-ffbd45.svg" alt="HuggingFace"></a>
|
| 83 |
+
|
| 84 |
+
**Demos** (Left: condition image; Right: generated image)
|
| 85 |
+
|
| 86 |
+
<div float="left">
|
| 87 |
+
<img src='./assets/demo/oranges_omini.jpg' width='48%'/>
|
| 88 |
+
<img src='./assets/demo/rc_car_omini.jpg' width='48%' />
|
| 89 |
+
<img src='./assets/demo/clock_omini.jpg' width='48%' />
|
| 90 |
+
<img src='./assets/demo/shirt_omini.jpg' width='48%' />
|
| 91 |
+
</div>
|
| 92 |
+
|
| 93 |
+
<details>
|
| 94 |
+
<summary>Text Prompts</summary>
|
| 95 |
+
|
| 96 |
+
- Prompt1: *A close up view of this item. It is placed on a wooden table. The background is a dark room, the TV is on, and the screen is showing a cooking show. With text on the screen that reads 'Omini Control!.'*
|
| 97 |
+
- Prompt2: *A film style shot. On the moon, this item drives across the moon surface. A flag on it reads 'Omini'. The background is that Earth looms large in the foreground.*
|
| 98 |
+
- Prompt3: *In a Bauhaus style room, this item is placed on a shiny glass table, with a vase of flowers next to it. In the afternoon sun, the shadows of the blinds are cast on the wall.*
|
| 99 |
+
- Prompt4: *"On the beach, a lady sits under a beach umbrella with 'Omini' written on it. She's wearing this shirt and has a big smile on her face, with her surfboard hehind her. The sun is setting in the background. The sky is a beautiful shade of orange and purple."*
|
| 100 |
+
</details>
|
| 101 |
+
<details>
|
| 102 |
+
<summary>More results</summary>
|
| 103 |
+
|
| 104 |
+
* Try on:
|
| 105 |
+
<img src='./assets/demo/try_on.jpg'/>
|
| 106 |
+
* Scene variations:
|
| 107 |
+
<img src='./assets/demo/scene_variation.jpg'/>
|
| 108 |
+
* Dreambooth dataset:
|
| 109 |
+
<img src='./assets/demo/dreambooth_res.jpg'/>
|
| 110 |
+
* Oye-cartoon finetune:
|
| 111 |
+
<div float="left">
|
| 112 |
+
<img src='./assets/demo/man_omini.jpg' width='48%' />
|
| 113 |
+
<img src='./assets/demo/panda_omini.jpg' width='48%' />
|
| 114 |
+
</div>
|
| 115 |
+
</details>
|
| 116 |
+
|
| 117 |
+
### Spatially aligned control
|
| 118 |
+
1. **Image Inpainting** (Left: original image; Center: masked image; Right: filled image)
|
| 119 |
+
- Prompt: *The Mona Lisa is wearing a white VR headset with 'Omini' written on it.*
|
| 120 |
+
</br>
|
| 121 |
+
<img src='./assets/demo/monalisa_omini.jpg' width='700px' />
|
| 122 |
+
- Prompt: *A yellow book with the word 'OMINI' in large font on the cover. The text 'for FLUX' appears at the bottom.*
|
| 123 |
+
</br>
|
| 124 |
+
<img src='./assets/demo/book_omini.jpg' width='700px' />
|
| 125 |
+
2. **Other spatially aligned tasks** (Canny edge to image, depth to image, colorization, deblurring)
|
| 126 |
+
</br>
|
| 127 |
+
<details>
|
| 128 |
+
<summary>Click to show</summary>
|
| 129 |
+
<div float="left">
|
| 130 |
+
<img src='./assets/demo/room_corner_canny.jpg' width='48%'/>
|
| 131 |
+
<img src='./assets/demo/room_corner_depth.jpg' width='48%' />
|
| 132 |
+
<img src='./assets/demo/room_corner_coloring.jpg' width='48%' />
|
| 133 |
+
<img src='./assets/demo/room_corner_deblurring.jpg' width='48%' />
|
| 134 |
+
</div>
|
| 135 |
+
|
| 136 |
+
Prompt: *A light gray sofa stands against a white wall, featuring a black and white geometric patterned pillow. A white side table sits next to the sofa, topped with a white adjustable desk lamp and some books. Dark hardwood flooring contrasts with the pale walls and furniture.*
|
| 137 |
+
</details>
|
| 138 |
+
|
| 139 |
+
### Stylize images
|
| 140 |
+
<a href="https://huggingface.co/spaces/Yuanshi/OminiControl_Art"><img src="https://img.shields.io/badge/🤗_HuggingFace-Demo2-ffbd45.svg" alt="HuggingFace"></a>
|
| 141 |
+
</br>
|
| 142 |
+
<img src='./assets/demo/art1.png' width='600px' />
|
| 143 |
+
<img src='./assets/demo/art2.png' width='600px' />
|
| 144 |
+
</br>
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
## Models
|
| 149 |
+
|
| 150 |
+
**Subject-driven control:**
|
| 151 |
+
| Model | Base model | Description | Resolution |
|
| 152 |
+
| ------------------------------------------------------------------------------------------------ | -------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------ |
|
| 153 |
+
| [`experimental`](https://huggingface.co/Yuanshi/OminiControl/tree/main/experimental) / `subject` | FLUX.1-schnell | The model used in the paper. | (512, 512) |
|
| 154 |
+
| [`omini`](https://huggingface.co/Yuanshi/OminiControl/tree/main/omini) / `subject_512` | FLUX.1-schnell | The model has been fine-tuned on a larger dataset. | (512, 512) |
|
| 155 |
+
| [`omini`](https://huggingface.co/Yuanshi/OminiControl/tree/main/omini) / `subject_1024` | FLUX.1-schnell | The model has been fine-tuned on a larger dataset and accommodates higher resolution. | (1024, 1024) |
|
| 156 |
+
| [`oye-cartoon`](https://huggingface.co/saquiboye/oye-cartoon) | FLUX.1-dev | The model has been fine-tuned on [oye-cartoon](https://huggingface.co/datasets/saquiboye/oye-cartoon) dataset by [@saquib764](https://github.com/Saquib764) | (512, 512) |
|
| 157 |
+
|
| 158 |
+
**Spatial aligned control:**
|
| 159 |
+
| Model | Base model | Description | Resolution |
|
| 160 |
+
| --------------------------------------------------------------------------------------------------------- | ---------- | -------------------------------------------------------------------------- | ------------ |
|
| 161 |
+
| [`experimental`](https://huggingface.co/Yuanshi/OminiControl/tree/main/experimental) / `<task_name>` | FLUX.1 | Canny edge to image, depth to image, colorization, deblurring, in-painting | (512, 512) |=
|
| 162 |
+
|
| 163 |
+
## Community Extensions
|
| 164 |
+
- [ComfyUI-Diffusers-OminiControl](https://github.com/Macoron/ComfyUI-Diffusers-OminiControl) - ComfyUI integration by [@Macoron](https://github.com/Macoron)
|
| 165 |
+
- [ComfyUI_RH_OminiControl](https://github.com/HM-RunningHub/ComfyUI_RH_OminiControl) - ComfyUI integration by [@HM-RunningHub](https://github.com/HM-RunningHub)
|
| 166 |
+
|
| 167 |
+
## Limitations
|
| 168 |
+
1. The model's subject-driven generation primarily works with objects rather than human subjects due to the absence of human data in training.
|
| 169 |
+
2. The subject-driven generation model may not work well with `FLUX.1-dev`.
|
| 170 |
+
3. The released model only supports the resolution of 512x512.
|
| 171 |
+
|
| 172 |
+
## Training
|
| 173 |
+
Training instructions can be found in this [folder](./train).
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
## To-do
|
| 177 |
+
- [x] Release the training code.
|
| 178 |
+
- [x] Release the model for higher resolution (1024x1024).
|
| 179 |
+
|
| 180 |
+
## Acknowledgment
|
| 181 |
+
We would like to acknowledge that the computational work involved in this research work is partially supported by NUS IT’s Research Computing group using grant numbers NUSREC-HPC-00001.
|
| 182 |
+
|
| 183 |
+
## Citation
|
| 184 |
+
```
|
| 185 |
+
@article{tan2025ominicontrol,
|
| 186 |
+
title={OminiControl: Minimal and Universal Control for Diffusion Transformer},
|
| 187 |
+
author={Tan, Zhenxiong and Liu, Songhua and Yang, Xingyi and Xue, Qiaochu and Wang, Xinchao},
|
| 188 |
+
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
|
| 189 |
+
year={2025}
|
| 190 |
+
}
|
| 191 |
+
|
| 192 |
+
@article{tan2025ominicontrol2,
|
| 193 |
+
title={OminiControl2: Efficient Conditioning for Diffusion Transformers},
|
| 194 |
+
author={Tan, Zhenxiong and Xue, Qiaochu and Yang, Xingyi and Liu, Songhua and Wang, Xinchao},
|
| 195 |
+
journal={arXiv preprint arXiv:2503.08280},
|
| 196 |
+
year={2025}
|
| 197 |
+
}
|
| 198 |
+
```
|
ablation_qkv.py
ADDED
|
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
from diffusers.pipelines import FluxPipeline
|
| 4 |
+
from omini.pipeline.flux_omini_ablate_qkv import Condition, generate, seed_everything, convert_to_condition
|
| 5 |
+
from omini.rotation import RotationConfig, RotationTuner
|
| 6 |
+
from PIL import Image
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def load_rotation(transformer, path: str, adapter_name: str = "default", strict: bool = False):
|
| 10 |
+
"""
|
| 11 |
+
Load rotation adapter weights.
|
| 12 |
+
|
| 13 |
+
Args:
|
| 14 |
+
path: Directory containing the saved adapter weights
|
| 15 |
+
adapter_name: Name of the adapter to load
|
| 16 |
+
strict: Whether to strictly match all keys
|
| 17 |
+
"""
|
| 18 |
+
from safetensors.torch import load_file
|
| 19 |
+
import os
|
| 20 |
+
import yaml
|
| 21 |
+
|
| 22 |
+
device = transformer.device
|
| 23 |
+
print(f"device for loading: {device}")
|
| 24 |
+
|
| 25 |
+
# Try to load safetensors first, then fallback to .pth
|
| 26 |
+
safetensors_path = os.path.join(path, f"{adapter_name}.safetensors")
|
| 27 |
+
pth_path = os.path.join(path, f"{adapter_name}.pth")
|
| 28 |
+
|
| 29 |
+
if os.path.exists(safetensors_path):
|
| 30 |
+
state_dict = load_file(safetensors_path)
|
| 31 |
+
print(f"Loaded rotation adapter from {safetensors_path}")
|
| 32 |
+
elif os.path.exists(pth_path):
|
| 33 |
+
state_dict = torch.load(pth_path, map_location=device)
|
| 34 |
+
print(f"Loaded rotation adapter from {pth_path}")
|
| 35 |
+
else:
|
| 36 |
+
raise FileNotFoundError(
|
| 37 |
+
f"No adapter weights found for '{adapter_name}' in {path}\n"
|
| 38 |
+
f"Looking for: {safetensors_path} or {pth_path}"
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
# # Get the device and dtype of the transformer
|
| 42 |
+
transformer_device = next(transformer.parameters()).device
|
| 43 |
+
transformer_dtype = next(transformer.parameters()).dtype
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
state_dict_with_adapter = {}
|
| 48 |
+
for k, v in state_dict.items():
|
| 49 |
+
# Reconstruct the full key with adapter name
|
| 50 |
+
new_key = k.replace(".rotation.", f".rotation.{adapter_name}.")
|
| 51 |
+
if "_adapter_config" in new_key:
|
| 52 |
+
print(f"adapter_config key: {new_key}")
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
# Move to target device and dtype
|
| 56 |
+
# Check if this parameter should keep its original dtype (e.g., indices, masks)
|
| 57 |
+
if v.dtype in [torch.long, torch.int, torch.int32, torch.int64, torch.bool]:
|
| 58 |
+
# Keep integer/boolean dtypes, only move device
|
| 59 |
+
state_dict_with_adapter[new_key] = v.to(device=transformer_device)
|
| 60 |
+
else:
|
| 61 |
+
# Convert floating point tensors to target dtype and device
|
| 62 |
+
state_dict_with_adapter[new_key] = v.to(device=transformer_device, dtype=transformer_dtype)
|
| 63 |
+
|
| 64 |
+
# Add adapter name back to keys (reverse of what we did in save)
|
| 65 |
+
state_dict_with_adapter = {
|
| 66 |
+
k.replace(".rotation.", f".rotation.{adapter_name}."): v
|
| 67 |
+
for k, v in state_dict.items()
|
| 68 |
+
}
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
# Load into the model
|
| 72 |
+
missing, unexpected = transformer.load_state_dict(
|
| 73 |
+
state_dict_with_adapter,
|
| 74 |
+
strict=strict
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
if missing:
|
| 78 |
+
print(f"Missing keys: {missing[:5]}{'...' if len(missing) > 5 else ''}")
|
| 79 |
+
if unexpected:
|
| 80 |
+
print(f"Unexpected keys: {unexpected[:5]}{'...' if len(unexpected) > 5 else ''}")
|
| 81 |
+
|
| 82 |
+
# Load config if available
|
| 83 |
+
config_path = os.path.join(path, f"{adapter_name}_config.yaml")
|
| 84 |
+
if os.path.exists(config_path):
|
| 85 |
+
with open(config_path, 'r') as f:
|
| 86 |
+
config = yaml.safe_load(f)
|
| 87 |
+
print(f"Loaded config: {config}")
|
| 88 |
+
|
| 89 |
+
total_params = sum(p.numel() for p in state_dict.values())
|
| 90 |
+
print(f"Loaded {len(state_dict)} tensors ({total_params:,} parameters)")
|
| 91 |
+
|
| 92 |
+
return state_dict
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
# prepare input image and prompt
|
| 96 |
+
image = Image.open("assets/coffee.png").convert("RGB")
|
| 97 |
+
|
| 98 |
+
w, h, min_dim = image.size + (min(image.size),)
|
| 99 |
+
image = image.crop(
|
| 100 |
+
((w - min_dim) // 2, (h - min_dim) // 2, (w + min_dim) // 2, (h + min_dim) // 2)
|
| 101 |
+
).resize((512, 512))
|
| 102 |
+
|
| 103 |
+
prompt = "In a bright room. A cup of a coffee with some beans on the side. They are placed on a dark wooden table."
|
| 104 |
+
|
| 105 |
+
canny_image = convert_to_condition("canny", image)
|
| 106 |
+
condition = Condition(canny_image, "canny")
|
| 107 |
+
|
| 108 |
+
seed_everything()
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
pipe = FluxPipeline.from_pretrained(
|
| 113 |
+
"black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
# add adapter to the transformer
|
| 118 |
+
transformer = pipe.transformer
|
| 119 |
+
|
| 120 |
+
adapter_name = "default"
|
| 121 |
+
transformer._hf_peft_config_loaded = True
|
| 122 |
+
|
| 123 |
+
rotation_adapter_config = {
|
| 124 |
+
"r": 4,
|
| 125 |
+
"num_rotations": 4,
|
| 126 |
+
"target_modules": "(.*x_embedder|.*(?<!single_)transformer_blocks\\.[0-9]+\\.norm1\\.linear|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.to_k|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.to_q|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.to_v|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.to_out\\.0|.*(?<!single_)transformer_blocks\\.[0-9]+\\.ff\\.net\\.2|.*single_transformer_blocks\\.[0-9]+\\.norm\\.linear|.*single_transformer_blocks\\.[0-9]+\\.proj_mlp|.*single_transformer_blocks\\.[0-9]+\\.proj_out|.*single_transformer_blocks\\.[0-9]+\\.attn.to_k|.*single_transformer_blocks\\.[0-9]+\\.attn.to_q|.*single_transformer_blocks\\.[0-9]+\\.attn.to_v|.*single_transformer_blocks\\.[0-9]+\\.attn.to_out)",
|
| 127 |
+
}
|
| 128 |
+
|
| 129 |
+
config = RotationConfig(**rotation_adapter_config)
|
| 130 |
+
rotation_tuner = RotationTuner(
|
| 131 |
+
transformer,
|
| 132 |
+
config,
|
| 133 |
+
adapter_name=adapter_name,
|
| 134 |
+
)
|
| 135 |
+
# Convert rotation tuner to bfloat16
|
| 136 |
+
transformer = transformer.to(torch.bfloat16)
|
| 137 |
+
transformer.set_adapter(adapter_name)
|
| 138 |
+
|
| 139 |
+
# load adapter weights
|
| 140 |
+
load_rotation(
|
| 141 |
+
transformer,
|
| 142 |
+
path="runs/20251110-191859-canny/ckpt/25000",
|
| 143 |
+
adapter_name=adapter_name,
|
| 144 |
+
strict=False,
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
# alter T for Query, Key, Value projections
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
pipe = pipe.to("cuda")
|
| 151 |
+
for i in range(0, 25):
|
| 152 |
+
seed_everything()
|
| 153 |
+
result_img = generate(
|
| 154 |
+
pipe,
|
| 155 |
+
prompt=prompt,
|
| 156 |
+
conditions=[condition],
|
| 157 |
+
# global_T_Q=float(i + 1) /20.,
|
| 158 |
+
global_T_K=float(i + 1) /20.,
|
| 159 |
+
global_T_V=float(i + 1) /20.,
|
| 160 |
+
).images[0]
|
| 161 |
+
|
| 162 |
+
concat_image = Image.new("RGB", (1536, 512))
|
| 163 |
+
concat_image.paste(image, (0, 0))
|
| 164 |
+
concat_image.paste(condition.condition, (512, 0))
|
| 165 |
+
concat_image.paste(result_img, (1024, 0))
|
| 166 |
+
|
| 167 |
+
# Save images
|
| 168 |
+
result_img.save(f"result_{i+1}.png")
|
| 169 |
+
concat_image.save(f"result_concat_{i+1}.png")
|
| 170 |
+
print(f"Saved result_{i+1}.png and result_concat_{i+1}.png")
|
assets/book.jpg
ADDED
|
|
assets/cartoon_boy.png
ADDED
|
|
Git LFS Details
|
assets/clock.jpg
ADDED
|
|
Git LFS Details
|
assets/coffee.png
ADDED
|
|
assets/demo/art1.png
ADDED
|
|
Git LFS Details
|
assets/demo/art2.png
ADDED
|
|
Git LFS Details
|
assets/demo/book_omini.jpg
ADDED
|
|
assets/demo/clock_omini.jpg
ADDED
|
|
assets/demo/demo_this_is_omini_control.jpg
ADDED
|
|
Git LFS Details
|
assets/demo/dreambooth_res.jpg
ADDED
|
|
Git LFS Details
|
assets/demo/man_omini.jpg
ADDED
|
|
assets/demo/monalisa_omini.jpg
ADDED
|
|
Git LFS Details
|
assets/demo/oranges_omini.jpg
ADDED
|
|
assets/demo/panda_omini.jpg
ADDED
|
|
assets/demo/penguin_omini.jpg
ADDED
|
|
assets/demo/rc_car_omini.jpg
ADDED
|
|
assets/demo/room_corner_canny.jpg
ADDED
|
|
assets/demo/room_corner_coloring.jpg
ADDED
|
|
assets/demo/room_corner_deblurring.jpg
ADDED
|
|
assets/demo/room_corner_depth.jpg
ADDED
|
|
assets/demo/scene_variation.jpg
ADDED
|
|
Git LFS Details
|
assets/demo/shirt_omini.jpg
ADDED
|
|
assets/demo/try_on.jpg
ADDED
|
|
Git LFS Details
|
assets/monalisa.jpg
ADDED
|
|
Git LFS Details
|
assets/ominicontrol_art/DistractedBoyfriend.webp
ADDED
|
|
Git LFS Details
|
assets/ominicontrol_art/PulpFiction.jpg
ADDED
|
|
Git LFS Details
|
assets/ominicontrol_art/breakingbad.jpg
ADDED
|
|
Git LFS Details
|
assets/ominicontrol_art/oiiai.png
ADDED
|
|
Git LFS Details
|
assets/oranges.jpg
ADDED
|
|
assets/penguin.jpg
ADDED
|
|
assets/rc_car.jpg
ADDED
|
|
Git LFS Details
|
assets/room_corner.jpg
ADDED
|
|
Git LFS Details
|
assets/test_in.jpg
ADDED
|
|
assets/test_out.jpg
ADDED
|
|
assets/tshirt.jpg
ADDED
|
|
Git LFS Details
|
assets/vase.jpg
ADDED
|
|
assets/vase_hq.jpg
ADDED
|
|
Git LFS Details
|
evaluation.py
ADDED
|
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
from diffusers.pipelines import FluxPipeline
|
| 4 |
+
from omini.pipeline.flux_omini import Condition, generate, seed_everything, convert_to_condition
|
| 5 |
+
from omini.rotation import RotationConfig, RotationTuner
|
| 6 |
+
from PIL import Image
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def load_rotation(transformer, path: str, adapter_name: str = "default", strict: bool = False):
|
| 10 |
+
"""
|
| 11 |
+
Load rotation adapter weights.
|
| 12 |
+
|
| 13 |
+
Args:
|
| 14 |
+
path: Directory containing the saved adapter weights
|
| 15 |
+
adapter_name: Name of the adapter to load
|
| 16 |
+
strict: Whether to strictly match all keys
|
| 17 |
+
"""
|
| 18 |
+
from safetensors.torch import load_file
|
| 19 |
+
import os
|
| 20 |
+
import yaml
|
| 21 |
+
|
| 22 |
+
device = transformer.device
|
| 23 |
+
print(f"device for loading: {device}")
|
| 24 |
+
|
| 25 |
+
# Try to load safetensors first, then fallback to .pth
|
| 26 |
+
safetensors_path = os.path.join(path, f"{adapter_name}.safetensors")
|
| 27 |
+
pth_path = os.path.join(path, f"{adapter_name}.pth")
|
| 28 |
+
|
| 29 |
+
if os.path.exists(safetensors_path):
|
| 30 |
+
state_dict = load_file(safetensors_path)
|
| 31 |
+
print(f"Loaded rotation adapter from {safetensors_path}")
|
| 32 |
+
elif os.path.exists(pth_path):
|
| 33 |
+
state_dict = torch.load(pth_path, map_location=device)
|
| 34 |
+
print(f"Loaded rotation adapter from {pth_path}")
|
| 35 |
+
else:
|
| 36 |
+
raise FileNotFoundError(
|
| 37 |
+
f"No adapter weights found for '{adapter_name}' in {path}\n"
|
| 38 |
+
f"Looking for: {safetensors_path} or {pth_path}"
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
# # Get the device and dtype of the transformer
|
| 42 |
+
transformer_device = next(transformer.parameters()).device
|
| 43 |
+
transformer_dtype = next(transformer.parameters()).dtype
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
state_dict_with_adapter = {}
|
| 48 |
+
for k, v in state_dict.items():
|
| 49 |
+
# Reconstruct the full key with adapter name
|
| 50 |
+
new_key = k.replace(".rotation.", f".rotation.{adapter_name}.")
|
| 51 |
+
if "_adapter_config" in new_key:
|
| 52 |
+
print(f"adapter_config key: {new_key}")
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
# Move to target device and dtype
|
| 56 |
+
# Check if this parameter should keep its original dtype (e.g., indices, masks)
|
| 57 |
+
if v.dtype in [torch.long, torch.int, torch.int32, torch.int64, torch.bool]:
|
| 58 |
+
# Keep integer/boolean dtypes, only move device
|
| 59 |
+
state_dict_with_adapter[new_key] = v.to(device=transformer_device)
|
| 60 |
+
else:
|
| 61 |
+
# Convert floating point tensors to target dtype and device
|
| 62 |
+
state_dict_with_adapter[new_key] = v.to(device=transformer_device, dtype=transformer_dtype)
|
| 63 |
+
|
| 64 |
+
# Add adapter name back to keys (reverse of what we did in save)
|
| 65 |
+
state_dict_with_adapter = {
|
| 66 |
+
k.replace(".rotation.", f".rotation.{adapter_name}."): v
|
| 67 |
+
for k, v in state_dict.items()
|
| 68 |
+
}
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
# Load into the model
|
| 72 |
+
missing, unexpected = transformer.load_state_dict(
|
| 73 |
+
state_dict_with_adapter,
|
| 74 |
+
strict=strict
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
if missing:
|
| 78 |
+
print(f"Missing keys: {missing[:5]}{'...' if len(missing) > 5 else ''}")
|
| 79 |
+
if unexpected:
|
| 80 |
+
print(f"Unexpected keys: {unexpected[:5]}{'...' if len(unexpected) > 5 else ''}")
|
| 81 |
+
|
| 82 |
+
# Load config if available
|
| 83 |
+
config_path = os.path.join(path, f"{adapter_name}_config.yaml")
|
| 84 |
+
if os.path.exists(config_path):
|
| 85 |
+
with open(config_path, 'r') as f:
|
| 86 |
+
config = yaml.safe_load(f)
|
| 87 |
+
print(f"Loaded config: {config}")
|
| 88 |
+
|
| 89 |
+
total_params = sum(p.numel() for p in state_dict.values())
|
| 90 |
+
print(f"Loaded {len(state_dict)} tensors ({total_params:,} parameters)")
|
| 91 |
+
|
| 92 |
+
return state_dict
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
# prepare input image and prompt
|
| 96 |
+
image = Image.open("assets/coffee.png").convert("RGB")
|
| 97 |
+
|
| 98 |
+
w, h, min_dim = image.size + (min(image.size),)
|
| 99 |
+
image = image.crop(
|
| 100 |
+
((w - min_dim) // 2, (h - min_dim) // 2, (w + min_dim) // 2, (h + min_dim) // 2)
|
| 101 |
+
).resize((512, 512))
|
| 102 |
+
|
| 103 |
+
prompt = "In a bright room. A cup of a coffee with some beans on the side. They are placed on a dark wooden table."
|
| 104 |
+
|
| 105 |
+
canny_image = convert_to_condition("canny", image)
|
| 106 |
+
condition = Condition(canny_image, "canny")
|
| 107 |
+
|
| 108 |
+
seed_everything()
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
for i in range(40, 60):
|
| 113 |
+
pipe = FluxPipeline.from_pretrained(
|
| 114 |
+
"black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
# add adapter to the transformer
|
| 119 |
+
transformer = pipe.transformer
|
| 120 |
+
|
| 121 |
+
adapter_name = "default"
|
| 122 |
+
transformer._hf_peft_config_loaded = True
|
| 123 |
+
|
| 124 |
+
rotation_adapter_config = {
|
| 125 |
+
"r": 4,
|
| 126 |
+
"num_rotations": 4,
|
| 127 |
+
"target_modules": "(.*x_embedder|.*(?<!single_)transformer_blocks\\.[0-9]+\\.norm1\\.linear|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.to_k|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.to_q|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.to_v|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.to_out\\.0|.*(?<!single_)transformer_blocks\\.[0-9]+\\.ff\\.net\\.2|.*single_transformer_blocks\\.[0-9]+\\.norm\\.linear|.*single_transformer_blocks\\.[0-9]+\\.proj_mlp|.*single_transformer_blocks\\.[0-9]+\\.proj_out|.*single_transformer_blocks\\.[0-9]+\\.attn.to_k|.*single_transformer_blocks\\.[0-9]+\\.attn.to_q|.*single_transformer_blocks\\.[0-9]+\\.attn.to_v|.*single_transformer_blocks\\.[0-9]+\\.attn.to_out)",
|
| 128 |
+
}
|
| 129 |
+
|
| 130 |
+
config = RotationConfig(**rotation_adapter_config)
|
| 131 |
+
config.T = float(i + 1) / 20
|
| 132 |
+
rotation_tuner = RotationTuner(
|
| 133 |
+
transformer,
|
| 134 |
+
config,
|
| 135 |
+
adapter_name=adapter_name,
|
| 136 |
+
)
|
| 137 |
+
# Convert rotation tuner to bfloat16
|
| 138 |
+
transformer = transformer.to(torch.bfloat16)
|
| 139 |
+
transformer.set_adapter(adapter_name)
|
| 140 |
+
|
| 141 |
+
# load adapter weights
|
| 142 |
+
load_rotation(
|
| 143 |
+
transformer,
|
| 144 |
+
path="runs/20251110-191859/ckpt/4000",
|
| 145 |
+
adapter_name=adapter_name,
|
| 146 |
+
strict=False,
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
pipe = pipe.to("cuda")
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
result_img = generate(
|
| 156 |
+
pipe,
|
| 157 |
+
prompt=prompt,
|
| 158 |
+
conditions=[condition],
|
| 159 |
+
).images[0]
|
| 160 |
+
|
| 161 |
+
concat_image = Image.new("RGB", (1536, 512))
|
| 162 |
+
concat_image.paste(image, (0, 0))
|
| 163 |
+
concat_image.paste(condition.condition, (512, 0))
|
| 164 |
+
concat_image.paste(result_img, (1024, 0))
|
| 165 |
+
|
| 166 |
+
# Save images
|
| 167 |
+
result_img.save(f"result_{i+1}.png")
|
| 168 |
+
concat_image.save(f"result_concat_{i+1}.png")
|
| 169 |
+
print(f"Saved result_{i+1}.png and result_concat_{i+1}.png")
|
evaluation_coco.py
ADDED
|
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# example images:depth-41888,15254,16228, 24144,37777, 22192
|
| 2 |
+
|
| 3 |
+
# ablate image: 87038
|
| 4 |
+
import json
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import os
|
| 7 |
+
import argparse
|
| 8 |
+
from omini.pipeline.flux_omini import Condition, generate, seed_everything, convert_to_condition
|
| 9 |
+
from omini.rotation import RotationConfig, RotationTuner
|
| 10 |
+
from tqdm import tqdm
|
| 11 |
+
import torch
|
| 12 |
+
from diffusers.pipelines import FluxPipeline
|
| 13 |
+
|
| 14 |
+
def evaluate(pipe,
|
| 15 |
+
condition_type: str, # e.g., "canny"
|
| 16 |
+
caption_file: str,
|
| 17 |
+
image_dir: str,
|
| 18 |
+
save_root_dir: str,
|
| 19 |
+
num_images: int = 5000,
|
| 20 |
+
start_index: int = 0):
|
| 21 |
+
"""
|
| 22 |
+
Evaluate the model on a subset of the COCO dataset.
|
| 23 |
+
|
| 24 |
+
Args:
|
| 25 |
+
pipe: The flux pipeline to use for generation
|
| 26 |
+
caption_file: Path to the COCO captions JSON file
|
| 27 |
+
image_dir: Directory containing COCO images
|
| 28 |
+
num_images: Number of images to evaluate on
|
| 29 |
+
"""
|
| 30 |
+
|
| 31 |
+
os.makedirs(os.path.join(save_root_dir, "generated"), exist_ok=True)
|
| 32 |
+
os.makedirs(os.path.join(save_root_dir, "resized"), exist_ok=True)
|
| 33 |
+
os.makedirs(os.path.join(save_root_dir, condition_type), exist_ok=True)
|
| 34 |
+
|
| 35 |
+
# Load data
|
| 36 |
+
with open(caption_file, "r") as f:
|
| 37 |
+
coco_data = json.load(f)
|
| 38 |
+
|
| 39 |
+
# Build a mapping: image_id → (filename, captions)
|
| 40 |
+
id_to_filename = {img["id"]: img["file_name"] for img in coco_data["images"]}
|
| 41 |
+
captions_by_image = {}
|
| 42 |
+
|
| 43 |
+
for ann in coco_data["annotations"]:
|
| 44 |
+
img_id = ann["image_id"]
|
| 45 |
+
captions_by_image.setdefault(img_id, []).append(ann["caption"])
|
| 46 |
+
|
| 47 |
+
# Take first 5000 images
|
| 48 |
+
image_ids = list(id_to_filename.keys())[:5000]
|
| 49 |
+
|
| 50 |
+
# Collect data
|
| 51 |
+
captions_subset = [
|
| 52 |
+
{
|
| 53 |
+
"image_id": img_id,
|
| 54 |
+
"file_name": id_to_filename[img_id],
|
| 55 |
+
"captions": captions_by_image.get(img_id, [])
|
| 56 |
+
}
|
| 57 |
+
for img_id in image_ids
|
| 58 |
+
]
|
| 59 |
+
|
| 60 |
+
for item in tqdm(captions_subset[start_index:start_index+num_images]):
|
| 61 |
+
|
| 62 |
+
image_id = item["image_id"]
|
| 63 |
+
image_path = os.path.join(image_dir, item["file_name"])
|
| 64 |
+
image = Image.open(image_path).convert("RGB")
|
| 65 |
+
|
| 66 |
+
# Resize and center-crop to 512x512
|
| 67 |
+
w, h, min_dim = image.size + (min(image.size),)
|
| 68 |
+
image = image.crop(
|
| 69 |
+
((w - min_dim) // 2, (h - min_dim) // 2, (w + min_dim) // 2, (h + min_dim) // 2)
|
| 70 |
+
).resize((512, 512))
|
| 71 |
+
|
| 72 |
+
condition_image = convert_to_condition(condition_type, image)
|
| 73 |
+
condition = Condition(condition_image, condition_type)
|
| 74 |
+
|
| 75 |
+
prompt = item["captions"][0] if item["captions"] else "No caption available."
|
| 76 |
+
|
| 77 |
+
seed_everything(42)
|
| 78 |
+
|
| 79 |
+
# generate image
|
| 80 |
+
result_img = generate(
|
| 81 |
+
pipe,
|
| 82 |
+
prompt=prompt,
|
| 83 |
+
conditions=[condition],
|
| 84 |
+
).images[0]
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
result_img.save(os.path.join(save_root_dir, "generated", f"{image_id}.jpg"))
|
| 88 |
+
image.save(os.path.join(save_root_dir, "resized", f"{image_id}.jpg"))
|
| 89 |
+
condition.condition.save(os.path.join(save_root_dir, condition_type, f"{image_id}.jpg"))
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def load_rotation(transformer, path: str, adapter_name: str = "default", strict: bool = False):
|
| 96 |
+
"""
|
| 97 |
+
Load rotation adapter weights.
|
| 98 |
+
|
| 99 |
+
Args:
|
| 100 |
+
path: Directory containing the saved adapter weights
|
| 101 |
+
adapter_name: Name of the adapter to load
|
| 102 |
+
strict: Whether to strictly match all keys
|
| 103 |
+
"""
|
| 104 |
+
from safetensors.torch import load_file
|
| 105 |
+
import os
|
| 106 |
+
import yaml
|
| 107 |
+
|
| 108 |
+
device = transformer.device
|
| 109 |
+
print(f"device for loading: {device}")
|
| 110 |
+
|
| 111 |
+
# Try to load safetensors first, then fallback to .pth
|
| 112 |
+
safetensors_path = os.path.join(path, f"{adapter_name}.safetensors")
|
| 113 |
+
pth_path = os.path.join(path, f"{adapter_name}.pth")
|
| 114 |
+
|
| 115 |
+
if os.path.exists(safetensors_path):
|
| 116 |
+
state_dict = load_file(safetensors_path)
|
| 117 |
+
print(f"Loaded rotation adapter from {safetensors_path}")
|
| 118 |
+
elif os.path.exists(pth_path):
|
| 119 |
+
state_dict = torch.load(pth_path, map_location=device)
|
| 120 |
+
print(f"Loaded rotation adapter from {pth_path}")
|
| 121 |
+
else:
|
| 122 |
+
raise FileNotFoundError(
|
| 123 |
+
f"No adapter weights found for '{adapter_name}' in {path}\n"
|
| 124 |
+
f"Looking for: {safetensors_path} or {pth_path}"
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
# # Get the device and dtype of the transformer
|
| 128 |
+
transformer_device = next(transformer.parameters()).device
|
| 129 |
+
transformer_dtype = next(transformer.parameters()).dtype
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
state_dict_with_adapter = {}
|
| 134 |
+
for k, v in state_dict.items():
|
| 135 |
+
# Reconstruct the full key with adapter name
|
| 136 |
+
new_key = k.replace(".rotation.", f".rotation.{adapter_name}.")
|
| 137 |
+
|
| 138 |
+
# Move to target device and dtype
|
| 139 |
+
# Check if this parameter should keep its original dtype (e.g., indices, masks)
|
| 140 |
+
if v.dtype in [torch.long, torch.int, torch.int32, torch.int64, torch.bool]:
|
| 141 |
+
# Keep integer/boolean dtypes, only move device
|
| 142 |
+
state_dict_with_adapter[new_key] = v.to(device=transformer_device)
|
| 143 |
+
else:
|
| 144 |
+
# Convert floating point tensors to target dtype and device
|
| 145 |
+
state_dict_with_adapter[new_key] = v.to(device=transformer_device, dtype=transformer_dtype)
|
| 146 |
+
|
| 147 |
+
# Add adapter name back to keys (reverse of what we did in save)
|
| 148 |
+
state_dict_with_adapter = {
|
| 149 |
+
k.replace(".rotation.", f".rotation.{adapter_name}."): v
|
| 150 |
+
for k, v in state_dict.items()
|
| 151 |
+
}
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
# Load into the model
|
| 155 |
+
missing, unexpected = transformer.load_state_dict(
|
| 156 |
+
state_dict_with_adapter,
|
| 157 |
+
strict=strict
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
if missing:
|
| 161 |
+
print(f"Missing keys: {missing[:5]}{'...' if len(missing) > 5 else ''}")
|
| 162 |
+
if unexpected:
|
| 163 |
+
print(f"Unexpected keys: {unexpected[:5]}{'...' if len(unexpected) > 5 else ''}")
|
| 164 |
+
|
| 165 |
+
# Load config if available
|
| 166 |
+
config_path = os.path.join(path, f"{adapter_name}_config.yaml")
|
| 167 |
+
if os.path.exists(config_path):
|
| 168 |
+
with open(config_path, 'r') as f:
|
| 169 |
+
config = yaml.safe_load(f)
|
| 170 |
+
print(f"Loaded config: {config}")
|
| 171 |
+
|
| 172 |
+
total_params = sum(p.numel() for p in state_dict.values())
|
| 173 |
+
print(f"Loaded {len(state_dict)} tensors ({total_params:,} parameters)")
|
| 174 |
+
|
| 175 |
+
return state_dict
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
if __name__ == "__main__":
|
| 181 |
+
parser = argparse.ArgumentParser(description="Evaluate OminiControl on COCO dataset")
|
| 182 |
+
parser.add_argument("--start_index", type=int, default=0, help="Starting index for evaluation")
|
| 183 |
+
parser.add_argument("--num_images", type=int, default=500, help="Number of images to evaluate")
|
| 184 |
+
parser.add_argument("--condition_type", type=str, default="deblurring", help="Type of condition (e.g., 'deblurring', 'canny', 'depth')")
|
| 185 |
+
parser.add_argument("--adapter_path", type=str, default="runs/20251111-212406-deblurring/ckpt/25000", help="Path to the adapter checkpoint")
|
| 186 |
+
args = parser.parse_args()
|
| 187 |
+
|
| 188 |
+
START_INDEX = args.start_index
|
| 189 |
+
NUM_IMAGES = args.num_images
|
| 190 |
+
|
| 191 |
+
# Path to your captions file (change if needed)
|
| 192 |
+
CAPTION_FILE = "/home/work/koopman/oft/data/coco/annotations/captions_val2017.json"
|
| 193 |
+
IMAGE_DIR = "/home/work/koopman/oft/data/coco/images/val2017/"
|
| 194 |
+
CONDITION_TYPE = args.condition_type
|
| 195 |
+
SAVE_ROOT_DIR = f"./coco/results_{CONDITION_TYPE}_1000/"
|
| 196 |
+
ADAPTER_PATH = args.adapter_path
|
| 197 |
+
|
| 198 |
+
# Load your Flux pipeline
|
| 199 |
+
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float32) # Replace with your model path
|
| 200 |
+
|
| 201 |
+
# add adapter to the transformer
|
| 202 |
+
transformer = pipe.transformer
|
| 203 |
+
|
| 204 |
+
adapter_name = "default"
|
| 205 |
+
transformer._hf_peft_config_loaded = True
|
| 206 |
+
|
| 207 |
+
# make sure this is the same with your config.yaml used in training
|
| 208 |
+
rotation_adapter_config = {
|
| 209 |
+
"r": 1,
|
| 210 |
+
"num_rotations": 8,
|
| 211 |
+
"target_modules": "(.*x_embedder|.*(?<!single_)transformer_blocks\\.[0-9]+\\.norm1\\.linear|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.to_k|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.to_q|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.to_v|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.to_out\\.0|.*(?<!single_)transformer_blocks\\.[0-9]+\\.ff\\.net\\.2|.*single_transformer_blocks\\.[0-9]+\\.norm\\.linear|.*single_transformer_blocks\\.[0-9]+\\.proj_mlp|.*single_transformer_blocks\\.[0-9]+\\.proj_out|.*single_transformer_blocks\\.[0-9]+\\.attn.to_k|.*single_transformer_blocks\\.[0-9]+\\.attn.to_q|.*single_transformer_blocks\\.[0-9]+\\.attn.to_v|.*single_transformer_blocks\\.[0-9]+\\.attn.to_out)",
|
| 212 |
+
}
|
| 213 |
+
|
| 214 |
+
config = RotationConfig(**rotation_adapter_config)
|
| 215 |
+
rotation_tuner = RotationTuner(
|
| 216 |
+
transformer,
|
| 217 |
+
config,
|
| 218 |
+
adapter_name=adapter_name,
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
transformer.set_adapter(adapter_name)
|
| 222 |
+
|
| 223 |
+
load_rotation(
|
| 224 |
+
transformer,
|
| 225 |
+
path=ADAPTER_PATH,
|
| 226 |
+
adapter_name=adapter_name,
|
| 227 |
+
strict=False,
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
pipe = pipe.to("cuda")
|
| 232 |
+
|
| 233 |
+
# # Prepare for inference
|
| 234 |
+
rotation_tuner.merge_adapter(["default"])
|
| 235 |
+
|
| 236 |
+
# Convert rotation tuner to bfloat16
|
| 237 |
+
pipe = pipe.to(torch.bfloat16)
|
| 238 |
+
pipe.transformer.eval()
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
# Evaluate on COCO
|
| 242 |
+
evaluate(
|
| 243 |
+
pipe,
|
| 244 |
+
condition_type=CONDITION_TYPE,
|
| 245 |
+
caption_file=CAPTION_FILE,
|
| 246 |
+
image_dir=IMAGE_DIR,
|
| 247 |
+
save_root_dir=SAVE_ROOT_DIR,
|
| 248 |
+
num_images=NUM_IMAGES,
|
| 249 |
+
start_index=START_INDEX,
|
| 250 |
+
)
|
evaluation_coco_baseline.py
ADDED
|
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# example images:depth-41888,15254,16228, 24144,37777, 22192
|
| 2 |
+
|
| 3 |
+
# ablate image: 87038
|
| 4 |
+
import json
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import os
|
| 7 |
+
import argparse
|
| 8 |
+
from omini.pipeline.flux_omini import Condition, generate, seed_everything, convert_to_condition
|
| 9 |
+
from omini.rotation import RotationConfig, RotationTuner
|
| 10 |
+
from tqdm import tqdm
|
| 11 |
+
import torch
|
| 12 |
+
from diffusers.pipelines import FluxPipeline
|
| 13 |
+
|
| 14 |
+
def evaluate(pipe,
|
| 15 |
+
condition_type: str, # e.g., "canny"
|
| 16 |
+
caption_file: str,
|
| 17 |
+
image_dir: str,
|
| 18 |
+
save_root_dir: str,
|
| 19 |
+
num_images: int = 5000,
|
| 20 |
+
start_index: int = 0):
|
| 21 |
+
"""
|
| 22 |
+
Evaluate the model on a subset of the COCO dataset.
|
| 23 |
+
|
| 24 |
+
Args:
|
| 25 |
+
pipe: The flux pipeline to use for generation
|
| 26 |
+
caption_file: Path to the COCO captions JSON file
|
| 27 |
+
image_dir: Directory containing COCO images
|
| 28 |
+
num_images: Number of images to evaluate on
|
| 29 |
+
"""
|
| 30 |
+
|
| 31 |
+
os.makedirs(os.path.join(save_root_dir, "generated"), exist_ok=True)
|
| 32 |
+
os.makedirs(os.path.join(save_root_dir, "resized"), exist_ok=True)
|
| 33 |
+
os.makedirs(os.path.join(save_root_dir, condition_type), exist_ok=True)
|
| 34 |
+
|
| 35 |
+
# Load data
|
| 36 |
+
with open(caption_file, "r") as f:
|
| 37 |
+
coco_data = json.load(f)
|
| 38 |
+
|
| 39 |
+
# Build a mapping: image_id → (filename, captions)
|
| 40 |
+
id_to_filename = {img["id"]: img["file_name"] for img in coco_data["images"]}
|
| 41 |
+
captions_by_image = {}
|
| 42 |
+
|
| 43 |
+
for ann in coco_data["annotations"]:
|
| 44 |
+
img_id = ann["image_id"]
|
| 45 |
+
captions_by_image.setdefault(img_id, []).append(ann["caption"])
|
| 46 |
+
|
| 47 |
+
# Take first 5000 images
|
| 48 |
+
image_ids = list(id_to_filename.keys())[:5000]
|
| 49 |
+
|
| 50 |
+
# Collect data
|
| 51 |
+
captions_subset = [
|
| 52 |
+
{
|
| 53 |
+
"image_id": img_id,
|
| 54 |
+
"file_name": id_to_filename[img_id],
|
| 55 |
+
"captions": captions_by_image.get(img_id, [])
|
| 56 |
+
}
|
| 57 |
+
for img_id in image_ids
|
| 58 |
+
]
|
| 59 |
+
|
| 60 |
+
for item in tqdm(captions_subset[start_index:start_index+num_images]):
|
| 61 |
+
|
| 62 |
+
image_id = item["image_id"]
|
| 63 |
+
image_path = os.path.join(image_dir, item["file_name"])
|
| 64 |
+
image = Image.open(image_path).convert("RGB")
|
| 65 |
+
|
| 66 |
+
# Resize and center-crop to 512x512
|
| 67 |
+
w, h, min_dim = image.size + (min(image.size),)
|
| 68 |
+
image = image.crop(
|
| 69 |
+
((w - min_dim) // 2, (h - min_dim) // 2, (w + min_dim) // 2, (h + min_dim) // 2)
|
| 70 |
+
).resize((512, 512))
|
| 71 |
+
|
| 72 |
+
condition_image = convert_to_condition(condition_type, image)
|
| 73 |
+
condition = Condition(condition_image, condition_type)
|
| 74 |
+
|
| 75 |
+
prompt = item["captions"][0] if item["captions"] else "No caption available."
|
| 76 |
+
|
| 77 |
+
seed_everything(42)
|
| 78 |
+
|
| 79 |
+
# generate image
|
| 80 |
+
result_img = generate(
|
| 81 |
+
pipe,
|
| 82 |
+
prompt=prompt,
|
| 83 |
+
conditions=[condition],
|
| 84 |
+
).images[0]
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
result_img.save(os.path.join(save_root_dir, "generated", f"{image_id}.jpg"))
|
| 88 |
+
image.save(os.path.join(save_root_dir, "resized", f"{image_id}.jpg"))
|
| 89 |
+
condition.condition.save(os.path.join(save_root_dir, condition_type, f"{image_id}.jpg"))
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def load_rotation(transformer, path: str, adapter_name: str = "default", strict: bool = False):
|
| 96 |
+
"""
|
| 97 |
+
Load rotation adapter weights.
|
| 98 |
+
|
| 99 |
+
Args:
|
| 100 |
+
path: Directory containing the saved adapter weights
|
| 101 |
+
adapter_name: Name of the adapter to load
|
| 102 |
+
strict: Whether to strictly match all keys
|
| 103 |
+
"""
|
| 104 |
+
from safetensors.torch import load_file
|
| 105 |
+
import os
|
| 106 |
+
import yaml
|
| 107 |
+
|
| 108 |
+
device = transformer.device
|
| 109 |
+
print(f"device for loading: {device}")
|
| 110 |
+
|
| 111 |
+
# Try to load safetensors first, then fallback to .pth
|
| 112 |
+
safetensors_path = os.path.join(path, f"{adapter_name}.safetensors")
|
| 113 |
+
pth_path = os.path.join(path, f"{adapter_name}.pth")
|
| 114 |
+
|
| 115 |
+
if os.path.exists(safetensors_path):
|
| 116 |
+
state_dict = load_file(safetensors_path)
|
| 117 |
+
print(f"Loaded rotation adapter from {safetensors_path}")
|
| 118 |
+
elif os.path.exists(pth_path):
|
| 119 |
+
state_dict = torch.load(pth_path, map_location=device)
|
| 120 |
+
print(f"Loaded rotation adapter from {pth_path}")
|
| 121 |
+
else:
|
| 122 |
+
raise FileNotFoundError(
|
| 123 |
+
f"No adapter weights found for '{adapter_name}' in {path}\n"
|
| 124 |
+
f"Looking for: {safetensors_path} or {pth_path}"
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
# # Get the device and dtype of the transformer
|
| 128 |
+
transformer_device = next(transformer.parameters()).device
|
| 129 |
+
transformer_dtype = next(transformer.parameters()).dtype
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
state_dict_with_adapter = {}
|
| 134 |
+
for k, v in state_dict.items():
|
| 135 |
+
# Reconstruct the full key with adapter name
|
| 136 |
+
new_key = k.replace(".rotation.", f".rotation.{adapter_name}.")
|
| 137 |
+
|
| 138 |
+
# Move to target device and dtype
|
| 139 |
+
# Check if this parameter should keep its original dtype (e.g., indices, masks)
|
| 140 |
+
if v.dtype in [torch.long, torch.int, torch.int32, torch.int64, torch.bool]:
|
| 141 |
+
# Keep integer/boolean dtypes, only move device
|
| 142 |
+
state_dict_with_adapter[new_key] = v.to(device=transformer_device)
|
| 143 |
+
else:
|
| 144 |
+
# Convert floating point tensors to target dtype and device
|
| 145 |
+
state_dict_with_adapter[new_key] = v.to(device=transformer_device, dtype=transformer_dtype)
|
| 146 |
+
|
| 147 |
+
# Add adapter name back to keys (reverse of what we did in save)
|
| 148 |
+
state_dict_with_adapter = {
|
| 149 |
+
k.replace(".rotation.", f".rotation.{adapter_name}."): v
|
| 150 |
+
for k, v in state_dict.items()
|
| 151 |
+
}
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
# Load into the model
|
| 155 |
+
missing, unexpected = transformer.load_state_dict(
|
| 156 |
+
state_dict_with_adapter,
|
| 157 |
+
strict=strict
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
if missing:
|
| 161 |
+
print(f"Missing keys: {missing[:5]}{'...' if len(missing) > 5 else ''}")
|
| 162 |
+
if unexpected:
|
| 163 |
+
print(f"Unexpected keys: {unexpected[:5]}{'...' if len(unexpected) > 5 else ''}")
|
| 164 |
+
|
| 165 |
+
# Load config if available
|
| 166 |
+
config_path = os.path.join(path, f"{adapter_name}_config.yaml")
|
| 167 |
+
if os.path.exists(config_path):
|
| 168 |
+
with open(config_path, 'r') as f:
|
| 169 |
+
config = yaml.safe_load(f)
|
| 170 |
+
print(f"Loaded config: {config}")
|
| 171 |
+
|
| 172 |
+
total_params = sum(p.numel() for p in state_dict.values())
|
| 173 |
+
print(f"Loaded {len(state_dict)} tensors ({total_params:,} parameters)")
|
| 174 |
+
|
| 175 |
+
return state_dict
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
if __name__ == "__main__":
|
| 181 |
+
parser = argparse.ArgumentParser(description="Evaluate OminiControl on COCO dataset")
|
| 182 |
+
parser.add_argument("--start_index", type=int, default=0, help="Starting index for evaluation")
|
| 183 |
+
parser.add_argument("--num_images", type=int, default=500, help="Number of images to evaluate")
|
| 184 |
+
parser.add_argument("--condition_type", type=str, default="deblurring", help="Type of condition (e.g., 'deblurring', 'canny', 'depth')")
|
| 185 |
+
args = parser.parse_args()
|
| 186 |
+
|
| 187 |
+
START_INDEX = args.start_index
|
| 188 |
+
NUM_IMAGES = args.num_images
|
| 189 |
+
|
| 190 |
+
# Path to your captions file (change if needed)
|
| 191 |
+
CAPTION_FILE = "/home/work/koopman/oft/data/coco/annotations/captions_val2017.json"
|
| 192 |
+
IMAGE_DIR = "/home/work/koopman/oft/data/coco/images/val2017/"
|
| 193 |
+
CONDITION_TYPE = args.condition_type
|
| 194 |
+
SAVE_ROOT_DIR = f"./coco_baseline/results_{CONDITION_TYPE}_1000/"
|
| 195 |
+
|
| 196 |
+
# Load your Flux pipeline
|
| 197 |
+
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.float16) # Replace with your model path
|
| 198 |
+
|
| 199 |
+
### FOR OMINI
|
| 200 |
+
|
| 201 |
+
pipe.load_lora_weights(
|
| 202 |
+
"Yuanshi/OminiControl",
|
| 203 |
+
weight_name=f"experimental/{CONDITION_TYPE}.safetensors",
|
| 204 |
+
adapter_name=CONDITION_TYPE,
|
| 205 |
+
)
|
| 206 |
+
pipe.fuse_lora(lora_scale=1.0)
|
| 207 |
+
pipe.unload_lora_weights()
|
| 208 |
+
|
| 209 |
+
# pipe.set_adapters([CONDITION_TYPE])
|
| 210 |
+
pipe = pipe.to("cuda")
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
# Evaluate on COCO
|
| 214 |
+
evaluate(
|
| 215 |
+
pipe,
|
| 216 |
+
condition_type=CONDITION_TYPE,
|
| 217 |
+
caption_file=CAPTION_FILE,
|
| 218 |
+
image_dir=IMAGE_DIR,
|
| 219 |
+
save_root_dir=SAVE_ROOT_DIR,
|
| 220 |
+
num_images=NUM_IMAGES,
|
| 221 |
+
start_index=START_INDEX,
|
| 222 |
+
)
|
evaluation_subject_driven.py
ADDED
|
@@ -0,0 +1,362 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import openai
|
| 2 |
+
import base64
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
import random
|
| 5 |
+
import os
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
evaluation_prompts = {
|
| 10 |
+
"identity": """
|
| 11 |
+
Compare the original subject image with the generated image.
|
| 12 |
+
Rate on a scale of 1-5 how well the essential identifying features
|
| 13 |
+
are preserved (logos, brand marks, distinctive patterns).
|
| 14 |
+
Score: [1-5]
|
| 15 |
+
Reasoning: [explanation]
|
| 16 |
+
""",
|
| 17 |
+
|
| 18 |
+
"material": """
|
| 19 |
+
Evaluate the material quality and surface characteristics.
|
| 20 |
+
Rate on a scale of 1-5 how accurately materials are represented
|
| 21 |
+
(textures, reflections, surface properties).
|
| 22 |
+
Score: [1-5]
|
| 23 |
+
Reasoning: [explanation]
|
| 24 |
+
""",
|
| 25 |
+
|
| 26 |
+
"color": """
|
| 27 |
+
Assess color fidelity in regions NOT specified for modification.
|
| 28 |
+
Rate on a scale of 1-5 how consistent colors remain.
|
| 29 |
+
Score: [1-5]
|
| 30 |
+
Reasoning: [explanation]
|
| 31 |
+
""",
|
| 32 |
+
|
| 33 |
+
"appearance": """
|
| 34 |
+
Evaluate the overall realism and coherence of the generated image.
|
| 35 |
+
Rate on a scale of 1-5 how realistic and natural it appears.
|
| 36 |
+
Score: [1-5]
|
| 37 |
+
Reasoning: [explanation]
|
| 38 |
+
""",
|
| 39 |
+
|
| 40 |
+
"modification": """
|
| 41 |
+
Given the text prompt: "{prompt}"
|
| 42 |
+
Rate on a scale of 1-5 how well the specified changes are executed.
|
| 43 |
+
Score: [1-5]
|
| 44 |
+
Reasoning: [explanation]
|
| 45 |
+
"""
|
| 46 |
+
}
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def encode_image(image_path):
|
| 50 |
+
with open(image_path, "rb") as image_file:
|
| 51 |
+
return base64.b64encode(image_file.read()).decode('utf-8')
|
| 52 |
+
|
| 53 |
+
def evaluate_subject_driven_generation(
|
| 54 |
+
original_image_path,
|
| 55 |
+
generated_image_path,
|
| 56 |
+
text_prompt,
|
| 57 |
+
client
|
| 58 |
+
):
|
| 59 |
+
"""
|
| 60 |
+
Evaluate a subject-driven generation using GPT-4o vision
|
| 61 |
+
"""
|
| 62 |
+
|
| 63 |
+
# Encode images
|
| 64 |
+
original_img = encode_image(original_image_path)
|
| 65 |
+
generated_img = encode_image(generated_image_path)
|
| 66 |
+
|
| 67 |
+
results = {}
|
| 68 |
+
|
| 69 |
+
# 1. Identity Preservation
|
| 70 |
+
response = client.chat.completions.create(
|
| 71 |
+
model="gpt-4o",
|
| 72 |
+
messages=[{
|
| 73 |
+
"role": "user",
|
| 74 |
+
"content": [
|
| 75 |
+
{"type": "text", "text": "Original subject image:"},
|
| 76 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{original_img}"}},
|
| 77 |
+
{"type": "text", "text": "Generated image:"},
|
| 78 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{generated_img}"}},
|
| 79 |
+
{"type": "text", "text": evaluation_prompts["identity"]}
|
| 80 |
+
]
|
| 81 |
+
}],
|
| 82 |
+
max_tokens=300
|
| 83 |
+
)
|
| 84 |
+
results['identity'] = parse_score(response.choices[0].message.content)
|
| 85 |
+
|
| 86 |
+
# 2. Material Quality
|
| 87 |
+
response = client.chat.completions.create(
|
| 88 |
+
model="gpt-4o",
|
| 89 |
+
messages=[{
|
| 90 |
+
"role": "user",
|
| 91 |
+
"content": [
|
| 92 |
+
{"type": "text", "text": "Evaluate this generated image:"},
|
| 93 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{generated_img}"}},
|
| 94 |
+
{"type": "text", "text": evaluation_prompts["material"]}
|
| 95 |
+
]
|
| 96 |
+
}],
|
| 97 |
+
max_tokens=300
|
| 98 |
+
)
|
| 99 |
+
results['material'] = parse_score(response.choices[0].message.content)
|
| 100 |
+
|
| 101 |
+
# 3. Color Fidelity
|
| 102 |
+
response = client.chat.completions.create(
|
| 103 |
+
model="gpt-4o",
|
| 104 |
+
messages=[{
|
| 105 |
+
"role": "user",
|
| 106 |
+
"content": [
|
| 107 |
+
{"type": "text", "text": "Original:"},
|
| 108 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{original_img}"}},
|
| 109 |
+
{"type": "text", "text": "Generated:"},
|
| 110 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{generated_img}"}},
|
| 111 |
+
{"type": "text", "text": evaluation_prompts["color"]}
|
| 112 |
+
]
|
| 113 |
+
}],
|
| 114 |
+
max_tokens=300
|
| 115 |
+
)
|
| 116 |
+
results['color'] = parse_score(response.choices[0].message.content)
|
| 117 |
+
|
| 118 |
+
# 4. Natural Appearance
|
| 119 |
+
response = client.chat.completions.create(
|
| 120 |
+
model="gpt-4o",
|
| 121 |
+
messages=[{
|
| 122 |
+
"role": "user",
|
| 123 |
+
"content": [
|
| 124 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{generated_img}"}},
|
| 125 |
+
{"type": "text", "text": evaluation_prompts["appearance"]}
|
| 126 |
+
]
|
| 127 |
+
}],
|
| 128 |
+
max_tokens=300
|
| 129 |
+
)
|
| 130 |
+
results['appearance'] = parse_score(response.choices[0].message.content)
|
| 131 |
+
|
| 132 |
+
# 5. Modification Accuracy
|
| 133 |
+
response = client.chat.completions.create(
|
| 134 |
+
model="gpt-4o",
|
| 135 |
+
messages=[{
|
| 136 |
+
"role": "user",
|
| 137 |
+
"content": [
|
| 138 |
+
{"type": "text", "text": f"Text prompt: {text_prompt}"},
|
| 139 |
+
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{generated_img}"}},
|
| 140 |
+
{"type": "text", "text": evaluation_prompts["modification"].format(prompt=text_prompt)}
|
| 141 |
+
]
|
| 142 |
+
}],
|
| 143 |
+
max_tokens=300
|
| 144 |
+
)
|
| 145 |
+
results['modification'] = parse_score(response.choices[0].message.content)
|
| 146 |
+
|
| 147 |
+
return results
|
| 148 |
+
|
| 149 |
+
def parse_score(response_text):
|
| 150 |
+
"""Extract score from GPT-4o response"""
|
| 151 |
+
# Look for "Score: X" pattern
|
| 152 |
+
import re
|
| 153 |
+
match = re.search(r'Score:\s*(\d+)', response_text)
|
| 154 |
+
if match:
|
| 155 |
+
return int(match.group(1))
|
| 156 |
+
return None
|
| 157 |
+
|
| 158 |
+
subject_names = [
|
| 159 |
+
"backpack", "backpack_dog", "bear_plushie", "berry_bowl", "can",
|
| 160 |
+
"candle", "cat", "cat2", "clock", "colorful_sneaker",
|
| 161 |
+
"dog", "dog2", "dog3", "dog5", "dog6",
|
| 162 |
+
"dog7", "dog8", "duck_toy", "fancy_boot", "grey_sloth_plushie",
|
| 163 |
+
"monster_toy", "pink_sunglasses", "poop_emoji", "rc_car", "red_cartoon",
|
| 164 |
+
"robot_toy", "shiny_sneaker", "teapot", "vase", "wolf_plushie"
|
| 165 |
+
]
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def get_prompt(subject_id, prompt_id):
|
| 169 |
+
|
| 170 |
+
# subject in 0|1|2|3|4|5|8|9|17|18|19|20|21|22|23|24|25|26|27|28|29
|
| 171 |
+
if subject_id in [0,1,2,3,4,5,8,9,17,18,19,20,21,22,23,24,25,26,27,28,29]:
|
| 172 |
+
subject_name = subject_names[subject_id]
|
| 173 |
+
prompts = [
|
| 174 |
+
f"a {subject_name} in the jungle",
|
| 175 |
+
f"a {subject_name} in the snow",
|
| 176 |
+
f"a {subject_name} on the beach",
|
| 177 |
+
f"a {subject_name} on a cobblestone street",
|
| 178 |
+
f"a {subject_name} on top of pink fabric",
|
| 179 |
+
f"a {subject_name} on top of a wooden floor",
|
| 180 |
+
f"a {subject_name} with a city in the background",
|
| 181 |
+
f"a {subject_name} with a mountain in the background",
|
| 182 |
+
f"a {subject_name} with a blue house in the background",
|
| 183 |
+
f"a {subject_name} on top of a purple rug in a forest",
|
| 184 |
+
f"a {subject_name} with a wheat field in the background",
|
| 185 |
+
f"a {subject_name} with a tree and autumn leaves in the background",
|
| 186 |
+
f"a {subject_name} with the Eiffel Tower in the background",
|
| 187 |
+
f"a {subject_name} floating on top of water",
|
| 188 |
+
f"a {subject_name} floating in an ocean of milk",
|
| 189 |
+
f"a {subject_name} on top of green grass with sunflowers around it",
|
| 190 |
+
f"a {subject_name} on top of a mirror",
|
| 191 |
+
f"a {subject_name} on top of the sidewalk in a crowded street",
|
| 192 |
+
f"a {subject_name} on top of a dirt road",
|
| 193 |
+
f"a {subject_name} on top of a white rug",
|
| 194 |
+
f"a red {subject_name}",
|
| 195 |
+
f"a purple {subject_name}",
|
| 196 |
+
f"a shiny {subject_name}",
|
| 197 |
+
f"a wet {subject_name}",
|
| 198 |
+
f"a cube shaped {subject_name}"
|
| 199 |
+
]
|
| 200 |
+
|
| 201 |
+
else:
|
| 202 |
+
prompts = [
|
| 203 |
+
f"a {subject_name} in the jungle",
|
| 204 |
+
f"a {subject_name} in the snow",
|
| 205 |
+
f"a {subject_name} on the beach",
|
| 206 |
+
f"a {subject_name} on a cobblestone street",
|
| 207 |
+
f"a {subject_name} on top of pink fabric",
|
| 208 |
+
f"a {subject_name} on top of a wooden floor",
|
| 209 |
+
f"a {subject_name} with a city in the background",
|
| 210 |
+
f"a {subject_name} with a mountain in the background",
|
| 211 |
+
f"a {subject_name} with a blue house in the background",
|
| 212 |
+
f"a {subject_name} on top of a purple rug in a forest",
|
| 213 |
+
f"a {subject_name} wearing a red hat",
|
| 214 |
+
f"a {subject_name} wearing a santa hat",
|
| 215 |
+
f"a {subject_name} wearing a rainbow scarf",
|
| 216 |
+
f"a {subject_name} wearing a black top hat and a monocle",
|
| 217 |
+
f"a {subject_name} in a chef outfit",
|
| 218 |
+
f"a {subject_name} in a firefighter outfit",
|
| 219 |
+
f"a {subject_name} in a police outfit",
|
| 220 |
+
f"a {subject_name} wearing pink glasses",
|
| 221 |
+
f"a {subject_name} wearing a yellow shirt",
|
| 222 |
+
f"a {subject_name} in a purple wizard outfit",
|
| 223 |
+
f"a red {subject_name}",
|
| 224 |
+
f"a purple {subject_name}",
|
| 225 |
+
f"a shiny {subject_name}",
|
| 226 |
+
f"a wet {subject_name}",
|
| 227 |
+
f"a cube shaped {subject_name}"
|
| 228 |
+
]
|
| 229 |
+
|
| 230 |
+
return prompts[prompt_id]
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
def batch_evaluate_dreambooth(client, generate_fn, dataset_path, output_csv):
|
| 237 |
+
"""
|
| 238 |
+
Evaluate 750 image pairs with 5 seeds each
|
| 239 |
+
"""
|
| 240 |
+
import pandas as pd
|
| 241 |
+
|
| 242 |
+
results_list = []
|
| 243 |
+
|
| 244 |
+
# Iterate through DreamBooth dataset
|
| 245 |
+
for subject_id in range(30): # 30 subjects
|
| 246 |
+
subject_name = subject_names[subject_id]
|
| 247 |
+
for prompt_id in range(25): # 25 prompts per subject
|
| 248 |
+
original = f"{dataset_path}/{subject_name}"
|
| 249 |
+
# get a random file in this folder
|
| 250 |
+
original_files = list(Path(original).glob("*.png"))
|
| 251 |
+
if len(original_files) == 0:
|
| 252 |
+
raise ValueError(f"No original images found in {original}")
|
| 253 |
+
|
| 254 |
+
original = str(original_files[0])
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
for seed in range(5): # 5 different seeds
|
| 258 |
+
# take random file in the folder
|
| 259 |
+
prompt = get_prompt(subject_id, prompt_id)
|
| 260 |
+
|
| 261 |
+
# generated image path
|
| 262 |
+
generated_folder = f"{dataset_path}/{subject_name}/generated/"
|
| 263 |
+
os.makedirs(generated_folder, exist_ok=True)
|
| 264 |
+
generated = f"{generated_folder}/gen_seed{seed}_prompt{prompt_id}.png"
|
| 265 |
+
|
| 266 |
+
generate_fn(
|
| 267 |
+
prompt=prompt,
|
| 268 |
+
subject_image_path=original,
|
| 269 |
+
output_image_path=generated,
|
| 270 |
+
seed=seed
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
scores = evaluate_subject_driven_generation(
|
| 274 |
+
original, generated, prompt, client
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
results_list.append({
|
| 278 |
+
'subject_id': subject_id,
|
| 279 |
+
'subject_name': subject_name,
|
| 280 |
+
'prompt_id': prompt_id,
|
| 281 |
+
'seed': seed,
|
| 282 |
+
'prompt': prompt,
|
| 283 |
+
|
| 284 |
+
**scores
|
| 285 |
+
})
|
| 286 |
+
|
| 287 |
+
# Save results
|
| 288 |
+
df = pd.DataFrame(results_list)
|
| 289 |
+
df.to_csv(output_csv, index=False)
|
| 290 |
+
|
| 291 |
+
# Calculate statistics
|
| 292 |
+
print(df.groupby('subject_id').mean())
|
| 293 |
+
print(f"\nOverall averages:")
|
| 294 |
+
print(df[['identity', 'material', 'color', 'appearance', 'modification']].mean())
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
def evaluate_omini_control():
|
| 298 |
+
|
| 299 |
+
import torch
|
| 300 |
+
from diffusers.pipelines import FluxPipeline
|
| 301 |
+
from PIL import Image
|
| 302 |
+
|
| 303 |
+
from omini.pipeline.flux_omini import Condition, generate, seed_everything
|
| 304 |
+
|
| 305 |
+
pipe = FluxPipeline.from_pretrained(
|
| 306 |
+
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
pipe = pipe.to("cuda")
|
| 310 |
+
pipe.load_lora_weights(
|
| 311 |
+
"Yuanshi/OminiControl",
|
| 312 |
+
weight_name=f"omini/subject_512.safetensors",
|
| 313 |
+
adapter_name="subject",
|
| 314 |
+
)
|
| 315 |
+
|
| 316 |
+
def generate_fn(image_path, prompt, seed, output_path):
|
| 317 |
+
seed_everything(seed)
|
| 318 |
+
|
| 319 |
+
image = Image.open(image_path).convert("RGB").resize((512, 512))
|
| 320 |
+
condition = Condition.from_image(
|
| 321 |
+
image,
|
| 322 |
+
"subject", position_delta=(0, 32)
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
result_img = generate(
|
| 326 |
+
pipe,
|
| 327 |
+
prompt=prompt,
|
| 328 |
+
conditions=[condition],
|
| 329 |
+
).images[0]
|
| 330 |
+
|
| 331 |
+
result_img.save(output_path)
|
| 332 |
+
|
| 333 |
+
return generate_fn
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
if __name__ == "__main__":
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
| 341 |
+
# client = openai.Client()
|
| 342 |
+
|
| 343 |
+
# generate_fn = evaluate_omini_control()
|
| 344 |
+
|
| 345 |
+
# dataset_path = "data/dreambooth"
|
| 346 |
+
# output_csv = "evaluation_subject_driven_omini_control.csv"
|
| 347 |
+
|
| 348 |
+
# batch_evaluate_dreambooth(
|
| 349 |
+
# client,
|
| 350 |
+
# generate_fn,
|
| 351 |
+
# dataset_path,
|
| 352 |
+
# output_csv
|
| 353 |
+
# )
|
| 354 |
+
|
| 355 |
+
result = evaluate_subject_driven_generation(
|
| 356 |
+
"data/dreambooth/backpack/00.jpg",
|
| 357 |
+
"data/dreambooth/backpack/01.jpg",
|
| 358 |
+
"a backpack in the jungle",
|
| 359 |
+
openai.Client()
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
print(result)
|
examples/combine_with_style_lora.ipynb
ADDED
|
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"import os\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"os.chdir(\"..\")"
|
| 12 |
+
]
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"cell_type": "code",
|
| 16 |
+
"execution_count": null,
|
| 17 |
+
"metadata": {},
|
| 18 |
+
"outputs": [],
|
| 19 |
+
"source": [
|
| 20 |
+
"import torch\n",
|
| 21 |
+
"from diffusers.pipelines import FluxPipeline\n",
|
| 22 |
+
"from PIL import Image\n",
|
| 23 |
+
"\n",
|
| 24 |
+
"from omini.pipeline.flux_omini import Condition, generate, seed_everything"
|
| 25 |
+
]
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"cell_type": "code",
|
| 29 |
+
"execution_count": null,
|
| 30 |
+
"metadata": {},
|
| 31 |
+
"outputs": [],
|
| 32 |
+
"source": [
|
| 33 |
+
"\n",
|
| 34 |
+
"pipe = FluxPipeline.from_pretrained(\n",
|
| 35 |
+
" \"black-forest-labs/FLUX.1-schnell\", torch_dtype=torch.bfloat16\n",
|
| 36 |
+
")\n",
|
| 37 |
+
"pipe = pipe.to(\"cuda\")"
|
| 38 |
+
]
|
| 39 |
+
},
|
| 40 |
+
{
|
| 41 |
+
"cell_type": "code",
|
| 42 |
+
"execution_count": null,
|
| 43 |
+
"metadata": {},
|
| 44 |
+
"outputs": [],
|
| 45 |
+
"source": [
|
| 46 |
+
"pipe.unload_lora_weights()\n",
|
| 47 |
+
"\n",
|
| 48 |
+
"pipe.load_lora_weights(\n",
|
| 49 |
+
" \"Yuanshi/OminiControl\",\n",
|
| 50 |
+
" weight_name=f\"omini/subject_512.safetensors\",\n",
|
| 51 |
+
" adapter_name=\"subject\",\n",
|
| 52 |
+
")\n",
|
| 53 |
+
"pipe.load_lora_weights(\"XLabs-AI/flux-RealismLora\", adapter_name=\"realism\")\n",
|
| 54 |
+
"\n",
|
| 55 |
+
"pipe.set_adapters([\"subject\", \"realism\"])"
|
| 56 |
+
]
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"cell_type": "code",
|
| 60 |
+
"execution_count": null,
|
| 61 |
+
"metadata": {},
|
| 62 |
+
"outputs": [],
|
| 63 |
+
"source": [
|
| 64 |
+
"image = Image.open(\"assets/penguin.jpg\").convert(\"RGB\").resize((512, 512))\n",
|
| 65 |
+
"\n",
|
| 66 |
+
"# For this model, the position_delta is (0, 32).\n",
|
| 67 |
+
"# For more details of position_delta, please refer to:\n",
|
| 68 |
+
"# https://github.com/Yuanshi9815/OminiControl/issues/89#issuecomment-2827080344\n",
|
| 69 |
+
"condition = Condition(image, \"subject\", position_delta=(0, 32))\n",
|
| 70 |
+
"\n",
|
| 71 |
+
"prompt = \"On Christmas evening, on a crowded sidewalk, this item sits on the road, covered in snow and wearing a Christmas hat.\"\n",
|
| 72 |
+
"\n",
|
| 73 |
+
"\n",
|
| 74 |
+
"seed_everything(0)\n",
|
| 75 |
+
"\n",
|
| 76 |
+
"result_img = generate(\n",
|
| 77 |
+
" pipe,\n",
|
| 78 |
+
" prompt=prompt,\n",
|
| 79 |
+
" conditions=[condition],\n",
|
| 80 |
+
" num_inference_steps=8,\n",
|
| 81 |
+
" height=512,\n",
|
| 82 |
+
" width=512,\n",
|
| 83 |
+
" main_adapter=\"realism\"\n",
|
| 84 |
+
").images[0]\n",
|
| 85 |
+
"\n",
|
| 86 |
+
"concat_image = Image.new(\"RGB\", (1024, 512))\n",
|
| 87 |
+
"concat_image.paste(image, (0, 0))\n",
|
| 88 |
+
"concat_image.paste(result_img, (512, 0))\n",
|
| 89 |
+
"concat_image"
|
| 90 |
+
]
|
| 91 |
+
},
|
| 92 |
+
{
|
| 93 |
+
"cell_type": "code",
|
| 94 |
+
"execution_count": null,
|
| 95 |
+
"metadata": {},
|
| 96 |
+
"outputs": [],
|
| 97 |
+
"source": [
|
| 98 |
+
"image = Image.open(\"assets/tshirt.jpg\").convert(\"RGB\").resize((512, 512))\n",
|
| 99 |
+
"\n",
|
| 100 |
+
"condition = Condition(image, \"subject\", position_delta=(0, 32))\n",
|
| 101 |
+
"\n",
|
| 102 |
+
"prompt = \"On the beach, a lady sits under a beach umbrella. She's wearing this shirt and has a big smile on her face, with her surfboard hehind her. The sun is setting in the background. The sky is a beautiful shade of orange and purple.\"\n",
|
| 103 |
+
"\n",
|
| 104 |
+
"\n",
|
| 105 |
+
"seed_everything()\n",
|
| 106 |
+
"\n",
|
| 107 |
+
"result_img = generate(\n",
|
| 108 |
+
" pipe,\n",
|
| 109 |
+
" prompt=prompt,\n",
|
| 110 |
+
" conditions=[condition],\n",
|
| 111 |
+
" num_inference_steps=8,\n",
|
| 112 |
+
" height=512,\n",
|
| 113 |
+
" width=512,\n",
|
| 114 |
+
" main_adapter=\"realism\"\n",
|
| 115 |
+
").images[0]\n",
|
| 116 |
+
"\n",
|
| 117 |
+
"concat_image = Image.new(\"RGB\", (1024, 512))\n",
|
| 118 |
+
"concat_image.paste(condition.condition, (0, 0))\n",
|
| 119 |
+
"concat_image.paste(result_img, (512, 0))\n",
|
| 120 |
+
"concat_image"
|
| 121 |
+
]
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"cell_type": "code",
|
| 125 |
+
"execution_count": null,
|
| 126 |
+
"metadata": {},
|
| 127 |
+
"outputs": [],
|
| 128 |
+
"source": [
|
| 129 |
+
"image = Image.open(\"assets/rc_car.jpg\").convert(\"RGB\").resize((512, 512))\n",
|
| 130 |
+
"\n",
|
| 131 |
+
"condition = Condition(image, \"subject\", position_delta=(0, 32))\n",
|
| 132 |
+
"\n",
|
| 133 |
+
"prompt = \"A film style shot. On the moon, this item drives across the moon surface. The background is that Earth looms large in the foreground.\"\n",
|
| 134 |
+
"\n",
|
| 135 |
+
"seed_everything()\n",
|
| 136 |
+
"\n",
|
| 137 |
+
"result_img = generate(\n",
|
| 138 |
+
" pipe,\n",
|
| 139 |
+
" prompt=prompt,\n",
|
| 140 |
+
" conditions=[condition],\n",
|
| 141 |
+
" num_inference_steps=8,\n",
|
| 142 |
+
" height=512,\n",
|
| 143 |
+
" width=512,\n",
|
| 144 |
+
" main_adapter=\"realism\"\n",
|
| 145 |
+
").images[0]\n",
|
| 146 |
+
"\n",
|
| 147 |
+
"concat_image = Image.new(\"RGB\", (1024, 512))\n",
|
| 148 |
+
"concat_image.paste(condition.condition, (0, 0))\n",
|
| 149 |
+
"concat_image.paste(result_img, (512, 0))\n",
|
| 150 |
+
"concat_image"
|
| 151 |
+
]
|
| 152 |
+
},
|
| 153 |
+
{
|
| 154 |
+
"cell_type": "code",
|
| 155 |
+
"execution_count": null,
|
| 156 |
+
"metadata": {},
|
| 157 |
+
"outputs": [],
|
| 158 |
+
"source": [
|
| 159 |
+
"image = Image.open(\"assets/clock.jpg\").convert(\"RGB\").resize((512, 512))\n",
|
| 160 |
+
"\n",
|
| 161 |
+
"condition = Condition(image, \"subject\", position_delta=(0, 32))\n",
|
| 162 |
+
"\n",
|
| 163 |
+
"prompt = \"In a Bauhaus style room, this item is placed on a shiny glass table, with a vase of flowers next to it. In the afternoon sun, the shadows of the blinds are cast on the wall.\"\n",
|
| 164 |
+
"\n",
|
| 165 |
+
"seed_everything()\n",
|
| 166 |
+
"\n",
|
| 167 |
+
"result_img = generate(\n",
|
| 168 |
+
" pipe,\n",
|
| 169 |
+
" prompt=prompt,\n",
|
| 170 |
+
" conditions=[condition],\n",
|
| 171 |
+
" num_inference_steps=8,\n",
|
| 172 |
+
" height=512,\n",
|
| 173 |
+
" width=512,\n",
|
| 174 |
+
" main_adapter=\"realism\"\n",
|
| 175 |
+
").images[0]\n",
|
| 176 |
+
"\n",
|
| 177 |
+
"concat_image = Image.new(\"RGB\", (1024, 512))\n",
|
| 178 |
+
"concat_image.paste(condition.condition, (0, 0))\n",
|
| 179 |
+
"concat_image.paste(result_img, (512, 0))\n",
|
| 180 |
+
"concat_image"
|
| 181 |
+
]
|
| 182 |
+
},
|
| 183 |
+
{
|
| 184 |
+
"cell_type": "code",
|
| 185 |
+
"execution_count": null,
|
| 186 |
+
"metadata": {},
|
| 187 |
+
"outputs": [],
|
| 188 |
+
"source": [
|
| 189 |
+
"image = Image.open(\"assets/oranges.jpg\").convert(\"RGB\").resize((512, 512))\n",
|
| 190 |
+
"\n",
|
| 191 |
+
"condition = Condition(image, \"subject\", position_delta=(0, 32))\n",
|
| 192 |
+
"\n",
|
| 193 |
+
"prompt = \"A very close up view of this item. It is placed on a wooden table. The background is a dark room, the TV is on, and the screen is showing a cooking show.\"\n",
|
| 194 |
+
"\n",
|
| 195 |
+
"seed_everything()\n",
|
| 196 |
+
"\n",
|
| 197 |
+
"result_img = generate(\n",
|
| 198 |
+
" pipe,\n",
|
| 199 |
+
" prompt=prompt,\n",
|
| 200 |
+
" conditions=[condition],\n",
|
| 201 |
+
" num_inference_steps=8,\n",
|
| 202 |
+
" height=512,\n",
|
| 203 |
+
" width=512,\n",
|
| 204 |
+
" main_adapter=\"realism\"\n",
|
| 205 |
+
").images[0]\n",
|
| 206 |
+
"\n",
|
| 207 |
+
"concat_image = Image.new(\"RGB\", (1024, 512))\n",
|
| 208 |
+
"concat_image.paste(condition.condition, (0, 0))\n",
|
| 209 |
+
"concat_image.paste(result_img, (512, 0))\n",
|
| 210 |
+
"concat_image"
|
| 211 |
+
]
|
| 212 |
+
}
|
| 213 |
+
],
|
| 214 |
+
"metadata": {
|
| 215 |
+
"kernelspec": {
|
| 216 |
+
"display_name": "Python 3 (ipykernel)",
|
| 217 |
+
"language": "python",
|
| 218 |
+
"name": "python3"
|
| 219 |
+
},
|
| 220 |
+
"language_info": {
|
| 221 |
+
"codemirror_mode": {
|
| 222 |
+
"name": "ipython",
|
| 223 |
+
"version": 3
|
| 224 |
+
},
|
| 225 |
+
"file_extension": ".py",
|
| 226 |
+
"mimetype": "text/x-python",
|
| 227 |
+
"name": "python",
|
| 228 |
+
"nbconvert_exporter": "python",
|
| 229 |
+
"pygments_lexer": "ipython3",
|
| 230 |
+
"version": "3.9.21"
|
| 231 |
+
}
|
| 232 |
+
},
|
| 233 |
+
"nbformat": 4,
|
| 234 |
+
"nbformat_minor": 2
|
| 235 |
+
}
|
examples/inpainting.ipynb
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"import os\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"os.chdir(\"..\")"
|
| 12 |
+
]
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"cell_type": "code",
|
| 16 |
+
"execution_count": null,
|
| 17 |
+
"metadata": {},
|
| 18 |
+
"outputs": [],
|
| 19 |
+
"source": [
|
| 20 |
+
"import torch\n",
|
| 21 |
+
"from diffusers.pipelines import FluxPipeline\n",
|
| 22 |
+
"from PIL import Image\n",
|
| 23 |
+
"\n",
|
| 24 |
+
"from omini.pipeline.flux_omini import Condition, generate, seed_everything"
|
| 25 |
+
]
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"cell_type": "code",
|
| 29 |
+
"execution_count": null,
|
| 30 |
+
"metadata": {},
|
| 31 |
+
"outputs": [],
|
| 32 |
+
"source": [
|
| 33 |
+
"pipe = FluxPipeline.from_pretrained(\n",
|
| 34 |
+
" \"black-forest-labs/FLUX.1-dev\", torch_dtype=torch.bfloat16\n",
|
| 35 |
+
")\n",
|
| 36 |
+
"pipe = pipe.to(\"cuda\")"
|
| 37 |
+
]
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"cell_type": "code",
|
| 41 |
+
"execution_count": null,
|
| 42 |
+
"metadata": {},
|
| 43 |
+
"outputs": [],
|
| 44 |
+
"source": [
|
| 45 |
+
"pipe.load_lora_weights(\n",
|
| 46 |
+
" \"Yuanshi/OminiControl\",\n",
|
| 47 |
+
" weight_name=f\"experimental/fill.safetensors\",\n",
|
| 48 |
+
" adapter_name=\"fill\",\n",
|
| 49 |
+
")"
|
| 50 |
+
]
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"cell_type": "code",
|
| 54 |
+
"execution_count": null,
|
| 55 |
+
"metadata": {},
|
| 56 |
+
"outputs": [],
|
| 57 |
+
"source": [
|
| 58 |
+
"image = Image.open(\"assets/monalisa.jpg\").convert(\"RGB\").resize((512, 512))\n",
|
| 59 |
+
"\n",
|
| 60 |
+
"masked_image = image.copy()\n",
|
| 61 |
+
"masked_image.paste((0, 0, 0), (128, 100, 384, 220))\n",
|
| 62 |
+
"\n",
|
| 63 |
+
"condition = Condition(masked_image, \"fill\")\n",
|
| 64 |
+
"\n",
|
| 65 |
+
"seed_everything()\n",
|
| 66 |
+
"result_img = generate(\n",
|
| 67 |
+
" pipe,\n",
|
| 68 |
+
" prompt=\"The Mona Lisa is wearing a white VR headset with 'Omini' written on it.\",\n",
|
| 69 |
+
" conditions=[condition],\n",
|
| 70 |
+
").images[0]\n",
|
| 71 |
+
"\n",
|
| 72 |
+
"concat_image = Image.new(\"RGB\", (1536, 512))\n",
|
| 73 |
+
"concat_image.paste(image, (0, 0))\n",
|
| 74 |
+
"concat_image.paste(condition.condition, (512, 0))\n",
|
| 75 |
+
"concat_image.paste(result_img, (1024, 0))\n",
|
| 76 |
+
"concat_image"
|
| 77 |
+
]
|
| 78 |
+
},
|
| 79 |
+
{
|
| 80 |
+
"cell_type": "code",
|
| 81 |
+
"execution_count": null,
|
| 82 |
+
"metadata": {},
|
| 83 |
+
"outputs": [],
|
| 84 |
+
"source": [
|
| 85 |
+
"image = Image.open(\"assets/book.jpg\").convert(\"RGB\").resize((512, 512))\n",
|
| 86 |
+
"\n",
|
| 87 |
+
"w, h, min_dim = image.size + (min(image.size),)\n",
|
| 88 |
+
"image = image.crop(\n",
|
| 89 |
+
" ((w - min_dim) // 2, (h - min_dim) // 2, (w + min_dim) // 2, (h + min_dim) // 2)\n",
|
| 90 |
+
").resize((512, 512))\n",
|
| 91 |
+
"\n",
|
| 92 |
+
"\n",
|
| 93 |
+
"masked_image = image.copy()\n",
|
| 94 |
+
"masked_image.paste((0, 0, 0), (150, 150, 350, 250))\n",
|
| 95 |
+
"masked_image.paste((0, 0, 0), (200, 380, 320, 420))\n",
|
| 96 |
+
"\n",
|
| 97 |
+
"condition = Condition(masked_image, \"fill\")\n",
|
| 98 |
+
"\n",
|
| 99 |
+
"seed_everything()\n",
|
| 100 |
+
"result_img = generate(\n",
|
| 101 |
+
" pipe,\n",
|
| 102 |
+
" prompt=\"A yellow book with the word 'OMINI' in large font on the cover. The text 'for FLUX' appears at the bottom.\",\n",
|
| 103 |
+
" conditions=[condition],\n",
|
| 104 |
+
").images[0]\n",
|
| 105 |
+
"\n",
|
| 106 |
+
"concat_image = Image.new(\"RGB\", (1536, 512))\n",
|
| 107 |
+
"concat_image.paste(image, (0, 0))\n",
|
| 108 |
+
"concat_image.paste(condition.condition, (512, 0))\n",
|
| 109 |
+
"concat_image.paste(result_img, (1024, 0))\n",
|
| 110 |
+
"concat_image"
|
| 111 |
+
]
|
| 112 |
+
}
|
| 113 |
+
],
|
| 114 |
+
"metadata": {
|
| 115 |
+
"kernelspec": {
|
| 116 |
+
"display_name": "base",
|
| 117 |
+
"language": "python",
|
| 118 |
+
"name": "python3"
|
| 119 |
+
},
|
| 120 |
+
"language_info": {
|
| 121 |
+
"codemirror_mode": {
|
| 122 |
+
"name": "ipython",
|
| 123 |
+
"version": 3
|
| 124 |
+
},
|
| 125 |
+
"file_extension": ".py",
|
| 126 |
+
"mimetype": "text/x-python",
|
| 127 |
+
"name": "python",
|
| 128 |
+
"nbconvert_exporter": "python",
|
| 129 |
+
"pygments_lexer": "ipython3",
|
| 130 |
+
"version": "3.12.3"
|
| 131 |
+
}
|
| 132 |
+
},
|
| 133 |
+
"nbformat": 4,
|
| 134 |
+
"nbformat_minor": 2
|
| 135 |
+
}
|
examples/ominicontrol_art.ipynb
ADDED
|
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"import os\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"os.chdir(\"..\")"
|
| 12 |
+
]
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"cell_type": "code",
|
| 16 |
+
"execution_count": null,
|
| 17 |
+
"metadata": {},
|
| 18 |
+
"outputs": [],
|
| 19 |
+
"source": [
|
| 20 |
+
"import torch\n",
|
| 21 |
+
"from diffusers.pipelines import FluxPipeline\n",
|
| 22 |
+
"from PIL import Image\n",
|
| 23 |
+
"\n",
|
| 24 |
+
"from omini.pipeline.flux_omini import Condition, generate, seed_everything"
|
| 25 |
+
]
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"cell_type": "code",
|
| 29 |
+
"execution_count": null,
|
| 30 |
+
"metadata": {},
|
| 31 |
+
"outputs": [],
|
| 32 |
+
"source": [
|
| 33 |
+
"pipe = FluxPipeline.from_pretrained(\n",
|
| 34 |
+
" \"black-forest-labs/FLUX.1-dev\", torch_dtype=torch.bfloat16\n",
|
| 35 |
+
")\n",
|
| 36 |
+
"pipe = pipe.to(\"cuda\")"
|
| 37 |
+
]
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"cell_type": "code",
|
| 41 |
+
"execution_count": null,
|
| 42 |
+
"metadata": {},
|
| 43 |
+
"outputs": [],
|
| 44 |
+
"source": [
|
| 45 |
+
"pipe.unload_lora_weights()\n",
|
| 46 |
+
"\n",
|
| 47 |
+
"for style_type in [\"ghibli\", \"irasutoya\", \"simpsons\", \"snoopy\"]:\n",
|
| 48 |
+
" pipe.load_lora_weights(\n",
|
| 49 |
+
" \"Yuanshi/OminiControlArt\",\n",
|
| 50 |
+
" weight_name=f\"v0/{style_type}.safetensors\",\n",
|
| 51 |
+
" adapter_name=style_type,\n",
|
| 52 |
+
" )\n",
|
| 53 |
+
"\n",
|
| 54 |
+
"pipe.set_adapters([\"ghibli\", \"irasutoya\", \"simpsons\", \"snoopy\"])"
|
| 55 |
+
]
|
| 56 |
+
},
|
| 57 |
+
{
|
| 58 |
+
"cell_type": "code",
|
| 59 |
+
"execution_count": null,
|
| 60 |
+
"metadata": {},
|
| 61 |
+
"outputs": [],
|
| 62 |
+
"source": [
|
| 63 |
+
"def resize(img, factor=16):\n",
|
| 64 |
+
" # Resize the image to be divisible by the factor\n",
|
| 65 |
+
" w, h = img.size\n",
|
| 66 |
+
" new_w, new_h = w // factor * factor, h // factor * factor\n",
|
| 67 |
+
" padding_w, padding_h = (w - new_w) // 2, (h - new_h) // 2\n",
|
| 68 |
+
" img = img.crop((padding_w, padding_h, new_w + padding_w, new_h + padding_h))\n",
|
| 69 |
+
" return img\n",
|
| 70 |
+
"\n",
|
| 71 |
+
"\n",
|
| 72 |
+
"def bound_image(image):\n",
|
| 73 |
+
" factor = 512 / max(image.size)\n",
|
| 74 |
+
" image = resize(\n",
|
| 75 |
+
" image.resize(\n",
|
| 76 |
+
" (int(image.size[0] * factor), int(image.size[1] * factor)),\n",
|
| 77 |
+
" Image.LANCZOS,\n",
|
| 78 |
+
" )\n",
|
| 79 |
+
" )\n",
|
| 80 |
+
" delta = (0, -image.size[0] // 16)\n",
|
| 81 |
+
" return image, delta\n",
|
| 82 |
+
"\n",
|
| 83 |
+
"sizes = {\n",
|
| 84 |
+
" \"2:3\": (640, 960),\n",
|
| 85 |
+
" \"1:1\": (640, 640),\n",
|
| 86 |
+
" \"3:2\": (960, 640),\n",
|
| 87 |
+
"}"
|
| 88 |
+
]
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"cell_type": "code",
|
| 92 |
+
"execution_count": null,
|
| 93 |
+
"metadata": {},
|
| 94 |
+
"outputs": [],
|
| 95 |
+
"source": [
|
| 96 |
+
"image = Image.open(\"assets/ominicontrol_art/DistractedBoyfriend.webp\").convert(\"RGB\")\n",
|
| 97 |
+
"image, delta = bound_image(image)\n",
|
| 98 |
+
"condition = Condition(image, \"ghibli\", position_delta=delta)\n",
|
| 99 |
+
"\n",
|
| 100 |
+
"seed_everything()\n",
|
| 101 |
+
"\n",
|
| 102 |
+
"size = sizes[\"3:2\"]\n",
|
| 103 |
+
"\n",
|
| 104 |
+
"result_img = generate(\n",
|
| 105 |
+
" pipe,\n",
|
| 106 |
+
" prompt=\"\",\n",
|
| 107 |
+
" conditions=[condition],\n",
|
| 108 |
+
" max_sequence_length=32,\n",
|
| 109 |
+
" width=size[0],\n",
|
| 110 |
+
" height=size[1],\n",
|
| 111 |
+
" image_guidance_scale=1.5,\n",
|
| 112 |
+
").images[0]\n"
|
| 113 |
+
]
|
| 114 |
+
},
|
| 115 |
+
{
|
| 116 |
+
"cell_type": "code",
|
| 117 |
+
"execution_count": null,
|
| 118 |
+
"metadata": {},
|
| 119 |
+
"outputs": [],
|
| 120 |
+
"source": [
|
| 121 |
+
"image = Image.open(\"assets/ominicontrol_art/oiiai.png\").convert(\"RGB\")\n",
|
| 122 |
+
"image, delta = bound_image(image)\n",
|
| 123 |
+
"condition = Condition(image, \"irasutoya\", position_delta=delta)\n",
|
| 124 |
+
"\n",
|
| 125 |
+
"seed_everything()\n",
|
| 126 |
+
"\n",
|
| 127 |
+
"size = sizes[\"1:1\"]\n",
|
| 128 |
+
"\n",
|
| 129 |
+
"result_img = generate(\n",
|
| 130 |
+
" pipe,\n",
|
| 131 |
+
" prompt=\"\",\n",
|
| 132 |
+
" conditions=[condition],\n",
|
| 133 |
+
" max_sequence_length=32,\n",
|
| 134 |
+
" width=size[0],\n",
|
| 135 |
+
" height=size[1],\n",
|
| 136 |
+
" image_guidance_scale=1.5,\n",
|
| 137 |
+
").images[0]\n",
|
| 138 |
+
"\n",
|
| 139 |
+
"result_img"
|
| 140 |
+
]
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"cell_type": "code",
|
| 144 |
+
"execution_count": null,
|
| 145 |
+
"metadata": {},
|
| 146 |
+
"outputs": [],
|
| 147 |
+
"source": [
|
| 148 |
+
"image = Image.open(\"assets/ominicontrol_art/breakingbad.jpg\").convert(\"RGB\")\n",
|
| 149 |
+
"image, delta = bound_image(image)\n",
|
| 150 |
+
"condition = Condition(image, \"simpsons\", position_delta=delta)\n",
|
| 151 |
+
"\n",
|
| 152 |
+
"seed_everything()\n",
|
| 153 |
+
"\n",
|
| 154 |
+
"size = sizes[\"3:2\"]\n",
|
| 155 |
+
"\n",
|
| 156 |
+
"result_img = generate(\n",
|
| 157 |
+
" pipe,\n",
|
| 158 |
+
" prompt=\"\",\n",
|
| 159 |
+
" conditions=[condition],\n",
|
| 160 |
+
" max_sequence_length=32,\n",
|
| 161 |
+
" width=size[0],\n",
|
| 162 |
+
" height=size[1],\n",
|
| 163 |
+
" image_guidance_scale=1.5,\n",
|
| 164 |
+
").images[0]\n",
|
| 165 |
+
"\n",
|
| 166 |
+
"result_img"
|
| 167 |
+
]
|
| 168 |
+
},
|
| 169 |
+
{
|
| 170 |
+
"cell_type": "code",
|
| 171 |
+
"execution_count": null,
|
| 172 |
+
"metadata": {},
|
| 173 |
+
"outputs": [],
|
| 174 |
+
"source": [
|
| 175 |
+
"image = Image.open(\"assets/ominicontrol_art/PulpFiction.jpg\").convert(\"RGB\")\n",
|
| 176 |
+
"image, delta = bound_image(image)\n",
|
| 177 |
+
"condition = Condition(image, \"snoopy\", position_delta=delta)\n",
|
| 178 |
+
"\n",
|
| 179 |
+
"seed_everything()\n",
|
| 180 |
+
"\n",
|
| 181 |
+
"size = sizes[\"3:2\"]\n",
|
| 182 |
+
"\n",
|
| 183 |
+
"result_img = generate(\n",
|
| 184 |
+
" pipe,\n",
|
| 185 |
+
" prompt=\"\",\n",
|
| 186 |
+
" conditions=[condition],\n",
|
| 187 |
+
" max_sequence_length=32,\n",
|
| 188 |
+
" width=size[0],\n",
|
| 189 |
+
" height=size[1],\n",
|
| 190 |
+
" image_guidance_scale=1.5,\n",
|
| 191 |
+
").images[0]\n",
|
| 192 |
+
"\n",
|
| 193 |
+
"result_img"
|
| 194 |
+
]
|
| 195 |
+
}
|
| 196 |
+
],
|
| 197 |
+
"metadata": {
|
| 198 |
+
"kernelspec": {
|
| 199 |
+
"display_name": "Python 3 (ipykernel)",
|
| 200 |
+
"language": "python",
|
| 201 |
+
"name": "python3"
|
| 202 |
+
},
|
| 203 |
+
"language_info": {
|
| 204 |
+
"codemirror_mode": {
|
| 205 |
+
"name": "ipython",
|
| 206 |
+
"version": 3
|
| 207 |
+
},
|
| 208 |
+
"file_extension": ".py",
|
| 209 |
+
"mimetype": "text/x-python",
|
| 210 |
+
"name": "python",
|
| 211 |
+
"nbconvert_exporter": "python",
|
| 212 |
+
"pygments_lexer": "ipython3",
|
| 213 |
+
"version": "3.9.21"
|
| 214 |
+
}
|
| 215 |
+
},
|
| 216 |
+
"nbformat": 4,
|
| 217 |
+
"nbformat_minor": 2
|
| 218 |
+
}
|
examples/spatial.ipynb
ADDED
|
@@ -0,0 +1,191 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": null,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"import os\n",
|
| 10 |
+
"\n",
|
| 11 |
+
"os.chdir(\"..\")"
|
| 12 |
+
]
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"cell_type": "code",
|
| 16 |
+
"execution_count": null,
|
| 17 |
+
"metadata": {},
|
| 18 |
+
"outputs": [],
|
| 19 |
+
"source": [
|
| 20 |
+
"import torch\n",
|
| 21 |
+
"from diffusers.pipelines import FluxPipeline\n",
|
| 22 |
+
"from PIL import Image\n",
|
| 23 |
+
"\n",
|
| 24 |
+
"from omini.pipeline.flux_omini import Condition, generate, seed_everything, convert_to_condition"
|
| 25 |
+
]
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"cell_type": "code",
|
| 29 |
+
"execution_count": null,
|
| 30 |
+
"metadata": {},
|
| 31 |
+
"outputs": [],
|
| 32 |
+
"source": [
|
| 33 |
+
"pipe = FluxPipeline.from_pretrained(\n",
|
| 34 |
+
" \"black-forest-labs/FLUX.1-dev\", torch_dtype=torch.bfloat16\n",
|
| 35 |
+
")\n",
|
| 36 |
+
"pipe = pipe.to(\"cuda\")"
|
| 37 |
+
]
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"cell_type": "code",
|
| 41 |
+
"execution_count": null,
|
| 42 |
+
"metadata": {},
|
| 43 |
+
"outputs": [],
|
| 44 |
+
"source": [
|
| 45 |
+
"pipe.unload_lora_weights()\n",
|
| 46 |
+
"\n",
|
| 47 |
+
"for condition_type in [\"canny\", \"depth\", \"coloring\", \"deblurring\"]:\n",
|
| 48 |
+
" pipe.load_lora_weights(\n",
|
| 49 |
+
" \"Yuanshi/OminiControl\",\n",
|
| 50 |
+
" weight_name=f\"experimental/{condition_type}.safetensors\",\n",
|
| 51 |
+
" adapter_name=condition_type,\n",
|
| 52 |
+
" )\n",
|
| 53 |
+
"\n",
|
| 54 |
+
"pipe.set_adapters([\"canny\", \"depth\", \"coloring\", \"deblurring\"])"
|
| 55 |
+
]
|
| 56 |
+
},
|
| 57 |
+
{
|
| 58 |
+
"cell_type": "code",
|
| 59 |
+
"execution_count": null,
|
| 60 |
+
"metadata": {},
|
| 61 |
+
"outputs": [],
|
| 62 |
+
"source": [
|
| 63 |
+
"image = Image.open(\"assets/coffee.png\").convert(\"RGB\")\n",
|
| 64 |
+
"\n",
|
| 65 |
+
"w, h, min_dim = image.size + (min(image.size),)\n",
|
| 66 |
+
"image = image.crop(\n",
|
| 67 |
+
" ((w - min_dim) // 2, (h - min_dim) // 2, (w + min_dim) // 2, (h + min_dim) // 2)\n",
|
| 68 |
+
").resize((512, 512))\n",
|
| 69 |
+
"\n",
|
| 70 |
+
"prompt = \"In a bright room. A cup of a coffee with some beans on the side. They are placed on a dark wooden table.\""
|
| 71 |
+
]
|
| 72 |
+
},
|
| 73 |
+
{
|
| 74 |
+
"cell_type": "code",
|
| 75 |
+
"execution_count": null,
|
| 76 |
+
"metadata": {},
|
| 77 |
+
"outputs": [],
|
| 78 |
+
"source": [
|
| 79 |
+
"canny_image = convert_to_condition(\"canny\", image)\n",
|
| 80 |
+
"condition = Condition(canny_image, \"canny\")\n",
|
| 81 |
+
"\n",
|
| 82 |
+
"seed_everything()\n",
|
| 83 |
+
"\n",
|
| 84 |
+
"result_img = generate(\n",
|
| 85 |
+
" pipe,\n",
|
| 86 |
+
" prompt=prompt,\n",
|
| 87 |
+
" conditions=[condition],\n",
|
| 88 |
+
").images[0]\n",
|
| 89 |
+
"\n",
|
| 90 |
+
"concat_image = Image.new(\"RGB\", (1536, 512))\n",
|
| 91 |
+
"concat_image.paste(image, (0, 0))\n",
|
| 92 |
+
"concat_image.paste(condition.condition, (512, 0))\n",
|
| 93 |
+
"concat_image.paste(result_img, (1024, 0))\n",
|
| 94 |
+
"concat_image"
|
| 95 |
+
]
|
| 96 |
+
},
|
| 97 |
+
{
|
| 98 |
+
"cell_type": "code",
|
| 99 |
+
"execution_count": null,
|
| 100 |
+
"metadata": {},
|
| 101 |
+
"outputs": [],
|
| 102 |
+
"source": [
|
| 103 |
+
"depth_image = convert_to_condition(\"depth\", image)\n",
|
| 104 |
+
"condition = Condition(depth_image, \"depth\")\n",
|
| 105 |
+
"\n",
|
| 106 |
+
"seed_everything()\n",
|
| 107 |
+
"\n",
|
| 108 |
+
"result_img = generate(\n",
|
| 109 |
+
" pipe,\n",
|
| 110 |
+
" prompt=prompt,\n",
|
| 111 |
+
" conditions=[condition],\n",
|
| 112 |
+
").images[0]\n",
|
| 113 |
+
"\n",
|
| 114 |
+
"concat_image = Image.new(\"RGB\", (1536, 512))\n",
|
| 115 |
+
"concat_image.paste(image, (0, 0))\n",
|
| 116 |
+
"concat_image.paste(condition.condition, (512, 0))\n",
|
| 117 |
+
"concat_image.paste(result_img, (1024, 0))\n",
|
| 118 |
+
"concat_image"
|
| 119 |
+
]
|
| 120 |
+
},
|
| 121 |
+
{
|
| 122 |
+
"cell_type": "code",
|
| 123 |
+
"execution_count": null,
|
| 124 |
+
"metadata": {},
|
| 125 |
+
"outputs": [],
|
| 126 |
+
"source": [
|
| 127 |
+
"blur_image = convert_to_condition(\"deblurring\", image)\n",
|
| 128 |
+
"condition = Condition(blur_image, \"deblurring\")\n",
|
| 129 |
+
"\n",
|
| 130 |
+
"seed_everything()\n",
|
| 131 |
+
"\n",
|
| 132 |
+
"result_img = generate(\n",
|
| 133 |
+
" pipe,\n",
|
| 134 |
+
" prompt=prompt,\n",
|
| 135 |
+
" conditions=[condition],\n",
|
| 136 |
+
").images[0]\n",
|
| 137 |
+
"\n",
|
| 138 |
+
"concat_image = Image.new(\"RGB\", (1536, 512))\n",
|
| 139 |
+
"concat_image.paste(image, (0, 0))\n",
|
| 140 |
+
"concat_image.paste(condition.condition, (512, 0))\n",
|
| 141 |
+
"concat_image.paste(result_img, (1024, 0))\n",
|
| 142 |
+
"concat_image"
|
| 143 |
+
]
|
| 144 |
+
},
|
| 145 |
+
{
|
| 146 |
+
"cell_type": "code",
|
| 147 |
+
"execution_count": null,
|
| 148 |
+
"metadata": {},
|
| 149 |
+
"outputs": [],
|
| 150 |
+
"source": [
|
| 151 |
+
"condition_image = convert_to_condition(\"coloring\", image)\n",
|
| 152 |
+
"condition = Condition(condition_image, \"coloring\")\n",
|
| 153 |
+
"\n",
|
| 154 |
+
"seed_everything()\n",
|
| 155 |
+
"\n",
|
| 156 |
+
"result_img = generate(\n",
|
| 157 |
+
" pipe,\n",
|
| 158 |
+
" prompt=prompt,\n",
|
| 159 |
+
" conditions=[condition],\n",
|
| 160 |
+
").images[0]\n",
|
| 161 |
+
"\n",
|
| 162 |
+
"concat_image = Image.new(\"RGB\", (1536, 512))\n",
|
| 163 |
+
"concat_image.paste(image, (0, 0))\n",
|
| 164 |
+
"concat_image.paste(condition.condition, (512, 0))\n",
|
| 165 |
+
"concat_image.paste(result_img, (1024, 0))\n",
|
| 166 |
+
"concat_image"
|
| 167 |
+
]
|
| 168 |
+
}
|
| 169 |
+
],
|
| 170 |
+
"metadata": {
|
| 171 |
+
"kernelspec": {
|
| 172 |
+
"display_name": "base",
|
| 173 |
+
"language": "python",
|
| 174 |
+
"name": "python3"
|
| 175 |
+
},
|
| 176 |
+
"language_info": {
|
| 177 |
+
"codemirror_mode": {
|
| 178 |
+
"name": "ipython",
|
| 179 |
+
"version": 3
|
| 180 |
+
},
|
| 181 |
+
"file_extension": ".py",
|
| 182 |
+
"mimetype": "text/x-python",
|
| 183 |
+
"name": "python",
|
| 184 |
+
"nbconvert_exporter": "python",
|
| 185 |
+
"pygments_lexer": "ipython3",
|
| 186 |
+
"version": "3.12.3"
|
| 187 |
+
}
|
| 188 |
+
},
|
| 189 |
+
"nbformat": 4,
|
| 190 |
+
"nbformat_minor": 2
|
| 191 |
+
}
|