samchain commited on
Commit
4044fbc
·
1 Parent(s): 58357f4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -3
README.md CHANGED
@@ -10,9 +10,11 @@ tags:
10
 
11
  # WikiMedical_sent_biobert
12
 
13
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
15
- <!--- Describe your model here -->
 
 
16
 
17
  ## Usage (Sentence-Transformers)
18
 
@@ -75,7 +77,10 @@ print(sentence_embeddings)
75
 
76
  ## Evaluation Results
77
 
78
- <!--- Describe how your model was evaluated -->
 
 
 
79
 
80
  For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=WikiMedical_sent_biobert)
81
 
 
10
 
11
  # WikiMedical_sent_biobert
12
 
13
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
15
+ WikiMedical_sent_bert is based on the [https://huggingface.co/dmis-lab/biobert-base-cased-v1.2](dmis-lab/biobert-base-cased-v1.2) backbone and has been trained on the [WikiMedical_sentence_simialrity](https://huggingface.co/datasets/nuvocare/WikiMedical_sentence_similarity) dataset.
16
+
17
+ The model is able to predict whether two texts are related to the same wikipedia page, with only medical topic.
18
 
19
  ## Usage (Sentence-Transformers)
20
 
 
77
 
78
  ## Evaluation Results
79
 
80
+ The model is evaluated on the test set of [WikiMedical_sentence_simialrity](https://huggingface.co/datasets/nuvocare/WikiMedical_sentence_similarity).
81
+ It achieves a :
82
+ - cosine spearman score of 0.87
83
+ - cosine pearson score of 0.95
84
 
85
  For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=WikiMedical_sent_biobert)
86