nunuzak commited on
Commit
60a96f6
·
1 Parent(s): 850e75d

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 260.28 +/- 26.17
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f15e79cd8b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f15e79cd940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f15e79cd9d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f15e79cda60>", "_build": "<function ActorCriticPolicy._build at 0x7f15e79cdaf0>", "forward": "<function ActorCriticPolicy.forward at 0x7f15e79cdb80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f15e79cdc10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f15e79cdca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f15e79cdd30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f15e79cddc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f15e79cde50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f15e79cdee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f169408bf30>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678238600113439111, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABqjQz0VS6o+gj/aOzQ6gr5fLyQ9dmiQvAAAAAAAAAAA4NpYvo/IaT6wobA+8OoevlSfAT5em5I9AAAAAAAAAABAAoA9Xys0PrFMDj1FJ9m9B0R2PXCpEjwAAAAAAAAAAE0RUT0kqis+8jCXvMpqgb42NQ498wcuPQAAAAAAAAAA5vJLPcbZmj+mte09cXYMvwOORjynHhM9AAAAAAAAAAAztiK9p7ZqP1WVVb0gs+++x0HOvYgcuzwAAAAAAAAAAM3H4zxxkw273vlTvGmnFTyzGHA8Sv4FvQAAgD8AAIA/zWkEPXu6hbobEUq7djN6NKJZL7pIdfizAACAPwAAgD9a25U9caUHuwcoDb6mWT49uh4JPAA0IL4AAIA/AACAP4azPz6308g+KGo/vsw6ZL6ZoVm96i2PvAAAAAAAAAAAZsgXPa6/h7r44nw0ITpVsEUl8LqAZ4ezAACAPwAAgD8Apwk9SKvGumMhaLwWLoc8S6NZOz1ha70AAIA/AACAPwCiSb32VCe6nczUs7WWaS82ha45Tr6qMwAAgD8AAIA/OuJWPvcyNz+/kwu7wai9vuUgHj6SfiG+AAAAAAAAAABmXYc8VIKTP74CjT0Rpge/OnWXu4jZyDwAAAAAAAAAAMC7aD6Fjv8+/SIjvkuBmL5NjT09QQ62vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILCgMyjT4a0CUhpRSlIwBbJRNGAGMAXSUR0CYh/WeHzpYdX2UKGgGaAloD0MIOe6UDtarcECUhpRSlGgVTT8BaBZHQJiJH1tfoid1fZQoaAZoCWgPQwjyJOmaSbpyQJSGlFKUaBVNAQFoFkdAmIkrIDHOr3V9lChoBmgJaA9DCKDiOPDq+XBAlIaUUpRoFU0sAWgWR0CYiXE2YOUddX2UKGgGaAloD0MIn8ppT0kncUCUhpRSlGgVTTEBaBZHQJiJfPcBU711fZQoaAZoCWgPQwjdQ8L3/mZwQJSGlFKUaBVNLwFoFkdAmIoRqfvnbXV9lChoBmgJaA9DCDntKTknsHBAlIaUUpRoFU1PAWgWR0CYipNzr/sFdX2UKGgGaAloD0MICAWlaKUXcECUhpRSlGgVTS8BaBZHQJiKslC1JDp1fZQoaAZoCWgPQwhF14UfnHFyQJSGlFKUaBVNCwFoFkdAmIue2VmjCnV9lChoBmgJaA9DCFjjbDrCjHBAlIaUUpRoFU0cAWgWR0CYjIa4c3l0dX2UKGgGaAloD0MIon+CixX8bECUhpRSlGgVTUsBaBZHQJiMy04R28t1fZQoaAZoCWgPQwgA4UOJlsFwQJSGlFKUaBVNJQFoFkdAmI2l7Y02tXV9lChoBmgJaA9DCEzFxrxO0HBAlIaUUpRoFU07AWgWR0CYjsLGaQV9dX2UKGgGaAloD0MIAU7v4n3ocECUhpRSlGgVTQIBaBZHQJiPObG3nZF1fZQoaAZoCWgPQwgZx0j2iOBtQJSGlFKUaBVNGQFoFkdAmI+j6WPcSHV9lChoBmgJaA9DCCZV203wv3FAlIaUUpRoFU0WAWgWR0CYj/RZlnRLdX2UKGgGaAloD0MIhZhLqjZuckCUhpRSlGgVS/doFkdAmJAwxN7BwnV9lChoBmgJaA9DCEMB28EI6nFAlIaUUpRoFUv3aBZHQJiQOmxdIG11fZQoaAZoCWgPQwhHyhZJO11yQJSGlFKUaBVL3GgWR0CYkOo7FKkEdX2UKGgGaAloD0MI86rOakFYcECUhpRSlGgVTRcBaBZHQJiRe7Ciypt1fZQoaAZoCWgPQwg2dR4V/7dvQJSGlFKUaBVNCAFoFkdAmJGgiRnvlXV9lChoBmgJaA9DCAKEDyXaCnBAlIaUUpRoFU0gAWgWR0CYkbSzw+dLdX2UKGgGaAloD0MIeH5Rgn4xcECUhpRSlGgVTSMBaBZHQJiS0yKvV3F1fZQoaAZoCWgPQwj5FADjGaVxQJSGlFKUaBVNhAFoFkdAmJM2PLgXM3V9lChoBmgJaA9DCE2CN6QRAnBAlIaUUpRoFU0OAWgWR0CYk2Bmf5DadX2UKGgGaAloD0MI2SQ/4ldgc0CUhpRSlGgVS/loFkdAmJOjisGPgnV9lChoBmgJaA9DCCPdzynIy3BAlIaUUpRoFUv+aBZHQJiUwTM7lq91fZQoaAZoCWgPQwgHB3sTQxVxQJSGlFKUaBVNHQFoFkdAmJTPQWvbGnV9lChoBmgJaA9DCB0B3CxeMHNAlIaUUpRoFUv8aBZHQJiWtjDsMRZ1fZQoaAZoCWgPQwjMYmLzMThxQJSGlFKUaBVNIQFoFkdAmJbzrAxi5XV9lChoBmgJaA9DCLd8JCU9521AlIaUUpRoFU0rAWgWR0CYl8hkRSP2dX2UKGgGaAloD0MIEVK3s+9ocUCUhpRSlGgVTRUBaBZHQJiX4O3DvVp1fZQoaAZoCWgPQwj2eYzyTCtzQJSGlFKUaBVL7mgWR0CYmD43FUADdX2UKGgGaAloD0MITBx5ILJocECUhpRSlGgVTR8BaBZHQJiYaRYA80V1fZQoaAZoCWgPQwhmiGNdHHpwQJSGlFKUaBVNKgFoFkdAmJi8AeaKDXV9lChoBmgJaA9DCIPCoEyjGHJAlIaUUpRoFU0NAWgWR0CYmUkka/ATdX2UKGgGaAloD0MIWRMLfEUJc0CUhpRSlGgVTTgBaBZHQJiZ33VTaTR1fZQoaAZoCWgPQwiJ00m2eiNxQJSGlFKUaBVL9GgWR0CYmmSZjQRgdX2UKGgGaAloD0MItvXTfxaDcECUhpRSlGgVTQ4BaBZHQJiakmmce8x1fZQoaAZoCWgPQwiAY8+ei59xQJSGlFKUaBVNPQFoFkdAmJqkLYwqRXV9lChoBmgJaA9DCMAhVKkZ4nJAlIaUUpRoFU0TAWgWR0CYm31ZTyavdX2UKGgGaAloD0MIXoB9dGpqcUCUhpRSlGgVTScBaBZHQJibkDYAbQ11fZQoaAZoCWgPQwgq/1peuapvQJSGlFKUaBVL/mgWR0CYnCC9h7VsdX2UKGgGaAloD0MI8BZIUDxbcECUhpRSlGgVTQIBaBZHQJicLsXzlLh1fZQoaAZoCWgPQwh0mC8vgApzQJSGlFKUaBVNDAFoFkdAmJ95yhi9ZnV9lChoBmgJaA9DCIY8ghvpsnJAlIaUUpRoFU0vAWgWR0CYn41eBxxUdX2UKGgGaAloD0MImnrdIjBgb0CUhpRSlGgVTQMBaBZHQJif4lUp/gB1fZQoaAZoCWgPQwitUKT7eUxwQJSGlFKUaBVNNAFoFkdAmJ/1g6U7jnV9lChoBmgJaA9DCFaBWgxei3BAlIaUUpRoFU0TAWgWR0CYoMATIvJzdX2UKGgGaAloD0MIwjQMH1HLcUCUhpRSlGgVTUEBaBZHQJihSFlCkXV1fZQoaAZoCWgPQwgkRPmCFpVvQJSGlFKUaBVNEAFoFkdAmKFYgeRxLnV9lChoBmgJaA9DCEW4yagyf3FAlIaUUpRoFU1RAWgWR0CYt/Jgssg/dX2UKGgGaAloD0MIPUm6ZvIXbkCUhpRSlGgVTSMBaBZHQJi5ryEtdzJ1fZQoaAZoCWgPQwhE+u3rwOVyQJSGlFKUaBVNKAFoFkdAmLuNdqtYCHV9lChoBmgJaA9DCJ8fRggPAHNAlIaUUpRoFU0OAWgWR0CYu5tGd7OWdX2UKGgGaAloD0MINlzknq41cECUhpRSlGgVTX8BaBZHQJi9+ij+Jgt1fZQoaAZoCWgPQwirJR3loOtyQJSGlFKUaBVNPgFoFkdAmL4W7OE/S3V9lChoBmgJaA9DCNodUgzQOHBAlIaUUpRoFU2cAWgWR0CYv+Xko4MndX2UKGgGaAloD0MIOgK4WXxtckCUhpRSlGgVTbgBaBZHQJjADtVrAQB1fZQoaAZoCWgPQwj6XkNwHC1xQJSGlFKUaBVNfQFoFkdAmMBE384xUXV9lChoBmgJaA9DCOv+sRAdqm5AlIaUUpRoFUv9aBZHQJjAgPRRdhR1fZQoaAZoCWgPQwgQCHQmbUZvQJSGlFKUaBVL+mgWR0CYww8Ti83/dX2UKGgGaAloD0MIhbTGoJMqb0CUhpRSlGgVTTABaBZHQJjDU0P6KtR1fZQoaAZoCWgPQwivJHmub8RvQJSGlFKUaBVNNQFoFkdAmMOMHfMwDnV9lChoBmgJaA9DCDNOQ1Sh5XBAlIaUUpRoFU0fAWgWR0CYxCJZW7vodX2UKGgGaAloD0MIgo/BilMmcUCUhpRSlGgVTXcBaBZHQJjFL/CIk7h1fZQoaAZoCWgPQwjS4/c2/bNuQJSGlFKUaBVNDQFoFkdAmMcBSP2f03V9lChoBmgJaA9DCIUoX9CC0XBAlIaUUpRoFU2ZAWgWR0CYx8YZEUj+dX2UKGgGaAloD0MIDD84n/pTckCUhpRSlGgVTUsBaBZHQJjH7rxAjY91fZQoaAZoCWgPQwgjaTf6GGdyQJSGlFKUaBVL+2gWR0CYyY9B8hLXdX2UKGgGaAloD0MIg4b+CS7AcECUhpRSlGgVTZ4BaBZHQJjJr/giu+11fZQoaAZoCWgPQwj7yoP0VDVxQJSGlFKUaBVNbgFoFkdAmMrPra/RFHV9lChoBmgJaA9DCAN64c7FsHBAlIaUUpRoFU1EAWgWR0CYyuTvRZ2ZdX2UKGgGaAloD0MIHXV0XI3tckCUhpRSlGgVTVwBaBZHQJjL1NWU8mt1fZQoaAZoCWgPQwhKQiJto1xwQJSGlFKUaBVNLwFoFkdAmMvdzr/sFHV9lChoBmgJaA9DCAcKvJOPDXJAlIaUUpRoFUv1aBZHQJjMBYKYzBR1fZQoaAZoCWgPQwhXX10VqIdvQJSGlFKUaBVNAQFoFkdAmMyWCmMwUXV9lChoBmgJaA9DCF35LM+DT3FAlIaUUpRoFU00AWgWR0CYzuCl7+kydX2UKGgGaAloD0MI8UV7vBDEcECUhpRSlGgVTbYBaBZHQJjP492X9it1fZQoaAZoCWgPQwhbQj7o2apxQJSGlFKUaBVNOwFoFkdAmNBhx1gYxnV9lChoBmgJaA9DCEM50a7Ch21AlIaUUpRoFU0KAWgWR0CY0H5RCQcQdX2UKGgGaAloD0MIxT2WPnTbcUCUhpRSlGgVTY0BaBZHQJjQzvH93r51fZQoaAZoCWgPQwhANPPk2hdzQJSGlFKUaBVNAgFoFkdAmNEDxb0OE3V9lChoBmgJaA9DCJoJhnON83FAlIaUUpRoFU0bAWgWR0CY0bRHf/FSdX2UKGgGaAloD0MInN8w0aBAa0CUhpRSlGgVTRsCaBZHQJjTza+N96V1fZQoaAZoCWgPQwh7o1aYPn9rQJSGlFKUaBVL/2gWR0CY1P6InBtUdX2UKGgGaAloD0MIATW1bK3Db0CUhpRSlGgVTUgBaBZHQJjVTZXdTHd1fZQoaAZoCWgPQwhNgczO4klwQJSGlFKUaBVNLwFoFkdAmNWSjHn2ZnV9lChoBmgJaA9DCKKyYU1lH3BAlIaUUpRoFU0SAWgWR0CY1ZKMNtqIdX2UKGgGaAloD0MIAKq4cUurcECUhpRSlGgVTRkBaBZHQJjVxRZU1ht1fZQoaAZoCWgPQwjWxW00AIJwQJSGlFKUaBVNggFoFkdAmNh6VUuL8HV9lChoBmgJaA9DCDYjg9xFInBAlIaUUpRoFU24AWgWR0CY2UyRB/qgdX2UKGgGaAloD0MI1uB9VS5nckCUhpRSlGgVS/doFkdAmNlVoQFs6HV9lChoBmgJaA9DCAys4/hhv3JAlIaUUpRoFU1qAWgWR0CY2XOiFj/ddX2UKGgGaAloD0MIIa0x6ATgcECUhpRSlGgVTQoBaBZHQJjaCjgydnV1fZQoaAZoCWgPQwicwd8vZh1tQJSGlFKUaBVNTwFoFkdAmNrRu89Oh3V9lChoBmgJaA9DCMKiIk4nmW5AlIaUUpRoFU1RAWgWR0CY29QPZqVRdX2UKGgGaAloD0MIGohlMwencUCUhpRSlGgVTUkBaBZHQJjco8fV7Qd1fZQoaAZoCWgPQwhrDDohdD5sQJSGlFKUaBVNAwFoFkdAmNzVcY64lXV9lChoBmgJaA9DCN/CuvFujHFAlIaUUpRoFU1iAWgWR0CY3Tmv4dp7dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1102d24d473313d53978fc5b04b9f97cd636159bc3ddd19f6e742a0a86f4b2f
3
+ size 147404
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f15e79cd8b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f15e79cd940>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f15e79cd9d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f15e79cda60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f15e79cdaf0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f15e79cdb80>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f15e79cdc10>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f15e79cdca0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f15e79cdd30>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f15e79cddc0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f15e79cde50>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f15e79cdee0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f169408bf30>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1678238600113439111,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABqjQz0VS6o+gj/aOzQ6gr5fLyQ9dmiQvAAAAAAAAAAA4NpYvo/IaT6wobA+8OoevlSfAT5em5I9AAAAAAAAAABAAoA9Xys0PrFMDj1FJ9m9B0R2PXCpEjwAAAAAAAAAAE0RUT0kqis+8jCXvMpqgb42NQ498wcuPQAAAAAAAAAA5vJLPcbZmj+mte09cXYMvwOORjynHhM9AAAAAAAAAAAztiK9p7ZqP1WVVb0gs+++x0HOvYgcuzwAAAAAAAAAAM3H4zxxkw273vlTvGmnFTyzGHA8Sv4FvQAAgD8AAIA/zWkEPXu6hbobEUq7djN6NKJZL7pIdfizAACAPwAAgD9a25U9caUHuwcoDb6mWT49uh4JPAA0IL4AAIA/AACAP4azPz6308g+KGo/vsw6ZL6ZoVm96i2PvAAAAAAAAAAAZsgXPa6/h7r44nw0ITpVsEUl8LqAZ4ezAACAPwAAgD8Apwk9SKvGumMhaLwWLoc8S6NZOz1ha70AAIA/AACAPwCiSb32VCe6nczUs7WWaS82ha45Tr6qMwAAgD8AAIA/OuJWPvcyNz+/kwu7wai9vuUgHj6SfiG+AAAAAAAAAABmXYc8VIKTP74CjT0Rpge/OnWXu4jZyDwAAAAAAAAAAMC7aD6Fjv8+/SIjvkuBmL5NjT09QQ62vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMILCgMyjT4a0CUhpRSlIwBbJRNGAGMAXSUR0CYh/WeHzpYdX2UKGgGaAloD0MIOe6UDtarcECUhpRSlGgVTT8BaBZHQJiJH1tfoid1fZQoaAZoCWgPQwjyJOmaSbpyQJSGlFKUaBVNAQFoFkdAmIkrIDHOr3V9lChoBmgJaA9DCKDiOPDq+XBAlIaUUpRoFU0sAWgWR0CYiXE2YOUddX2UKGgGaAloD0MIn8ppT0kncUCUhpRSlGgVTTEBaBZHQJiJfPcBU711fZQoaAZoCWgPQwjdQ8L3/mZwQJSGlFKUaBVNLwFoFkdAmIoRqfvnbXV9lChoBmgJaA9DCDntKTknsHBAlIaUUpRoFU1PAWgWR0CYipNzr/sFdX2UKGgGaAloD0MICAWlaKUXcECUhpRSlGgVTS8BaBZHQJiKslC1JDp1fZQoaAZoCWgPQwhF14UfnHFyQJSGlFKUaBVNCwFoFkdAmIue2VmjCnV9lChoBmgJaA9DCFjjbDrCjHBAlIaUUpRoFU0cAWgWR0CYjIa4c3l0dX2UKGgGaAloD0MIon+CixX8bECUhpRSlGgVTUsBaBZHQJiMy04R28t1fZQoaAZoCWgPQwgA4UOJlsFwQJSGlFKUaBVNJQFoFkdAmI2l7Y02tXV9lChoBmgJaA9DCEzFxrxO0HBAlIaUUpRoFU07AWgWR0CYjsLGaQV9dX2UKGgGaAloD0MIAU7v4n3ocECUhpRSlGgVTQIBaBZHQJiPObG3nZF1fZQoaAZoCWgPQwgZx0j2iOBtQJSGlFKUaBVNGQFoFkdAmI+j6WPcSHV9lChoBmgJaA9DCCZV203wv3FAlIaUUpRoFU0WAWgWR0CYj/RZlnRLdX2UKGgGaAloD0MIhZhLqjZuckCUhpRSlGgVS/doFkdAmJAwxN7BwnV9lChoBmgJaA9DCEMB28EI6nFAlIaUUpRoFUv3aBZHQJiQOmxdIG11fZQoaAZoCWgPQwhHyhZJO11yQJSGlFKUaBVL3GgWR0CYkOo7FKkEdX2UKGgGaAloD0MI86rOakFYcECUhpRSlGgVTRcBaBZHQJiRe7Ciypt1fZQoaAZoCWgPQwg2dR4V/7dvQJSGlFKUaBVNCAFoFkdAmJGgiRnvlXV9lChoBmgJaA9DCAKEDyXaCnBAlIaUUpRoFU0gAWgWR0CYkbSzw+dLdX2UKGgGaAloD0MIeH5Rgn4xcECUhpRSlGgVTSMBaBZHQJiS0yKvV3F1fZQoaAZoCWgPQwj5FADjGaVxQJSGlFKUaBVNhAFoFkdAmJM2PLgXM3V9lChoBmgJaA9DCE2CN6QRAnBAlIaUUpRoFU0OAWgWR0CYk2Bmf5DadX2UKGgGaAloD0MI2SQ/4ldgc0CUhpRSlGgVS/loFkdAmJOjisGPgnV9lChoBmgJaA9DCCPdzynIy3BAlIaUUpRoFUv+aBZHQJiUwTM7lq91fZQoaAZoCWgPQwgHB3sTQxVxQJSGlFKUaBVNHQFoFkdAmJTPQWvbGnV9lChoBmgJaA9DCB0B3CxeMHNAlIaUUpRoFUv8aBZHQJiWtjDsMRZ1fZQoaAZoCWgPQwjMYmLzMThxQJSGlFKUaBVNIQFoFkdAmJbzrAxi5XV9lChoBmgJaA9DCLd8JCU9521AlIaUUpRoFU0rAWgWR0CYl8hkRSP2dX2UKGgGaAloD0MIEVK3s+9ocUCUhpRSlGgVTRUBaBZHQJiX4O3DvVp1fZQoaAZoCWgPQwj2eYzyTCtzQJSGlFKUaBVL7mgWR0CYmD43FUADdX2UKGgGaAloD0MITBx5ILJocECUhpRSlGgVTR8BaBZHQJiYaRYA80V1fZQoaAZoCWgPQwhmiGNdHHpwQJSGlFKUaBVNKgFoFkdAmJi8AeaKDXV9lChoBmgJaA9DCIPCoEyjGHJAlIaUUpRoFU0NAWgWR0CYmUkka/ATdX2UKGgGaAloD0MIWRMLfEUJc0CUhpRSlGgVTTgBaBZHQJiZ33VTaTR1fZQoaAZoCWgPQwiJ00m2eiNxQJSGlFKUaBVL9GgWR0CYmmSZjQRgdX2UKGgGaAloD0MItvXTfxaDcECUhpRSlGgVTQ4BaBZHQJiakmmce8x1fZQoaAZoCWgPQwiAY8+ei59xQJSGlFKUaBVNPQFoFkdAmJqkLYwqRXV9lChoBmgJaA9DCMAhVKkZ4nJAlIaUUpRoFU0TAWgWR0CYm31ZTyavdX2UKGgGaAloD0MIXoB9dGpqcUCUhpRSlGgVTScBaBZHQJibkDYAbQ11fZQoaAZoCWgPQwgq/1peuapvQJSGlFKUaBVL/mgWR0CYnCC9h7VsdX2UKGgGaAloD0MI8BZIUDxbcECUhpRSlGgVTQIBaBZHQJicLsXzlLh1fZQoaAZoCWgPQwh0mC8vgApzQJSGlFKUaBVNDAFoFkdAmJ95yhi9ZnV9lChoBmgJaA9DCIY8ghvpsnJAlIaUUpRoFU0vAWgWR0CYn41eBxxUdX2UKGgGaAloD0MImnrdIjBgb0CUhpRSlGgVTQMBaBZHQJif4lUp/gB1fZQoaAZoCWgPQwitUKT7eUxwQJSGlFKUaBVNNAFoFkdAmJ/1g6U7jnV9lChoBmgJaA9DCFaBWgxei3BAlIaUUpRoFU0TAWgWR0CYoMATIvJzdX2UKGgGaAloD0MIwjQMH1HLcUCUhpRSlGgVTUEBaBZHQJihSFlCkXV1fZQoaAZoCWgPQwgkRPmCFpVvQJSGlFKUaBVNEAFoFkdAmKFYgeRxLnV9lChoBmgJaA9DCEW4yagyf3FAlIaUUpRoFU1RAWgWR0CYt/Jgssg/dX2UKGgGaAloD0MIPUm6ZvIXbkCUhpRSlGgVTSMBaBZHQJi5ryEtdzJ1fZQoaAZoCWgPQwhE+u3rwOVyQJSGlFKUaBVNKAFoFkdAmLuNdqtYCHV9lChoBmgJaA9DCJ8fRggPAHNAlIaUUpRoFU0OAWgWR0CYu5tGd7OWdX2UKGgGaAloD0MINlzknq41cECUhpRSlGgVTX8BaBZHQJi9+ij+Jgt1fZQoaAZoCWgPQwirJR3loOtyQJSGlFKUaBVNPgFoFkdAmL4W7OE/S3V9lChoBmgJaA9DCNodUgzQOHBAlIaUUpRoFU2cAWgWR0CYv+Xko4MndX2UKGgGaAloD0MIOgK4WXxtckCUhpRSlGgVTbgBaBZHQJjADtVrAQB1fZQoaAZoCWgPQwj6XkNwHC1xQJSGlFKUaBVNfQFoFkdAmMBE384xUXV9lChoBmgJaA9DCOv+sRAdqm5AlIaUUpRoFUv9aBZHQJjAgPRRdhR1fZQoaAZoCWgPQwgQCHQmbUZvQJSGlFKUaBVL+mgWR0CYww8Ti83/dX2UKGgGaAloD0MIhbTGoJMqb0CUhpRSlGgVTTABaBZHQJjDU0P6KtR1fZQoaAZoCWgPQwivJHmub8RvQJSGlFKUaBVNNQFoFkdAmMOMHfMwDnV9lChoBmgJaA9DCDNOQ1Sh5XBAlIaUUpRoFU0fAWgWR0CYxCJZW7vodX2UKGgGaAloD0MIgo/BilMmcUCUhpRSlGgVTXcBaBZHQJjFL/CIk7h1fZQoaAZoCWgPQwjS4/c2/bNuQJSGlFKUaBVNDQFoFkdAmMcBSP2f03V9lChoBmgJaA9DCIUoX9CC0XBAlIaUUpRoFU2ZAWgWR0CYx8YZEUj+dX2UKGgGaAloD0MIDD84n/pTckCUhpRSlGgVTUsBaBZHQJjH7rxAjY91fZQoaAZoCWgPQwgjaTf6GGdyQJSGlFKUaBVL+2gWR0CYyY9B8hLXdX2UKGgGaAloD0MIg4b+CS7AcECUhpRSlGgVTZ4BaBZHQJjJr/giu+11fZQoaAZoCWgPQwj7yoP0VDVxQJSGlFKUaBVNbgFoFkdAmMrPra/RFHV9lChoBmgJaA9DCAN64c7FsHBAlIaUUpRoFU1EAWgWR0CYyuTvRZ2ZdX2UKGgGaAloD0MIHXV0XI3tckCUhpRSlGgVTVwBaBZHQJjL1NWU8mt1fZQoaAZoCWgPQwhKQiJto1xwQJSGlFKUaBVNLwFoFkdAmMvdzr/sFHV9lChoBmgJaA9DCAcKvJOPDXJAlIaUUpRoFUv1aBZHQJjMBYKYzBR1fZQoaAZoCWgPQwhXX10VqIdvQJSGlFKUaBVNAQFoFkdAmMyWCmMwUXV9lChoBmgJaA9DCF35LM+DT3FAlIaUUpRoFU00AWgWR0CYzuCl7+kydX2UKGgGaAloD0MI8UV7vBDEcECUhpRSlGgVTbYBaBZHQJjP492X9it1fZQoaAZoCWgPQwhbQj7o2apxQJSGlFKUaBVNOwFoFkdAmNBhx1gYxnV9lChoBmgJaA9DCEM50a7Ch21AlIaUUpRoFU0KAWgWR0CY0H5RCQcQdX2UKGgGaAloD0MIxT2WPnTbcUCUhpRSlGgVTY0BaBZHQJjQzvH93r51fZQoaAZoCWgPQwhANPPk2hdzQJSGlFKUaBVNAgFoFkdAmNEDxb0OE3V9lChoBmgJaA9DCJoJhnON83FAlIaUUpRoFU0bAWgWR0CY0bRHf/FSdX2UKGgGaAloD0MInN8w0aBAa0CUhpRSlGgVTRsCaBZHQJjTza+N96V1fZQoaAZoCWgPQwh7o1aYPn9rQJSGlFKUaBVL/2gWR0CY1P6InBtUdX2UKGgGaAloD0MIATW1bK3Db0CUhpRSlGgVTUgBaBZHQJjVTZXdTHd1fZQoaAZoCWgPQwhNgczO4klwQJSGlFKUaBVNLwFoFkdAmNWSjHn2ZnV9lChoBmgJaA9DCKKyYU1lH3BAlIaUUpRoFU0SAWgWR0CY1ZKMNtqIdX2UKGgGaAloD0MIAKq4cUurcECUhpRSlGgVTRkBaBZHQJjVxRZU1ht1fZQoaAZoCWgPQwjWxW00AIJwQJSGlFKUaBVNggFoFkdAmNh6VUuL8HV9lChoBmgJaA9DCDYjg9xFInBAlIaUUpRoFU24AWgWR0CY2UyRB/qgdX2UKGgGaAloD0MI1uB9VS5nckCUhpRSlGgVS/doFkdAmNlVoQFs6HV9lChoBmgJaA9DCAys4/hhv3JAlIaUUpRoFU1qAWgWR0CY2XOiFj/ddX2UKGgGaAloD0MIIa0x6ATgcECUhpRSlGgVTQoBaBZHQJjaCjgydnV1fZQoaAZoCWgPQwicwd8vZh1tQJSGlFKUaBVNTwFoFkdAmNrRu89Oh3V9lChoBmgJaA9DCMKiIk4nmW5AlIaUUpRoFU1RAWgWR0CY29QPZqVRdX2UKGgGaAloD0MIGohlMwencUCUhpRSlGgVTUkBaBZHQJjco8fV7Qd1fZQoaAZoCWgPQwhrDDohdD5sQJSGlFKUaBVNAwFoFkdAmNzVcY64lXV9lChoBmgJaA9DCN/CuvFujHFAlIaUUpRoFU1iAWgWR0CY3Tmv4dp7dWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9889450dac1ca35cb02adc40fc8ef95f4ee122db22df24c0a78d927d9696be8
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5688e905b91d2d942d628cf877ad5ccebf90b9a89dacdc9b3ad774bef3bdec93
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (235 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 260.2843030426258, "std_reward": 26.171861280126112, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-08T01:57:17.353002"}