numan966 commited on
Commit
4dace0f
1 Parent(s): 95b5899

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1464.94 +/- 292.72
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b58f9422c42a54e70e23c8347cdaa34f97d9536babf214f75b90c4496d4e95b
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0d7fad40d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0d7fad4160>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0d7fad41f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0d7fad4280>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0d7fad4310>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0d7fad43a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0d7fad4430>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0d7fad44c0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0d7fad4550>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0d7fad45e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0d7fad4670>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0d7fad4700>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f0d7face780>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674133788475977794,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADxa3D99e6k+MEaWPuCahz92rS8+kZmYv2YEsD7VkfC/X7brPMvI+L8cdMu+tAuUv9R0GT+Qrta/XUzvPpFQ0z9iGqO/zN2pvxtVRD4jrC2/KOelv6fdfT+0PLI/kF6cPgBpZr/86su/GNCTPkPsyL8KTCo//ECEP4bLXr8KuNs9bZKBPk4Krj8ZnwO/TksOv2KGc79vwZa/U0ovP8F/6T+sVrK/S5KTvjIfI78Q8GM+MIyWv52Hxb5JaLa+qzJXwIQ4jD8xeLQ+5goqQMUv3b0AaWa//OrLvxjQkz5hFiM/fN+HPl+bML9hs18/WKaRP1ZkWj/FxoM/6ZiUPuwDpr05t0s/x0WCP8gAnz95JQq9aLHkvn/A1T9qkIS/TW9GPgJamT+VXJU+4EXtPk2rHT3z+p8/qbh3vnFEWT/BiA8/AGlmvy6xID8Y0JM+YRYjP0hhRb4+i+w+KSAWPoa22T8udNE/+y3uvv11Dj8aW3O+rVtUv3mH0D/+lpQ/FDtzP4hj37969ZE+A+Yrv+79mMBgtky/8bYWQLaZAz8YVf++HCikP3a7Mr5cpg8/5MHyPABpZr/86su/GNCTPkPsyL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACYYsu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAD5gSPgAAAADLyOK/AAAAAFWLlTwAAAAAbe/ePwAAAAD4W9y9AAAAAFj5AEAAAAAAaaD6PAAAAACRkeO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARbxyNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgM/nyDwAAAAA++MAwAAAAABgD3s9AAAAAJQ6AEAAAAAAFbbbvQAAAABU1dw/AAAAAKmSq70AAAAASib7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAImYrLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIADN1M8AAAAAJ8e7b8AAAAA2ORUvQAAAABx6PQ/AAAAAF7qyb0AAAAAGr3zPwAAAADa3Vw9AAAAAEG9478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB/MVc2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHf6AvAAAAAAMB96/AAAAAPpZDj4AAAAAhu/rPwAAAAD6jKc9AAAAADB53z8AAAAAV8zKPQAAAAAXMOC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJh06eumrKiMAWyUTegDjAF0lEdAqno3J5mh/XV9lChoBkdAmaglc+qzaGgHTegDaAhHQKp6k6MBIWh1fZQoaAZHQJdgeokzGgloB03oA2gIR0Cqe7Awwj+rdX2UKGgGR0CaLH+rELpiaAdN6ANoCEdAqoCiqU/wAnV9lChoBkdAmF469CeEqWgHTegDaAhHQKqGL8EV32V1fZQoaAZHQJtTiyC4BmxoB03oA2gIR0Cqhoz8xbjcdX2UKGgGR0CZg0qLjxTbaAdN6ANoCEdAqoepEa2nbnV9lChoBkdAmGvpHZsbemgHTegDaAhHQKqMkbGWD6F1fZQoaAZHQJjXg8aGYa5oB03oA2gIR0CqkdyncclxdX2UKGgGR0Cb8tNPxhDxaAdN6ANoCEdAqpI3dO6/ZnV9lChoBkdAmsKrobGWEGgHTegDaAhHQKqTYgIQe3h1fZQoaAZHQJouYbvPTodoB03oA2gIR0CqmGeOXE61dX2UKGgGR0CbqioouwotaAdN6ANoCEdAqp28wL3K0XV9lChoBkdAmYq0+cH4XWgHTegDaAhHQKqeG9sabWp1fZQoaAZHQJfjTwb2lEZoB03oA2gIR0CqnzpL26CldX2UKGgGR0CcD0yZrpJPaAdN6ANoCEdAqqSgC6pYLnV9lChoBkdAmnokk4WDYmgHTegDaAhHQKqsvcsUZel1fZQoaAZHQJseaIuXeFdoB03oA2gIR0CqrSUQK8cudX2UKGgGR0CZGpdtVJcxaAdN6ANoCEdAqq5MCtA9m3V9lChoBkdAmmMfiDM/yGgHTegDaAhHQKqzV+z+m3x1fZQoaAZHQJzbcjdHlOpoB03oA2gIR0CquNo7V8TjdX2UKGgGR0CahaY0VJtjaAdN6ANoCEdAqrk3DgqEvnV9lChoBkdAnYZvy5I6KmgHTegDaAhHQKq6XZ4fOlh1fZQoaAZHQJyvhrDZUUBoB03oA2gIR0Cqv1LyMDOkdX2UKGgGR0Cex8p1ie/YaAdN6ANoCEdAqsT71uivgXV9lChoBkdAnzoamoBJZmgHTegDaAhHQKrFXF5OafB1fZQoaAZHQJ4sK2tuDSRoB03oA2gIR0CqxnezlcQidX2UKGgGR0CcmkqJMxoJaAdN6ANoCEdAqst+NedCmnV9lChoBkdAnNMkkjX4CmgHTegDaAhHQKrQ52W6bvx1fZQoaAZHQJz1jQyAQQNoB03oA2gIR0Cq0UxX4j8ldX2UKGgGR0CcL//ag261aAdN6ANoCEdAqtJ3EdeY2XV9lChoBkdAnVOSsny/bmgHTegDaAhHQKrXbvcafjF1fZQoaAZHQJsSq0u14PhoB03oA2gIR0Cq3N5fD1oQdX2UKGgGR0CdBv7U5MlDaAdN6ANoCEdAqt0/Ty8SPHV9lChoBkdAnJkglSjxkWgHTegDaAhHQKreZv0AcT91fZQoaAZHQJipfssxwhpoB03oA2gIR0Cq42AnUlRhdX2UKGgGR0Cc2xkH2RJVaAdN6ANoCEdAqujMDKYAsHV9lChoBkdAm0u/vv0AcWgHTegDaAhHQKrpJ8HfMwF1fZQoaAZHQJundwjt5UtoB03oA2gIR0Cq6kp5/smfdX2UKGgGR0CZ6W7NjbztaAdN6ANoCEdAqu8d61LJ0XV9lChoBkdAmFW18LKFI2gHTegDaAhHQKr0QdNnGsF1fZQoaAZHQJv4rXarWAhoB03oA2gIR0Cq9KFj3EhrdX2UKGgGR0CXzjzasZHeaAdN6ANoCEdAqvW1NWU8m3V9lChoBkdAm/Cskt29tmgHTegDaAhHQKr6uNkOI691fZQoaAZHQJsvVkd3jdZoB03oA2gIR0CrADKMWGh3dX2UKGgGR0Cbr7SCOFQEaAdN6ANoCEdAqwCYPuogm3V9lChoBkdAnA9j+R5kb2gHTegDaAhHQKsBwl2vB8B1fZQoaAZHQJxunG4qgAZoB03oA2gIR0CrBrcW9DhMdX2UKGgGR0CcEsahHskZaAdN6ANoCEdAqwxIA0bcXXV9lChoBkdAnDkd6Tnq3WgHTegDaAhHQKsMqicoYvZ1fZQoaAZHQJrIZqxkd3loB03oA2gIR0CrDcjEWIoFdX2UKGgGR0CcG/FdcB2faAdN6ANoCEdAqxK6++M6zXV9lChoBkdAm4ootlI3BGgHTegDaAhHQKsYH2ugYgt1fZQoaAZHQJs+MN7SiM5oB03oA2gIR0CrGH8toSL7dX2UKGgGR0Ccy/rWiDdyaAdN6ANoCEdAqxmqb2Dg63V9lChoBkdAnfg6VdHDrWgHTegDaAhHQKseqbNr0rd1fZQoaAZHQJmWijBVMmFoB03oA2gIR0CrI/lhG6PKdX2UKGgGR0CcHNQiiZfEaAdN6ANoCEdAqyRTdUKiPHV9lChoBkdAmJMctCiRGWgHTegDaAhHQKsldKBd2Pl1fZQoaAZHQJjnl/lQuVZoB03oA2gIR0CrKmuSntOVdX2UKGgGR0CY5lhaTwDvaAdN6ANoCEdAqy/Na+vhZXV9lChoBkdAlvqXI+4b0mgHTegDaAhHQKswKXaakRB1fZQoaAZHQJpuEsNDtw9oB03oA2gIR0CrMVDj7yhBdX2UKGgGR0CbAU9jPOY6aAdN6ANoCEdAqzYvbsWweXV9lChoBkdAmg4zvRZ2ZGgHTegDaAhHQKs7scn3L3d1fZQoaAZHQJcdAyi22G9oB03oA2gIR0CrPBeRgZ0kdX2UKGgGR0CZUEGW2PT5aAdN6ANoCEdAqz1KeAd4mnV9lChoBkdAmEu/atcOb2gHTegDaAhHQKtCSupS75F1fZQoaAZHQJPfZozvZyxoB03oA2gIR0CrR79i+cpcdX2UKGgGR0CVzIYPGyX2aAdN6ANoCEdAq0gck2P1c3V9lChoBkdAlYukhzNliGgHTegDaAhHQKtJN7NSqER1fZQoaAZHQJckMFzMibFoB03oA2gIR0CrTkDR2KVIdX2UKGgGR0CR/FCpm29daAdN6ANoCEdAq1OfQfIS13V9lChoBkdAl75l4s3AEmgHTegDaAhHQKtT/3yqdYp1fZQoaAZHQJUJuLhrFfloB03oA2gIR0CrVR7mMfihdX2UKGgGR0CUkZaRp1zRaAdN6ANoCEdAq1ogZn+Q2nV9lChoBkdAllEMvysjmmgHTegDaAhHQKtff9vS+g11fZQoaAZHQJoOOsxO+IxoB03oA2gIR0CrX+O0svqUdX2UKGgGR0CZsamPo3aSaAdN6ANoCEdAq2EDRa5f+nV9lChoBkdAmFvCwnpjc2gHTegDaAhHQKtl+kAPuoh1fZQoaAZHQJjf2ptJnQJoB03oA2gIR0Cra2Ov+wTudX2UKGgGR0Cb76J+2E00aAdN6ANoCEdAq2vFph4MW3V9lChoBkdAmOHqoddVvWgHTegDaAhHQKts4f1YhdN1fZQoaAZHQJk5QmF8G9poB03oA2gIR0Crcdwz1scidX2UKGgGR0CbGG+mm+CcaAdN6ANoCEdAq3c2cOLBK3V9lChoBkdAmwQBiPQv6GgHTegDaAhHQKt3jT3qRlp1fZQoaAZHQJjIsvYe1a5oB03oA2gIR0CreMvwEyLydX2UKGgGR0Ca9eQHiWE9aAdN6ANoCEdAq33R0r9VFXV9lChoBkdAkdzxXOnl4mgHTegDaAhHQKuDQdIXj2l1fZQoaAZHQJoCaWgOBlNoB03oA2gIR0Crg5tOmBOIdX2UKGgGR0CWtfQFs54oaAdN6ANoCEdAq4S93Y+SsHV9lChoBkdAmQBrTH80lGgHTegDaAhHQKuJvlz2exx1fZQoaAZHQJr1Q53kgfVoB03oA2gIR0Crjxl54W1udX2UKGgGR0CcCNVn27FsaAdN6ANoCEdAq499jPOY6XV9lChoBkdAmUOpUxVQymgHTegDaAhHQKuQn9roGIN1fZQoaAZHQJYZ8Jtzjm1oB03oA2gIR0CrlYlar3j/dX2UKGgGR0CaLyFDv3JxaAdN6ANoCEdAq5rgWP91l3V9lChoBkdAm2HXMlkYoGgHTegDaAhHQKubO+Yc/+t1fZQoaAZHQJwVY0xdpqRoB03oA2gIR0CrnFTWwu/UdX2UKGgGR0CZ8lb3Gn4xaAdN6ANoCEdAq6FEvRJEpnVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5a15307d335019aec23568d31c759c8e8305289501a08c3fa345d26bbc79819
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c081ac1271a53d925d514f40323c5d680337ccc6c7683cf4efd01a8136fd6b88
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0d7fad40d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0d7fad4160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0d7fad41f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0d7fad4280>", "_build": "<function ActorCriticPolicy._build at 0x7f0d7fad4310>", "forward": "<function ActorCriticPolicy.forward at 0x7f0d7fad43a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0d7fad4430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0d7fad44c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0d7fad4550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0d7fad45e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0d7fad4670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0d7fad4700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0d7face780>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674133788475977794, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADxa3D99e6k+MEaWPuCahz92rS8+kZmYv2YEsD7VkfC/X7brPMvI+L8cdMu+tAuUv9R0GT+Qrta/XUzvPpFQ0z9iGqO/zN2pvxtVRD4jrC2/KOelv6fdfT+0PLI/kF6cPgBpZr/86su/GNCTPkPsyL8KTCo//ECEP4bLXr8KuNs9bZKBPk4Krj8ZnwO/TksOv2KGc79vwZa/U0ovP8F/6T+sVrK/S5KTvjIfI78Q8GM+MIyWv52Hxb5JaLa+qzJXwIQ4jD8xeLQ+5goqQMUv3b0AaWa//OrLvxjQkz5hFiM/fN+HPl+bML9hs18/WKaRP1ZkWj/FxoM/6ZiUPuwDpr05t0s/x0WCP8gAnz95JQq9aLHkvn/A1T9qkIS/TW9GPgJamT+VXJU+4EXtPk2rHT3z+p8/qbh3vnFEWT/BiA8/AGlmvy6xID8Y0JM+YRYjP0hhRb4+i+w+KSAWPoa22T8udNE/+y3uvv11Dj8aW3O+rVtUv3mH0D/+lpQ/FDtzP4hj37969ZE+A+Yrv+79mMBgtky/8bYWQLaZAz8YVf++HCikP3a7Mr5cpg8/5MHyPABpZr/86su/GNCTPkPsyL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACYYsu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAD5gSPgAAAADLyOK/AAAAAFWLlTwAAAAAbe/ePwAAAAD4W9y9AAAAAFj5AEAAAAAAaaD6PAAAAACRkeO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARbxyNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgM/nyDwAAAAA++MAwAAAAABgD3s9AAAAAJQ6AEAAAAAAFbbbvQAAAABU1dw/AAAAAKmSq70AAAAASib7vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAImYrLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIADN1M8AAAAAJ8e7b8AAAAA2ORUvQAAAABx6PQ/AAAAAF7qyb0AAAAAGr3zPwAAAADa3Vw9AAAAAEG9478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB/MVc2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHf6AvAAAAAAMB96/AAAAAPpZDj4AAAAAhu/rPwAAAAD6jKc9AAAAADB53z8AAAAAV8zKPQAAAAAXMOC/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJh06eumrKiMAWyUTegDjAF0lEdAqno3J5mh/XV9lChoBkdAmaglc+qzaGgHTegDaAhHQKp6k6MBIWh1fZQoaAZHQJdgeokzGgloB03oA2gIR0Cqe7Awwj+rdX2UKGgGR0CaLH+rELpiaAdN6ANoCEdAqoCiqU/wAnV9lChoBkdAmF469CeEqWgHTegDaAhHQKqGL8EV32V1fZQoaAZHQJtTiyC4BmxoB03oA2gIR0Cqhoz8xbjcdX2UKGgGR0CZg0qLjxTbaAdN6ANoCEdAqoepEa2nbnV9lChoBkdAmGvpHZsbemgHTegDaAhHQKqMkbGWD6F1fZQoaAZHQJjXg8aGYa5oB03oA2gIR0CqkdyncclxdX2UKGgGR0Cb8tNPxhDxaAdN6ANoCEdAqpI3dO6/ZnV9lChoBkdAmsKrobGWEGgHTegDaAhHQKqTYgIQe3h1fZQoaAZHQJouYbvPTodoB03oA2gIR0CqmGeOXE61dX2UKGgGR0CbqioouwotaAdN6ANoCEdAqp28wL3K0XV9lChoBkdAmYq0+cH4XWgHTegDaAhHQKqeG9sabWp1fZQoaAZHQJfjTwb2lEZoB03oA2gIR0CqnzpL26CldX2UKGgGR0CcD0yZrpJPaAdN6ANoCEdAqqSgC6pYLnV9lChoBkdAmnokk4WDYmgHTegDaAhHQKqsvcsUZel1fZQoaAZHQJseaIuXeFdoB03oA2gIR0CqrSUQK8cudX2UKGgGR0CZGpdtVJcxaAdN6ANoCEdAqq5MCtA9m3V9lChoBkdAmmMfiDM/yGgHTegDaAhHQKqzV+z+m3x1fZQoaAZHQJzbcjdHlOpoB03oA2gIR0CquNo7V8TjdX2UKGgGR0CahaY0VJtjaAdN6ANoCEdAqrk3DgqEvnV9lChoBkdAnYZvy5I6KmgHTegDaAhHQKq6XZ4fOlh1fZQoaAZHQJyvhrDZUUBoB03oA2gIR0Cqv1LyMDOkdX2UKGgGR0Cex8p1ie/YaAdN6ANoCEdAqsT71uivgXV9lChoBkdAnzoamoBJZmgHTegDaAhHQKrFXF5OafB1fZQoaAZHQJ4sK2tuDSRoB03oA2gIR0CqxnezlcQidX2UKGgGR0CcmkqJMxoJaAdN6ANoCEdAqst+NedCmnV9lChoBkdAnNMkkjX4CmgHTegDaAhHQKrQ52W6bvx1fZQoaAZHQJz1jQyAQQNoB03oA2gIR0Cq0UxX4j8ldX2UKGgGR0CcL//ag261aAdN6ANoCEdAqtJ3EdeY2XV9lChoBkdAnVOSsny/bmgHTegDaAhHQKrXbvcafjF1fZQoaAZHQJsSq0u14PhoB03oA2gIR0Cq3N5fD1oQdX2UKGgGR0CdBv7U5MlDaAdN6ANoCEdAqt0/Ty8SPHV9lChoBkdAnJkglSjxkWgHTegDaAhHQKreZv0AcT91fZQoaAZHQJipfssxwhpoB03oA2gIR0Cq42AnUlRhdX2UKGgGR0Cc2xkH2RJVaAdN6ANoCEdAqujMDKYAsHV9lChoBkdAm0u/vv0AcWgHTegDaAhHQKrpJ8HfMwF1fZQoaAZHQJundwjt5UtoB03oA2gIR0Cq6kp5/smfdX2UKGgGR0CZ6W7NjbztaAdN6ANoCEdAqu8d61LJ0XV9lChoBkdAmFW18LKFI2gHTegDaAhHQKr0QdNnGsF1fZQoaAZHQJv4rXarWAhoB03oA2gIR0Cq9KFj3EhrdX2UKGgGR0CXzjzasZHeaAdN6ANoCEdAqvW1NWU8m3V9lChoBkdAm/Cskt29tmgHTegDaAhHQKr6uNkOI691fZQoaAZHQJsvVkd3jdZoB03oA2gIR0CrADKMWGh3dX2UKGgGR0Cbr7SCOFQEaAdN6ANoCEdAqwCYPuogm3V9lChoBkdAnA9j+R5kb2gHTegDaAhHQKsBwl2vB8B1fZQoaAZHQJxunG4qgAZoB03oA2gIR0CrBrcW9DhMdX2UKGgGR0CcEsahHskZaAdN6ANoCEdAqwxIA0bcXXV9lChoBkdAnDkd6Tnq3WgHTegDaAhHQKsMqicoYvZ1fZQoaAZHQJrIZqxkd3loB03oA2gIR0CrDcjEWIoFdX2UKGgGR0CcG/FdcB2faAdN6ANoCEdAqxK6++M6zXV9lChoBkdAm4ootlI3BGgHTegDaAhHQKsYH2ugYgt1fZQoaAZHQJs+MN7SiM5oB03oA2gIR0CrGH8toSL7dX2UKGgGR0Ccy/rWiDdyaAdN6ANoCEdAqxmqb2Dg63V9lChoBkdAnfg6VdHDrWgHTegDaAhHQKseqbNr0rd1fZQoaAZHQJmWijBVMmFoB03oA2gIR0CrI/lhG6PKdX2UKGgGR0CcHNQiiZfEaAdN6ANoCEdAqyRTdUKiPHV9lChoBkdAmJMctCiRGWgHTegDaAhHQKsldKBd2Pl1fZQoaAZHQJjnl/lQuVZoB03oA2gIR0CrKmuSntOVdX2UKGgGR0CY5lhaTwDvaAdN6ANoCEdAqy/Na+vhZXV9lChoBkdAlvqXI+4b0mgHTegDaAhHQKswKXaakRB1fZQoaAZHQJpuEsNDtw9oB03oA2gIR0CrMVDj7yhBdX2UKGgGR0CbAU9jPOY6aAdN6ANoCEdAqzYvbsWweXV9lChoBkdAmg4zvRZ2ZGgHTegDaAhHQKs7scn3L3d1fZQoaAZHQJcdAyi22G9oB03oA2gIR0CrPBeRgZ0kdX2UKGgGR0CZUEGW2PT5aAdN6ANoCEdAqz1KeAd4mnV9lChoBkdAmEu/atcOb2gHTegDaAhHQKtCSupS75F1fZQoaAZHQJPfZozvZyxoB03oA2gIR0CrR79i+cpcdX2UKGgGR0CVzIYPGyX2aAdN6ANoCEdAq0gck2P1c3V9lChoBkdAlYukhzNliGgHTegDaAhHQKtJN7NSqER1fZQoaAZHQJckMFzMibFoB03oA2gIR0CrTkDR2KVIdX2UKGgGR0CR/FCpm29daAdN6ANoCEdAq1OfQfIS13V9lChoBkdAl75l4s3AEmgHTegDaAhHQKtT/3yqdYp1fZQoaAZHQJUJuLhrFfloB03oA2gIR0CrVR7mMfihdX2UKGgGR0CUkZaRp1zRaAdN6ANoCEdAq1ogZn+Q2nV9lChoBkdAllEMvysjmmgHTegDaAhHQKtff9vS+g11fZQoaAZHQJoOOsxO+IxoB03oA2gIR0CrX+O0svqUdX2UKGgGR0CZsamPo3aSaAdN6ANoCEdAq2EDRa5f+nV9lChoBkdAmFvCwnpjc2gHTegDaAhHQKtl+kAPuoh1fZQoaAZHQJjf2ptJnQJoB03oA2gIR0Cra2Ov+wTudX2UKGgGR0Cb76J+2E00aAdN6ANoCEdAq2vFph4MW3V9lChoBkdAmOHqoddVvWgHTegDaAhHQKts4f1YhdN1fZQoaAZHQJk5QmF8G9poB03oA2gIR0Crcdwz1scidX2UKGgGR0CbGG+mm+CcaAdN6ANoCEdAq3c2cOLBK3V9lChoBkdAmwQBiPQv6GgHTegDaAhHQKt3jT3qRlp1fZQoaAZHQJjIsvYe1a5oB03oA2gIR0CreMvwEyLydX2UKGgGR0Ca9eQHiWE9aAdN6ANoCEdAq33R0r9VFXV9lChoBkdAkdzxXOnl4mgHTegDaAhHQKuDQdIXj2l1fZQoaAZHQJoCaWgOBlNoB03oA2gIR0Crg5tOmBOIdX2UKGgGR0CWtfQFs54oaAdN6ANoCEdAq4S93Y+SsHV9lChoBkdAmQBrTH80lGgHTegDaAhHQKuJvlz2exx1fZQoaAZHQJr1Q53kgfVoB03oA2gIR0Crjxl54W1udX2UKGgGR0CcCNVn27FsaAdN6ANoCEdAq499jPOY6XV9lChoBkdAmUOpUxVQymgHTegDaAhHQKuQn9roGIN1fZQoaAZHQJYZ8Jtzjm1oB03oA2gIR0CrlYlar3j/dX2UKGgGR0CaLyFDv3JxaAdN6ANoCEdAq5rgWP91l3V9lChoBkdAm2HXMlkYoGgHTegDaAhHQKubO+Yc/+t1fZQoaAZHQJwVY0xdpqRoB03oA2gIR0CrnFTWwu/UdX2UKGgGR0CZ8lb3Gn4xaAdN6ANoCEdAq6FEvRJEpnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (673 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1464.9417277632515, "std_reward": 292.7162185347077, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-19T14:03:25.788842"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85d81795a3bbcc9cb7c03f06bd28ec4a2972f3045a3dac01608a047325106ea6
3
+ size 2521