nttx commited on
Commit
00af35b
·
verified ·
1 Parent(s): b0cc95c

End of training

Browse files
Files changed (2) hide show
  1. README.md +162 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: katuni4ka/tiny-random-qwen1.5-moe
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: 3a95d28b-86b5-402f-9d6b-a94be81b96e1
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.1`
19
+ ```yaml
20
+ adapter: lora
21
+ base_model: katuni4ka/tiny-random-qwen1.5-moe
22
+ bf16: auto
23
+ chat_template: llama3
24
+ data_processes: 16
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - af29ada7af1fe488_train_data.json
29
+ ds_type: json
30
+ format: custom
31
+ path: /workspace/input_data/af29ada7af1fe488_train_data.json
32
+ type:
33
+ field_instruction: text
34
+ field_output: title
35
+ format: '{instruction}'
36
+ no_input_format: '{instruction}'
37
+ system_format: '{system}'
38
+ system_prompt: ''
39
+ debug: null
40
+ deepspeed: null
41
+ device_map: auto
42
+ do_eval: true
43
+ early_stopping_patience: 1
44
+ eval_batch_size: 6
45
+ eval_max_new_tokens: 128
46
+ eval_steps: 25
47
+ eval_table_size: null
48
+ evals_per_epoch: null
49
+ flash_attention: false
50
+ fp16: true
51
+ fsdp: null
52
+ fsdp_config: null
53
+ gradient_accumulation_steps: 6
54
+ gradient_checkpointing: true
55
+ group_by_length: true
56
+ hub_model_id: nttx/3a95d28b-86b5-402f-9d6b-a94be81b96e1
57
+ hub_repo: null
58
+ hub_strategy: checkpoint
59
+ hub_token: null
60
+ learning_rate: 0.0001
61
+ load_in_4bit: false
62
+ load_in_8bit: false
63
+ local_rank: null
64
+ logging_steps: 1
65
+ lora_alpha: 128
66
+ lora_dropout: 0.1
67
+ lora_fan_in_fan_out: null
68
+ lora_model_dir: null
69
+ lora_r: 64
70
+ lora_target_linear: true
71
+ lr_scheduler: cosine
72
+ max_grad_norm: 1.0
73
+ max_memory:
74
+ 0: 70GB
75
+ max_steps: 50
76
+ micro_batch_size: 6
77
+ mlflow_experiment_name: /tmp/af29ada7af1fe488_train_data.json
78
+ model_type: AutoModelForCausalLM
79
+ num_epochs: 3
80
+ optim_args:
81
+ adam_beta1: 0.9
82
+ adam_beta2: 0.95
83
+ adam_epsilon: 1e-5
84
+ optimizer: adamw_bnb_8bit
85
+ output_dir: miner_id_24
86
+ pad_to_sequence_len: true
87
+ resume_from_checkpoint: null
88
+ s2_attention: null
89
+ sample_packing: false
90
+ save_steps: 25
91
+ saves_per_epoch: null
92
+ sequence_len: 1024
93
+ strict: false
94
+ tf32: false
95
+ tokenizer_type: AutoTokenizer
96
+ train_on_inputs: false
97
+ trust_remote_code: true
98
+ val_set_size: 0.05
99
+ wandb_entity: null
100
+ wandb_mode: online
101
+ wandb_name: 3a95d28b-86b5-402f-9d6b-a94be81b96e1
102
+ wandb_project: Gradients-On-Demand
103
+ wandb_run: your_name
104
+ wandb_runid: 3a95d28b-86b5-402f-9d6b-a94be81b96e1
105
+ warmup_steps: 10
106
+ weight_decay: 0.0
107
+ xformers_attention: null
108
+
109
+ ```
110
+
111
+ </details><br>
112
+
113
+ # 3a95d28b-86b5-402f-9d6b-a94be81b96e1
114
+
115
+ This model is a fine-tuned version of [katuni4ka/tiny-random-qwen1.5-moe](https://huggingface.co/katuni4ka/tiny-random-qwen1.5-moe) on the None dataset.
116
+ It achieves the following results on the evaluation set:
117
+ - Loss: nan
118
+
119
+ ## Model description
120
+
121
+ More information needed
122
+
123
+ ## Intended uses & limitations
124
+
125
+ More information needed
126
+
127
+ ## Training and evaluation data
128
+
129
+ More information needed
130
+
131
+ ## Training procedure
132
+
133
+ ### Training hyperparameters
134
+
135
+ The following hyperparameters were used during training:
136
+ - learning_rate: 0.0001
137
+ - train_batch_size: 6
138
+ - eval_batch_size: 6
139
+ - seed: 42
140
+ - gradient_accumulation_steps: 6
141
+ - total_train_batch_size: 36
142
+ - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
143
+ - lr_scheduler_type: cosine
144
+ - lr_scheduler_warmup_steps: 10
145
+ - training_steps: 50
146
+
147
+ ### Training results
148
+
149
+ | Training Loss | Epoch | Step | Validation Loss |
150
+ |:-------------:|:------:|:----:|:---------------:|
151
+ | 0.0 | 0.0004 | 1 | nan |
152
+ | 0.0 | 0.0098 | 25 | nan |
153
+ | 0.0 | 0.0195 | 50 | nan |
154
+
155
+
156
+ ### Framework versions
157
+
158
+ - PEFT 0.13.2
159
+ - Transformers 4.46.0
160
+ - Pytorch 2.5.0+cu124
161
+ - Datasets 3.0.1
162
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f81ca481ba2601ff71ce3b4137cf0ecb17b3e4f7173c4156e98fb0b565b4d53a
3
+ size 2434026