nttx commited on
Commit
a4f6cb2
1 Parent(s): dc629b1

End of training

Browse files
Files changed (2) hide show
  1. README.md +171 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: llama3
4
+ base_model: tokyotech-llm/Llama-3-Swallow-8B-v0.1
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: 1e538dae-ff49-499b-90ea-ce55eadbd3da
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: tokyotech-llm/Llama-3-Swallow-8B-v0.1
23
+ bf16: auto
24
+ chat_template: llama3
25
+ data_processes: 16
26
+ dataset_prepared_path: null
27
+ datasets:
28
+ - data_files:
29
+ - a1bfc420a3c44841_train_data.json
30
+ ds_type: json
31
+ format: custom
32
+ path: /workspace/input_data/a1bfc420a3c44841_train_data.json
33
+ type:
34
+ field_input: other_objects
35
+ field_instruction: example_text
36
+ field_output: chosen_object
37
+ format: '{instruction} {input}'
38
+ no_input_format: '{instruction}'
39
+ system_format: '{system}'
40
+ system_prompt: ''
41
+ debug: null
42
+ deepspeed: null
43
+ device_map: auto
44
+ do_eval: true
45
+ early_stopping_patience: 1
46
+ eval_batch_size: 8
47
+ eval_max_new_tokens: 128
48
+ eval_steps: 25
49
+ eval_table_size: null
50
+ evals_per_epoch: null
51
+ flash_attention: false
52
+ fp16: null
53
+ fsdp: null
54
+ fsdp_config: null
55
+ gradient_accumulation_steps: 4
56
+ gradient_checkpointing: true
57
+ group_by_length: true
58
+ hub_model_id: nttx/1e538dae-ff49-499b-90ea-ce55eadbd3da
59
+ hub_repo: null
60
+ hub_strategy: checkpoint
61
+ hub_token: null
62
+ learning_rate: 0.0003
63
+ load_in_4bit: false
64
+ load_in_8bit: false
65
+ local_rank: null
66
+ logging_steps: 1
67
+ lora_alpha: 32
68
+ lora_dropout: 0.05
69
+ lora_fan_in_fan_out: null
70
+ lora_model_dir: null
71
+ lora_r: 16
72
+ lora_target_linear: true
73
+ lr_scheduler: cosine
74
+ max_grad_norm: 1.0
75
+ max_memory:
76
+ 0: 70GB
77
+ max_steps: 200
78
+ micro_batch_size: 8
79
+ mlflow_experiment_name: /tmp/a1bfc420a3c44841_train_data.json
80
+ model_type: AutoModelForCausalLM
81
+ num_epochs: 2
82
+ optim_args:
83
+ adam_beta1: 0.9
84
+ adam_beta2: 0.95
85
+ adam_epsilon: 1e-5
86
+ optimizer: adamw_torch
87
+ output_dir: miner_id_24
88
+ pad_to_sequence_len: true
89
+ resume_from_checkpoint: null
90
+ s2_attention: null
91
+ sample_packing: false
92
+ save_steps: 50
93
+ saves_per_epoch: null
94
+ sequence_len: 1028
95
+ special_tokens:
96
+ pad_token: <|end_of_text|>
97
+ strict: false
98
+ tf32: false
99
+ tokenizer_type: AutoTokenizer
100
+ train_on_inputs: false
101
+ trust_remote_code: true
102
+ val_set_size: 50
103
+ wandb_entity: null
104
+ wandb_mode: online
105
+ wandb_name: 1e538dae-ff49-499b-90ea-ce55eadbd3da
106
+ wandb_project: Gradients-On-Demand
107
+ wandb_run: your_name
108
+ wandb_runid: 1e538dae-ff49-499b-90ea-ce55eadbd3da
109
+ warmup_steps: 10
110
+ weight_decay: 0.0
111
+ xformers_attention: null
112
+
113
+ ```
114
+
115
+ </details><br>
116
+
117
+ # 1e538dae-ff49-499b-90ea-ce55eadbd3da
118
+
119
+ This model is a fine-tuned version of [tokyotech-llm/Llama-3-Swallow-8B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-8B-v0.1) on the None dataset.
120
+ It achieves the following results on the evaluation set:
121
+ - Loss: 0.0000
122
+
123
+ ## Model description
124
+
125
+ More information needed
126
+
127
+ ## Intended uses & limitations
128
+
129
+ More information needed
130
+
131
+ ## Training and evaluation data
132
+
133
+ More information needed
134
+
135
+ ## Training procedure
136
+
137
+ ### Training hyperparameters
138
+
139
+ The following hyperparameters were used during training:
140
+ - learning_rate: 0.0003
141
+ - train_batch_size: 8
142
+ - eval_batch_size: 8
143
+ - seed: 42
144
+ - gradient_accumulation_steps: 4
145
+ - total_train_batch_size: 32
146
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
147
+ - lr_scheduler_type: cosine
148
+ - lr_scheduler_warmup_steps: 10
149
+ - training_steps: 200
150
+
151
+ ### Training results
152
+
153
+ | Training Loss | Epoch | Step | Validation Loss |
154
+ |:-------------:|:------:|:----:|:---------------:|
155
+ | 2.9383 | 0.0015 | 1 | 5.6827 |
156
+ | 0.0 | 0.0377 | 25 | 0.0001 |
157
+ | 0.0 | 0.0755 | 50 | 0.0000 |
158
+ | 0.0 | 0.1132 | 75 | 0.0000 |
159
+ | 0.0 | 0.1509 | 100 | 0.0000 |
160
+ | 0.0 | 0.1887 | 125 | 0.0000 |
161
+ | 0.0 | 0.2264 | 150 | 0.0000 |
162
+ | 0.0 | 0.2642 | 175 | 0.0000 |
163
+
164
+
165
+ ### Framework versions
166
+
167
+ - PEFT 0.13.2
168
+ - Transformers 4.46.0
169
+ - Pytorch 2.5.0+cu124
170
+ - Datasets 3.0.1
171
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6643d0117ec3cc73019cda13b324b2b32d7def36d056d90ed585ea96b48338fa
3
+ size 167934026