update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- mt_eng_vietnamese
|
6 |
+
metrics:
|
7 |
+
- bleu
|
8 |
+
model-index:
|
9 |
+
- name: t5vi-finetuned-en-to-vi
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Sequence-to-sequence Language Modeling
|
13 |
+
type: text2text-generation
|
14 |
+
dataset:
|
15 |
+
name: mt_eng_vietnamese
|
16 |
+
type: mt_eng_vietnamese
|
17 |
+
args: iwslt2015-en-vi
|
18 |
+
metrics:
|
19 |
+
- name: Bleu
|
20 |
+
type: bleu
|
21 |
+
value: 13.547
|
22 |
+
---
|
23 |
+
|
24 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
25 |
+
should probably proofread and complete it, then remove this comment. -->
|
26 |
+
|
27 |
+
# t5vi-finetuned-en-to-vi
|
28 |
+
|
29 |
+
This model is a fine-tuned version of [imthanhlv/t5vi](https://huggingface.co/imthanhlv/t5vi) on the mt_eng_vietnamese dataset.
|
30 |
+
It achieves the following results on the evaluation set:
|
31 |
+
- Loss: 1.3827
|
32 |
+
- Bleu: 13.547
|
33 |
+
- Gen Len: 17.3719
|
34 |
+
|
35 |
+
## Model description
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Intended uses & limitations
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training and evaluation data
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training procedure
|
48 |
+
|
49 |
+
### Training hyperparameters
|
50 |
+
|
51 |
+
The following hyperparameters were used during training:
|
52 |
+
- learning_rate: 2e-05
|
53 |
+
- train_batch_size: 20
|
54 |
+
- eval_batch_size: 20
|
55 |
+
- seed: 42
|
56 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
57 |
+
- lr_scheduler_type: linear
|
58 |
+
- num_epochs: 5
|
59 |
+
- mixed_precision_training: Native AMP
|
60 |
+
|
61 |
+
### Training results
|
62 |
+
|
63 |
+
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|
64 |
+
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|
|
65 |
+
| 1.8026 | 1.0 | 6666 | 1.5907 | 10.9756 | 17.3231 |
|
66 |
+
| 1.6217 | 2.0 | 13332 | 1.4635 | 12.375 | 17.3444 |
|
67 |
+
| 1.5087 | 3.0 | 19998 | 1.4131 | 13.1828 | 17.3924 |
|
68 |
+
| 1.4446 | 4.0 | 26664 | 1.3915 | 13.5217 | 17.3617 |
|
69 |
+
| 1.4076 | 5.0 | 33330 | 1.3827 | 13.547 | 17.3719 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.19.1
|
75 |
+
- Pytorch 1.11.0+cu113
|
76 |
+
- Datasets 2.2.1
|
77 |
+
- Tokenizers 0.12.1
|