|
import numpy as np |
|
import tensorflow as tf |
|
from tensorflow import keras |
|
from tensorflow.keras import layers |
|
|
|
def model(input_shape): |
|
|
|
x_input = layers.Input(shape = input_shape) |
|
|
|
x = layers.Conv1D(196, kernel_size=15, strides=4)(x_input) |
|
x = layers.BatchNormalization()(x) |
|
x = layers.Activation('relu')(x) |
|
x = layers.Dropout(0.8)(x) |
|
|
|
x = layers.GRU(units = 128, return_sequences = True)(x) |
|
x = layers.Dropout(0.8)(x) |
|
x = layers.BatchNormalization()(x) |
|
|
|
x = layers.GRU(units = 128, return_sequences = True)(x) |
|
x = layers.Dropout(0.8)(x) |
|
x = layers.BatchNormalization()(x) |
|
x = layers.Dropout(0.8)(x) |
|
|
|
x = layers.TimeDistributed(layers.Dense(1, activation = "sigmoid"))(x) |
|
model = keras.Model(inputs = x_input, outputs = x) |
|
|
|
return model |
|
|
|
|
|
|
|
model = model(input_shape = (5511, 101)) |
|
model.summary() |
|
|
|
opt = keras.optimizers.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, decay=0.01) |
|
model.compile(loss='binary_crossentropy', optimizer=opt, metrics=["accuracy"]) |
|
|
|
X = np.load("./Data/XY_train/X.npy") |
|
Y = np.load("./Data/XY_train/Y.npy") |
|
|
|
X_dev = np.load("./Data/XY_dev/X_dev.npy") |
|
Y_dev = np.load("./Data/XY_dev/Y_dev.npy") |
|
|
|
model.fit(X, Y, batch_size = 64, epochs=20000) |
|
|
|
|
|
model.save('my_model.h5') |
|
|
|
|
|
|
|
|
|
|