|
|
|
|
|
import sys |
|
import time |
|
import psutil |
|
import torch |
|
import platform |
|
|
|
from enum import Enum |
|
from backend import stream, utils |
|
from backend.args import args |
|
|
|
|
|
cpu = torch.device('cpu') |
|
|
|
|
|
class VRAMState(Enum): |
|
DISABLED = 0 |
|
NO_VRAM = 1 |
|
LOW_VRAM = 2 |
|
NORMAL_VRAM = 3 |
|
HIGH_VRAM = 4 |
|
SHARED = 5 |
|
|
|
|
|
class CPUState(Enum): |
|
GPU = 0 |
|
CPU = 1 |
|
MPS = 2 |
|
|
|
|
|
|
|
vram_state = VRAMState.NORMAL_VRAM |
|
set_vram_to = VRAMState.NORMAL_VRAM |
|
cpu_state = CPUState.GPU |
|
|
|
total_vram = 0 |
|
|
|
lowvram_available = True |
|
xpu_available = False |
|
|
|
if args.pytorch_deterministic: |
|
print("Using deterministic algorithms for pytorch") |
|
torch.use_deterministic_algorithms(True, warn_only=True) |
|
|
|
directml_enabled = False |
|
if args.directml is not None: |
|
import torch_directml |
|
|
|
directml_enabled = True |
|
device_index = args.directml |
|
if device_index < 0: |
|
directml_device = torch_directml.device() |
|
else: |
|
directml_device = torch_directml.device(device_index) |
|
print("Using directml with device: {}".format(torch_directml.device_name(device_index))) |
|
|
|
try: |
|
import intel_extension_for_pytorch as ipex |
|
|
|
if torch.xpu.is_available(): |
|
xpu_available = True |
|
except: |
|
pass |
|
|
|
try: |
|
if torch.backends.mps.is_available(): |
|
cpu_state = CPUState.MPS |
|
import torch.mps |
|
except: |
|
pass |
|
|
|
if args.always_cpu: |
|
cpu_state = CPUState.CPU |
|
|
|
|
|
def is_intel_xpu(): |
|
global cpu_state |
|
global xpu_available |
|
if cpu_state == CPUState.GPU: |
|
if xpu_available: |
|
return True |
|
return False |
|
|
|
|
|
def get_torch_device(): |
|
global directml_enabled |
|
global cpu_state |
|
if directml_enabled: |
|
global directml_device |
|
return directml_device |
|
if cpu_state == CPUState.MPS: |
|
return torch.device("mps") |
|
if cpu_state == CPUState.CPU: |
|
return torch.device("cpu") |
|
else: |
|
if is_intel_xpu(): |
|
return torch.device("xpu", torch.xpu.current_device()) |
|
else: |
|
return torch.device(torch.cuda.current_device()) |
|
|
|
|
|
def get_total_memory(dev=None, torch_total_too=False): |
|
global directml_enabled |
|
if dev is None: |
|
dev = get_torch_device() |
|
|
|
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'): |
|
mem_total = psutil.virtual_memory().total |
|
mem_total_torch = mem_total |
|
else: |
|
if directml_enabled: |
|
mem_total = 1024 * 1024 * 1024 |
|
mem_total_torch = mem_total |
|
elif is_intel_xpu(): |
|
stats = torch.xpu.memory_stats(dev) |
|
mem_reserved = stats['reserved_bytes.all.current'] |
|
mem_total_torch = mem_reserved |
|
mem_total = torch.xpu.get_device_properties(dev).total_memory |
|
else: |
|
stats = torch.cuda.memory_stats(dev) |
|
mem_reserved = stats['reserved_bytes.all.current'] |
|
_, mem_total_cuda = torch.cuda.mem_get_info(dev) |
|
mem_total_torch = mem_reserved |
|
mem_total = mem_total_cuda |
|
|
|
if torch_total_too: |
|
return (mem_total, mem_total_torch) |
|
else: |
|
return mem_total |
|
|
|
|
|
total_vram = get_total_memory(get_torch_device()) / (1024 * 1024) |
|
total_ram = psutil.virtual_memory().total / (1024 * 1024) |
|
print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram)) |
|
|
|
try: |
|
print("pytorch version: {}".format(torch.version.__version__)) |
|
except: |
|
pass |
|
|
|
try: |
|
OOM_EXCEPTION = torch.cuda.OutOfMemoryError |
|
except: |
|
OOM_EXCEPTION = Exception |
|
|
|
if directml_enabled: |
|
OOM_EXCEPTION = Exception |
|
|
|
XFORMERS_VERSION = "" |
|
XFORMERS_ENABLED_VAE = True |
|
if args.disable_xformers: |
|
XFORMERS_IS_AVAILABLE = False |
|
else: |
|
try: |
|
import xformers |
|
import xformers.ops |
|
|
|
XFORMERS_IS_AVAILABLE = True |
|
try: |
|
XFORMERS_IS_AVAILABLE = xformers._has_cpp_library |
|
except: |
|
pass |
|
try: |
|
XFORMERS_VERSION = xformers.version.__version__ |
|
print("xformers version: {}".format(XFORMERS_VERSION)) |
|
if XFORMERS_VERSION.startswith("0.0.18"): |
|
print("\nWARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.") |
|
print("Please downgrade or upgrade xformers to a different version.\n") |
|
XFORMERS_ENABLED_VAE = False |
|
except: |
|
pass |
|
except: |
|
XFORMERS_IS_AVAILABLE = False |
|
|
|
|
|
def is_nvidia(): |
|
global cpu_state |
|
if cpu_state == CPUState.GPU: |
|
if torch.version.cuda: |
|
return True |
|
return False |
|
|
|
|
|
ENABLE_PYTORCH_ATTENTION = False |
|
if args.attention_pytorch: |
|
ENABLE_PYTORCH_ATTENTION = True |
|
XFORMERS_IS_AVAILABLE = False |
|
|
|
VAE_DTYPES = [torch.float32] |
|
|
|
try: |
|
if is_nvidia(): |
|
torch_version = torch.version.__version__ |
|
if int(torch_version[0]) >= 2: |
|
if ENABLE_PYTORCH_ATTENTION == False and args.attention_split == False and args.attention_quad == False: |
|
ENABLE_PYTORCH_ATTENTION = True |
|
if torch.cuda.is_bf16_supported() and torch.cuda.get_device_properties(torch.cuda.current_device()).major >= 8: |
|
VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES |
|
if is_intel_xpu(): |
|
if args.attention_split == False and args.attention_quad == False: |
|
ENABLE_PYTORCH_ATTENTION = True |
|
except: |
|
pass |
|
|
|
if is_intel_xpu(): |
|
VAE_DTYPES = [torch.bfloat16] + VAE_DTYPES |
|
|
|
if args.vae_in_cpu: |
|
VAE_DTYPES = [torch.float32] |
|
|
|
VAE_ALWAYS_TILED = False |
|
|
|
if ENABLE_PYTORCH_ATTENTION: |
|
torch.backends.cuda.enable_math_sdp(True) |
|
torch.backends.cuda.enable_flash_sdp(True) |
|
torch.backends.cuda.enable_mem_efficient_sdp(True) |
|
|
|
if args.always_low_vram: |
|
set_vram_to = VRAMState.LOW_VRAM |
|
lowvram_available = True |
|
elif args.always_no_vram: |
|
set_vram_to = VRAMState.NO_VRAM |
|
elif args.always_high_vram or args.always_gpu: |
|
vram_state = VRAMState.HIGH_VRAM |
|
|
|
FORCE_FP32 = False |
|
FORCE_FP16 = False |
|
if args.all_in_fp32: |
|
print("Forcing FP32, if this improves things please report it.") |
|
FORCE_FP32 = True |
|
|
|
if args.all_in_fp16: |
|
print("Forcing FP16.") |
|
FORCE_FP16 = True |
|
|
|
if lowvram_available: |
|
if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM): |
|
vram_state = set_vram_to |
|
|
|
if cpu_state != CPUState.GPU: |
|
vram_state = VRAMState.DISABLED |
|
|
|
if cpu_state == CPUState.MPS: |
|
vram_state = VRAMState.SHARED |
|
|
|
print(f"Set vram state to: {vram_state.name}") |
|
|
|
ALWAYS_VRAM_OFFLOAD = args.always_offload_from_vram |
|
|
|
if ALWAYS_VRAM_OFFLOAD: |
|
print("Always offload VRAM") |
|
|
|
PIN_SHARED_MEMORY = args.pin_shared_memory |
|
|
|
if PIN_SHARED_MEMORY: |
|
print("Always pin shared GPU memory") |
|
|
|
|
|
def get_torch_device_name(device): |
|
if hasattr(device, 'type'): |
|
if device.type == "cuda": |
|
try: |
|
allocator_backend = torch.cuda.get_allocator_backend() |
|
except: |
|
allocator_backend = "" |
|
return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend) |
|
else: |
|
return "{}".format(device.type) |
|
elif is_intel_xpu(): |
|
return "{} {}".format(device, torch.xpu.get_device_name(device)) |
|
else: |
|
return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device)) |
|
|
|
|
|
try: |
|
torch_device_name = get_torch_device_name(get_torch_device()) |
|
print("Device: {}".format(torch_device_name)) |
|
except: |
|
torch_device_name = '' |
|
print("Could not pick default device.") |
|
|
|
if 'rtx' in torch_device_name.lower(): |
|
if not args.cuda_malloc: |
|
print('Hint: your device supports --cuda-malloc for potential speed improvements.') |
|
|
|
|
|
current_loaded_models = [] |
|
|
|
|
|
def state_dict_size(sd, exclude_device=None): |
|
module_mem = 0 |
|
for k in sd: |
|
t = sd[k] |
|
|
|
if exclude_device is not None: |
|
if t.device == exclude_device: |
|
continue |
|
|
|
module_mem += t.nelement() * t.element_size() |
|
return module_mem |
|
|
|
|
|
def state_dict_parameters(sd): |
|
module_mem = 0 |
|
for k, v in sd.items(): |
|
module_mem += v.nelement() |
|
return module_mem |
|
|
|
|
|
def state_dict_dtype(state_dict): |
|
for k, v in state_dict.items(): |
|
if hasattr(v, 'gguf_cls'): |
|
return 'gguf' |
|
if 'bitsandbytes__nf4' in k: |
|
return 'nf4' |
|
if 'bitsandbytes__fp4' in k: |
|
return 'fp4' |
|
|
|
dtype_counts = {} |
|
|
|
for tensor in state_dict.values(): |
|
dtype = tensor.dtype |
|
if dtype in dtype_counts: |
|
dtype_counts[dtype] += 1 |
|
else: |
|
dtype_counts[dtype] = 1 |
|
|
|
major_dtype = None |
|
max_count = 0 |
|
|
|
for dtype, count in dtype_counts.items(): |
|
if count > max_count: |
|
max_count = count |
|
major_dtype = dtype |
|
|
|
return major_dtype |
|
|
|
|
|
def bake_gguf_model(model): |
|
if getattr(model, 'gguf_baked', False): |
|
return |
|
|
|
for p in model.parameters(): |
|
gguf_cls = getattr(p, 'gguf_cls', None) |
|
if gguf_cls is not None: |
|
gguf_cls.bake(p) |
|
|
|
global signal_empty_cache |
|
signal_empty_cache = True |
|
|
|
model.gguf_baked = True |
|
return model |
|
|
|
|
|
def module_size(module, exclude_device=None, include_device=None, return_split=False): |
|
module_mem = 0 |
|
weight_mem = 0 |
|
weight_patterns = ['weight'] |
|
|
|
for k, p in module.named_parameters(): |
|
t = p.data |
|
|
|
if exclude_device is not None: |
|
if t.device == exclude_device: |
|
continue |
|
|
|
if include_device is not None: |
|
if t.device != include_device: |
|
continue |
|
|
|
element_size = t.element_size() |
|
|
|
if getattr(p, 'quant_type', None) in ['fp4', 'nf4']: |
|
if element_size > 1: |
|
|
|
element_size = 0.55 |
|
else: |
|
|
|
element_size = 1.1 |
|
|
|
module_mem += t.nelement() * element_size |
|
|
|
if k in weight_patterns: |
|
weight_mem += t.nelement() * element_size |
|
|
|
if return_split: |
|
return module_mem, weight_mem, module_mem - weight_mem |
|
|
|
return module_mem |
|
|
|
|
|
def module_move(module, device, recursive=True, excluded_pattens=[]): |
|
if recursive: |
|
return module.to(device=device) |
|
|
|
for k, p in module.named_parameters(recurse=False, remove_duplicate=True): |
|
if k in excluded_pattens: |
|
continue |
|
setattr(module, k, utils.tensor2parameter(p.to(device=device))) |
|
|
|
return module |
|
|
|
|
|
def build_module_profile(model, model_gpu_memory_when_using_cpu_swap): |
|
all_modules = [] |
|
legacy_modules = [] |
|
|
|
for m in model.modules(): |
|
if hasattr(m, "parameters_manual_cast"): |
|
m.total_mem, m.weight_mem, m.extra_mem = module_size(m, return_split=True) |
|
all_modules.append(m) |
|
elif hasattr(m, "weight"): |
|
m.total_mem, m.weight_mem, m.extra_mem = module_size(m, return_split=True) |
|
legacy_modules.append(m) |
|
|
|
gpu_modules = [] |
|
gpu_modules_only_extras = [] |
|
mem_counter = 0 |
|
|
|
for m in legacy_modules.copy(): |
|
gpu_modules.append(m) |
|
legacy_modules.remove(m) |
|
mem_counter += m.total_mem |
|
|
|
for m in sorted(all_modules, key=lambda x: x.extra_mem).copy(): |
|
if mem_counter + m.extra_mem < model_gpu_memory_when_using_cpu_swap: |
|
gpu_modules_only_extras.append(m) |
|
all_modules.remove(m) |
|
mem_counter += m.extra_mem |
|
|
|
cpu_modules = all_modules |
|
|
|
for m in sorted(gpu_modules_only_extras, key=lambda x: x.weight_mem).copy(): |
|
if mem_counter + m.weight_mem < model_gpu_memory_when_using_cpu_swap: |
|
gpu_modules.append(m) |
|
gpu_modules_only_extras.remove(m) |
|
mem_counter += m.weight_mem |
|
|
|
return gpu_modules, gpu_modules_only_extras, cpu_modules |
|
|
|
|
|
class LoadedModel: |
|
def __init__(self, model): |
|
self.model = model |
|
self.model_accelerated = False |
|
self.device = model.load_device |
|
self.inclusive_memory = 0 |
|
self.exclusive_memory = 0 |
|
|
|
def compute_inclusive_exclusive_memory(self): |
|
self.inclusive_memory = module_size(self.model.model, include_device=self.device) |
|
self.exclusive_memory = module_size(self.model.model, exclude_device=self.device) |
|
return |
|
|
|
def model_load(self, model_gpu_memory_when_using_cpu_swap=-1): |
|
patch_model_to = None |
|
do_not_need_cpu_swap = model_gpu_memory_when_using_cpu_swap < 0 |
|
|
|
if do_not_need_cpu_swap: |
|
patch_model_to = self.device |
|
|
|
self.model.model_patches_to(self.device) |
|
self.model.model_patches_to(self.model.model_dtype()) |
|
|
|
try: |
|
self.real_model = self.model.forge_patch_model(patch_model_to) |
|
self.model.current_device = self.model.load_device |
|
except Exception as e: |
|
self.model.forge_unpatch_model(self.model.offload_device) |
|
self.model_unload() |
|
raise e |
|
|
|
if do_not_need_cpu_swap: |
|
print('All loaded to GPU.') |
|
else: |
|
gpu_modules, gpu_modules_only_extras, cpu_modules = build_module_profile(self.real_model, model_gpu_memory_when_using_cpu_swap) |
|
pin_memory = PIN_SHARED_MEMORY and is_device_cpu(self.model.offload_device) |
|
|
|
mem_counter = 0 |
|
swap_counter = 0 |
|
|
|
for m in gpu_modules: |
|
m.to(self.device) |
|
mem_counter += m.total_mem |
|
|
|
for m in cpu_modules: |
|
m.prev_parameters_manual_cast = m.parameters_manual_cast |
|
m.parameters_manual_cast = True |
|
m.to(self.model.offload_device) |
|
if pin_memory: |
|
m._apply(lambda x: x.pin_memory()) |
|
swap_counter += m.total_mem |
|
|
|
for m in gpu_modules_only_extras: |
|
m.prev_parameters_manual_cast = m.parameters_manual_cast |
|
m.parameters_manual_cast = True |
|
module_move(m, device=self.device, recursive=False, excluded_pattens=['weight']) |
|
if hasattr(m, 'weight') and m.weight is not None: |
|
if pin_memory: |
|
m.weight = utils.tensor2parameter(m.weight.to(self.model.offload_device).pin_memory()) |
|
else: |
|
m.weight = utils.tensor2parameter(m.weight.to(self.model.offload_device)) |
|
mem_counter += m.extra_mem |
|
swap_counter += m.weight_mem |
|
|
|
swap_flag = 'Shared' if PIN_SHARED_MEMORY else 'CPU' |
|
method_flag = 'asynchronous' if stream.should_use_stream() else 'blocked' |
|
print(f"{swap_flag} Swap Loaded ({method_flag} method): {swap_counter / (1024 * 1024):.2f} MB, GPU Loaded: {mem_counter / (1024 * 1024):.2f} MB") |
|
|
|
self.model_accelerated = True |
|
|
|
global signal_empty_cache |
|
signal_empty_cache = True |
|
|
|
bake_gguf_model(self.real_model) |
|
|
|
self.model.refresh_loras() |
|
|
|
if is_intel_xpu() and not args.disable_ipex_hijack: |
|
self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True) |
|
|
|
return self.real_model |
|
|
|
def model_unload(self, avoid_model_moving=False): |
|
if self.model_accelerated: |
|
for m in self.real_model.modules(): |
|
if hasattr(m, "prev_parameters_manual_cast"): |
|
m.parameters_manual_cast = m.prev_parameters_manual_cast |
|
del m.prev_parameters_manual_cast |
|
|
|
self.model_accelerated = False |
|
|
|
if avoid_model_moving: |
|
self.model.forge_unpatch_model() |
|
else: |
|
self.model.forge_unpatch_model(self.model.offload_device) |
|
self.model.model_patches_to(self.model.offload_device) |
|
|
|
def __eq__(self, other): |
|
return self.model is other.model |
|
|
|
|
|
current_inference_memory = 1024 * 1024 * 1024 |
|
|
|
|
|
def minimum_inference_memory(): |
|
global current_inference_memory |
|
return current_inference_memory |
|
|
|
|
|
def unload_model_clones(model): |
|
to_unload = [] |
|
for i in range(len(current_loaded_models)): |
|
if model.is_clone(current_loaded_models[i].model): |
|
to_unload = [i] + to_unload |
|
|
|
for i in to_unload: |
|
current_loaded_models.pop(i).model_unload(avoid_model_moving=True) |
|
|
|
|
|
def free_memory(memory_required, device, keep_loaded=[], free_all=False): |
|
|
|
for i in range(len(current_loaded_models) - 1, -1, -1): |
|
if sys.getrefcount(current_loaded_models[i].model) <= 2: |
|
current_loaded_models.pop(i).model_unload(avoid_model_moving=True) |
|
|
|
if free_all: |
|
memory_required = 1e30 |
|
print(f"[Unload] Trying to free all memory for {device} with {len(keep_loaded)} models keep loaded ... ", end="") |
|
else: |
|
print(f"[Unload] Trying to free {memory_required / (1024 * 1024):.2f} MB for {device} with {len(keep_loaded)} models keep loaded ... ", end="") |
|
|
|
offload_everything = ALWAYS_VRAM_OFFLOAD or vram_state == VRAMState.NO_VRAM |
|
unloaded_model = False |
|
for i in range(len(current_loaded_models) - 1, -1, -1): |
|
if not offload_everything: |
|
free_memory = get_free_memory(device) |
|
print(f"Current free memory is {free_memory / (1024 * 1024):.2f} MB ... ", end="") |
|
if free_memory > memory_required: |
|
break |
|
shift_model = current_loaded_models[i] |
|
if shift_model.device == device: |
|
if shift_model not in keep_loaded: |
|
m = current_loaded_models.pop(i) |
|
print(f"Unload model {m.model.model.__class__.__name__} ", end="") |
|
m.model_unload() |
|
del m |
|
unloaded_model = True |
|
|
|
if unloaded_model: |
|
soft_empty_cache() |
|
else: |
|
if vram_state != VRAMState.HIGH_VRAM: |
|
mem_free_total, mem_free_torch = get_free_memory(device, torch_free_too=True) |
|
if mem_free_torch > mem_free_total * 0.25: |
|
soft_empty_cache() |
|
|
|
print('Done.') |
|
return |
|
|
|
|
|
def compute_model_gpu_memory_when_using_cpu_swap(current_free_mem, inference_memory): |
|
maximum_memory_available = current_free_mem - inference_memory |
|
|
|
suggestion = max( |
|
maximum_memory_available / 1.3, |
|
maximum_memory_available - 1024 * 1024 * 1024 * 1.25 |
|
) |
|
|
|
return int(max(0, suggestion)) |
|
|
|
|
|
def load_models_gpu(models, memory_required=0, hard_memory_preservation=0): |
|
global vram_state |
|
|
|
execution_start_time = time.perf_counter() |
|
memory_to_free = max(minimum_inference_memory(), memory_required) + hard_memory_preservation |
|
memory_for_inference = minimum_inference_memory() + hard_memory_preservation |
|
|
|
models_to_load = [] |
|
models_already_loaded = [] |
|
for x in models: |
|
loaded_model = LoadedModel(x) |
|
|
|
if loaded_model in current_loaded_models: |
|
index = current_loaded_models.index(loaded_model) |
|
current_loaded_models.insert(0, current_loaded_models.pop(index)) |
|
models_already_loaded.append(loaded_model) |
|
else: |
|
models_to_load.append(loaded_model) |
|
|
|
if len(models_to_load) == 0: |
|
devs = set(map(lambda a: a.device, models_already_loaded)) |
|
for d in devs: |
|
if d != torch.device("cpu"): |
|
free_memory(memory_to_free, d, models_already_loaded) |
|
|
|
moving_time = time.perf_counter() - execution_start_time |
|
if moving_time > 0.1: |
|
print(f'Memory cleanup has taken {moving_time:.2f} seconds') |
|
|
|
return |
|
|
|
for loaded_model in models_to_load: |
|
unload_model_clones(loaded_model.model) |
|
|
|
total_memory_required = {} |
|
for loaded_model in models_to_load: |
|
loaded_model.compute_inclusive_exclusive_memory() |
|
total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.exclusive_memory + loaded_model.inclusive_memory * 0.25 |
|
|
|
for device in total_memory_required: |
|
if device != torch.device("cpu"): |
|
free_memory(total_memory_required[device] * 1.3 + memory_to_free, device, models_already_loaded) |
|
|
|
for loaded_model in models_to_load: |
|
model = loaded_model.model |
|
torch_dev = model.load_device |
|
if is_device_cpu(torch_dev): |
|
vram_set_state = VRAMState.DISABLED |
|
else: |
|
vram_set_state = vram_state |
|
|
|
model_gpu_memory_when_using_cpu_swap = -1 |
|
|
|
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM): |
|
model_require = loaded_model.exclusive_memory |
|
previously_loaded = loaded_model.inclusive_memory |
|
current_free_mem = get_free_memory(torch_dev) |
|
estimated_remaining_memory = current_free_mem - model_require - memory_for_inference |
|
|
|
print(f"[Memory Management] Target: {loaded_model.model.model.__class__.__name__}, Free GPU: {current_free_mem / (1024 * 1024):.2f} MB, Model Require: {model_require / (1024 * 1024):.2f} MB, Previously Loaded: {previously_loaded / (1024 * 1024):.2f} MB, Inference Require: {memory_for_inference / (1024 * 1024):.2f} MB, Remaining: {estimated_remaining_memory / (1024 * 1024):.2f} MB, ", end="") |
|
|
|
if estimated_remaining_memory < 0: |
|
vram_set_state = VRAMState.LOW_VRAM |
|
model_gpu_memory_when_using_cpu_swap = compute_model_gpu_memory_when_using_cpu_swap(current_free_mem, memory_for_inference) |
|
if previously_loaded > 0: |
|
model_gpu_memory_when_using_cpu_swap = previously_loaded |
|
|
|
if vram_set_state == VRAMState.NO_VRAM: |
|
model_gpu_memory_when_using_cpu_swap = 0 |
|
|
|
loaded_model.model_load(model_gpu_memory_when_using_cpu_swap) |
|
current_loaded_models.insert(0, loaded_model) |
|
|
|
moving_time = time.perf_counter() - execution_start_time |
|
print(f'Moving model(s) has taken {moving_time:.2f} seconds') |
|
|
|
return |
|
|
|
|
|
def load_model_gpu(model): |
|
return load_models_gpu([model]) |
|
|
|
|
|
def cleanup_models(): |
|
to_delete = [] |
|
for i in range(len(current_loaded_models)): |
|
if sys.getrefcount(current_loaded_models[i].model) <= 2: |
|
to_delete = [i] + to_delete |
|
|
|
for i in to_delete: |
|
x = current_loaded_models.pop(i) |
|
x.model_unload() |
|
del x |
|
|
|
|
|
def dtype_size(dtype): |
|
dtype_size = 4 |
|
if dtype == torch.float16 or dtype == torch.bfloat16: |
|
dtype_size = 2 |
|
elif dtype == torch.float32: |
|
dtype_size = 4 |
|
else: |
|
try: |
|
dtype_size = dtype.itemsize |
|
except: |
|
pass |
|
return dtype_size |
|
|
|
|
|
def unet_offload_device(): |
|
if vram_state == VRAMState.HIGH_VRAM: |
|
return get_torch_device() |
|
else: |
|
return torch.device("cpu") |
|
|
|
|
|
def unet_inital_load_device(parameters, dtype): |
|
torch_dev = get_torch_device() |
|
if vram_state == VRAMState.HIGH_VRAM: |
|
return torch_dev |
|
|
|
cpu_dev = torch.device("cpu") |
|
if ALWAYS_VRAM_OFFLOAD: |
|
return cpu_dev |
|
|
|
model_size = dtype_size(dtype) * parameters |
|
|
|
mem_dev = get_free_memory(torch_dev) |
|
mem_cpu = get_free_memory(cpu_dev) |
|
if mem_dev > mem_cpu and model_size < mem_dev: |
|
return torch_dev |
|
else: |
|
return cpu_dev |
|
|
|
|
|
def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]): |
|
if args.unet_in_bf16: |
|
return torch.bfloat16 |
|
|
|
if args.unet_in_fp16: |
|
return torch.float16 |
|
|
|
if args.unet_in_fp8_e4m3fn: |
|
return torch.float8_e4m3fn |
|
|
|
if args.unet_in_fp8_e5m2: |
|
return torch.float8_e5m2 |
|
|
|
for candidate in supported_dtypes: |
|
if candidate == torch.float16: |
|
if should_use_fp16(device, model_params=model_params, prioritize_performance=True, manual_cast=True): |
|
return candidate |
|
if candidate == torch.bfloat16: |
|
if should_use_bf16(device, model_params=model_params, prioritize_performance=True, manual_cast=True): |
|
return candidate |
|
|
|
return torch.float32 |
|
|
|
|
|
def get_computation_dtype(inference_device, parameters=0, supported_dtypes=[torch.float16, torch.bfloat16, torch.float32]): |
|
for candidate in supported_dtypes: |
|
if candidate == torch.float16: |
|
if should_use_fp16(inference_device, model_params=parameters, prioritize_performance=True, manual_cast=False): |
|
return candidate |
|
if candidate == torch.bfloat16: |
|
if should_use_bf16(inference_device, model_params=parameters, prioritize_performance=True, manual_cast=False): |
|
return candidate |
|
|
|
return torch.float32 |
|
|
|
|
|
def text_encoder_offload_device(): |
|
if args.always_gpu: |
|
return get_torch_device() |
|
else: |
|
return torch.device("cpu") |
|
|
|
|
|
def text_encoder_device(): |
|
if args.always_gpu: |
|
return get_torch_device() |
|
elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM: |
|
if should_use_fp16(prioritize_performance=False): |
|
return get_torch_device() |
|
else: |
|
return torch.device("cpu") |
|
else: |
|
return torch.device("cpu") |
|
|
|
|
|
def text_encoder_dtype(device=None): |
|
if args.clip_in_fp8_e4m3fn: |
|
return torch.float8_e4m3fn |
|
elif args.clip_in_fp8_e5m2: |
|
return torch.float8_e5m2 |
|
elif args.clip_in_fp16: |
|
return torch.float16 |
|
elif args.clip_in_fp32: |
|
return torch.float32 |
|
|
|
if is_device_cpu(device): |
|
return torch.float16 |
|
|
|
return torch.float16 |
|
|
|
|
|
def intermediate_device(): |
|
if args.always_gpu: |
|
return get_torch_device() |
|
else: |
|
return torch.device("cpu") |
|
|
|
|
|
def vae_device(): |
|
if args.vae_in_cpu: |
|
return torch.device("cpu") |
|
return get_torch_device() |
|
|
|
|
|
def vae_offload_device(): |
|
if args.always_gpu: |
|
return get_torch_device() |
|
else: |
|
return torch.device("cpu") |
|
|
|
|
|
def vae_dtype(device=None, allowed_dtypes=[]): |
|
global VAE_DTYPES |
|
if args.vae_in_fp16: |
|
return torch.float16 |
|
elif args.vae_in_bf16: |
|
return torch.bfloat16 |
|
elif args.vae_in_fp32: |
|
return torch.float32 |
|
|
|
for d in allowed_dtypes: |
|
if d == torch.float16 and should_use_fp16(device, prioritize_performance=False): |
|
return d |
|
if d in VAE_DTYPES: |
|
return d |
|
|
|
return VAE_DTYPES[0] |
|
|
|
|
|
print(f"VAE dtype preferences: {VAE_DTYPES} -> {vae_dtype()}") |
|
|
|
|
|
def get_autocast_device(dev): |
|
if hasattr(dev, 'type'): |
|
return dev.type |
|
return "cuda" |
|
|
|
|
|
def supports_dtype(device, dtype): |
|
if dtype == torch.float32: |
|
return True |
|
if is_device_cpu(device): |
|
return False |
|
if dtype == torch.float16: |
|
return True |
|
if dtype == torch.bfloat16: |
|
return True |
|
return False |
|
|
|
|
|
def supports_cast(device, dtype): |
|
if dtype == torch.float32: |
|
return True |
|
if dtype == torch.float16: |
|
return True |
|
if directml_enabled: |
|
return False |
|
if dtype == torch.bfloat16: |
|
return True |
|
if is_device_mps(device): |
|
return False |
|
if dtype == torch.float8_e4m3fn: |
|
return True |
|
if dtype == torch.float8_e5m2: |
|
return True |
|
return False |
|
|
|
|
|
def pick_weight_dtype(dtype, fallback_dtype, device=None): |
|
if dtype is None: |
|
dtype = fallback_dtype |
|
elif dtype_size(dtype) > dtype_size(fallback_dtype): |
|
dtype = fallback_dtype |
|
|
|
if not supports_cast(device, dtype): |
|
dtype = fallback_dtype |
|
|
|
return dtype |
|
|
|
|
|
def device_supports_non_blocking(device): |
|
if is_device_mps(device): |
|
return False |
|
if is_intel_xpu(): |
|
return False |
|
if args.pytorch_deterministic: |
|
return False |
|
if directml_enabled: |
|
return False |
|
return True |
|
|
|
|
|
def device_should_use_non_blocking(device): |
|
if not device_supports_non_blocking(device): |
|
return False |
|
return False |
|
|
|
|
|
|
|
def force_channels_last(): |
|
if args.force_channels_last: |
|
return True |
|
|
|
|
|
return False |
|
|
|
|
|
def cast_to_device(tensor, device, dtype, copy=False): |
|
device_supports_cast = False |
|
if tensor.dtype == torch.float32 or tensor.dtype == torch.float16: |
|
device_supports_cast = True |
|
elif tensor.dtype == torch.bfloat16: |
|
if hasattr(device, 'type') and device.type.startswith("cuda"): |
|
device_supports_cast = True |
|
elif is_intel_xpu(): |
|
device_supports_cast = True |
|
|
|
non_blocking = device_should_use_non_blocking(device) |
|
|
|
if device_supports_cast: |
|
if copy: |
|
if tensor.device == device: |
|
return tensor.to(dtype, copy=copy, non_blocking=non_blocking) |
|
return tensor.to(device, copy=copy, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking) |
|
else: |
|
return tensor.to(device, non_blocking=non_blocking).to(dtype, non_blocking=non_blocking) |
|
else: |
|
return tensor.to(device, dtype, copy=copy, non_blocking=non_blocking) |
|
|
|
|
|
def xformers_enabled(): |
|
global directml_enabled |
|
global cpu_state |
|
if cpu_state != CPUState.GPU: |
|
return False |
|
if is_intel_xpu(): |
|
return False |
|
if directml_enabled: |
|
return False |
|
return XFORMERS_IS_AVAILABLE |
|
|
|
|
|
def xformers_enabled_vae(): |
|
enabled = xformers_enabled() |
|
if not enabled: |
|
return False |
|
|
|
return XFORMERS_ENABLED_VAE |
|
|
|
|
|
def pytorch_attention_enabled(): |
|
global ENABLE_PYTORCH_ATTENTION |
|
return ENABLE_PYTORCH_ATTENTION |
|
|
|
|
|
def pytorch_attention_flash_attention(): |
|
global ENABLE_PYTORCH_ATTENTION |
|
if ENABLE_PYTORCH_ATTENTION: |
|
|
|
if is_nvidia(): |
|
return True |
|
if is_intel_xpu(): |
|
return True |
|
return False |
|
|
|
|
|
def force_upcast_attention_dtype(): |
|
upcast = args.force_upcast_attention |
|
try: |
|
if platform.mac_ver()[0] in ['14.5']: |
|
upcast = True |
|
except: |
|
pass |
|
if upcast: |
|
return torch.float32 |
|
else: |
|
return None |
|
|
|
|
|
def get_free_memory(dev=None, torch_free_too=False): |
|
global directml_enabled |
|
if dev is None: |
|
dev = get_torch_device() |
|
|
|
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'): |
|
mem_free_total = psutil.virtual_memory().available |
|
mem_free_torch = mem_free_total |
|
else: |
|
if directml_enabled: |
|
mem_free_total = 1024 * 1024 * 1024 |
|
mem_free_torch = mem_free_total |
|
elif is_intel_xpu(): |
|
stats = torch.xpu.memory_stats(dev) |
|
mem_active = stats['active_bytes.all.current'] |
|
mem_reserved = stats['reserved_bytes.all.current'] |
|
mem_free_torch = mem_reserved - mem_active |
|
mem_free_xpu = torch.xpu.get_device_properties(dev).total_memory - mem_reserved |
|
mem_free_total = mem_free_xpu + mem_free_torch |
|
else: |
|
stats = torch.cuda.memory_stats(dev) |
|
mem_active = stats['active_bytes.all.current'] |
|
mem_reserved = stats['reserved_bytes.all.current'] |
|
mem_free_cuda, _ = torch.cuda.mem_get_info(dev) |
|
mem_free_torch = mem_reserved - mem_active |
|
mem_free_total = mem_free_cuda + mem_free_torch |
|
|
|
if torch_free_too: |
|
return (mem_free_total, mem_free_torch) |
|
else: |
|
return mem_free_total |
|
|
|
|
|
def cpu_mode(): |
|
global cpu_state |
|
return cpu_state == CPUState.CPU |
|
|
|
|
|
def mps_mode(): |
|
global cpu_state |
|
return cpu_state == CPUState.MPS |
|
|
|
|
|
def is_device_type(device, type): |
|
if hasattr(device, 'type'): |
|
if (device.type == type): |
|
return True |
|
return False |
|
|
|
|
|
def is_device_cpu(device): |
|
return is_device_type(device, 'cpu') |
|
|
|
|
|
def is_device_mps(device): |
|
return is_device_type(device, 'mps') |
|
|
|
|
|
def is_device_cuda(device): |
|
return is_device_type(device, 'cuda') |
|
|
|
|
|
def should_use_fp16(device=None, model_params=0, prioritize_performance=True, manual_cast=False): |
|
global directml_enabled |
|
|
|
if device is not None: |
|
if is_device_cpu(device): |
|
return False |
|
|
|
if FORCE_FP16: |
|
return True |
|
|
|
if device is not None: |
|
if is_device_mps(device): |
|
return True |
|
|
|
if FORCE_FP32: |
|
return False |
|
|
|
if directml_enabled: |
|
return False |
|
|
|
if mps_mode(): |
|
return True |
|
|
|
if cpu_mode(): |
|
return False |
|
|
|
if is_intel_xpu(): |
|
return True |
|
|
|
if torch.version.hip: |
|
return True |
|
|
|
props = torch.cuda.get_device_properties("cuda") |
|
if props.major >= 8: |
|
return True |
|
|
|
if props.major < 6: |
|
return False |
|
|
|
nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050", "p40", "p100", "p6", "p4"] |
|
for x in nvidia_10_series: |
|
if x in props.name.lower(): |
|
if manual_cast: |
|
|
|
free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory()) |
|
if (not prioritize_performance) or model_params * 4 > free_model_memory: |
|
return True |
|
else: |
|
|
|
return False |
|
|
|
if props.major < 7: |
|
return False |
|
|
|
|
|
nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"] |
|
for x in nvidia_16_series: |
|
if x in props.name: |
|
return False |
|
|
|
return True |
|
|
|
|
|
def should_use_bf16(device=None, model_params=0, prioritize_performance=True, manual_cast=False): |
|
if device is not None: |
|
if is_device_cpu(device): |
|
return False |
|
|
|
if device is not None: |
|
if is_device_mps(device): |
|
return True |
|
|
|
if FORCE_FP32: |
|
return False |
|
|
|
if directml_enabled: |
|
return False |
|
|
|
if mps_mode(): |
|
return True |
|
|
|
if cpu_mode(): |
|
return False |
|
|
|
if is_intel_xpu(): |
|
return True |
|
|
|
if device is None: |
|
device = torch.device("cuda") |
|
|
|
props = torch.cuda.get_device_properties(device) |
|
if props.major >= 8: |
|
return True |
|
|
|
if torch.cuda.is_bf16_supported(): |
|
|
|
|
|
if manual_cast: |
|
|
|
free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory()) |
|
if (not prioritize_performance) or model_params * 4 > free_model_memory: |
|
return True |
|
|
|
return False |
|
|
|
|
|
def can_install_bnb(): |
|
try: |
|
if not torch.cuda.is_available(): |
|
return False |
|
|
|
cuda_version = tuple(int(x) for x in torch.version.cuda.split('.')) |
|
|
|
if cuda_version >= (11, 7): |
|
return True |
|
|
|
return False |
|
except: |
|
return False |
|
|
|
|
|
signal_empty_cache = False |
|
|
|
|
|
def soft_empty_cache(force=False): |
|
global cpu_state, signal_empty_cache |
|
if cpu_state == CPUState.MPS: |
|
torch.mps.empty_cache() |
|
elif is_intel_xpu(): |
|
torch.xpu.empty_cache() |
|
elif torch.cuda.is_available(): |
|
if force or is_nvidia(): |
|
torch.cuda.empty_cache() |
|
torch.cuda.ipc_collect() |
|
signal_empty_cache = False |
|
return |
|
|
|
|
|
current_loaded_models_per_device = {} |
|
|
|
def unload_all_models(device_id=None): |
|
if device_id is None: |
|
|
|
for device_models in current_loaded_models_per_device.values(): |
|
for model in device_models: |
|
model.model_unload() |
|
current_loaded_models_per_device.clear() |
|
else: |
|
|
|
if device_id in current_loaded_models_per_device: |
|
for model in current_loaded_models_per_device[device_id]: |
|
model.model_unload() |
|
del current_loaded_models_per_device[device_id] |