dqn-cart-pole / config.json
nsanghi's picture
Push to Hub
330e58a
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7fccdbe3f1c0>", "_build": "<function DQNPolicy._build at 0x7fccdbe3f250>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7fccdbe3f2e0>", "forward": "<function DQNPolicy.forward at 0x7fccdbe3f370>", "_predict": "<function DQNPolicy._predict at 0x7fccdbe3f400>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7fccdbe3f490>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7fccdbe3f520>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fccdbe4e900>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVUQAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlChNAAFNAAFldS4=", "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>", "net_arch": [256, 256]}, "num_timesteps": 100000, "_total_timesteps": 100000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698298683854516217, "learning_rate": 0.0001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAC7nBz+T4UU/PhyRPcG3rb6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAFTwBD+SNhQ/6vyTPZjhj72UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"}, "_episode_num": 3854, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCIAAAAAAACMAWyUSwmMAXSUR0CP4xn13+uOdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0CP4ynXumaZdX2UKGgGR0AmAAAAAAAAaAdLC2gIR0CP4zk+5e7ddX2UKGgGR0AiAAAAAAAAaAdLCWgIR0CP40Ucn3L3dX2UKGgGR0A0AAAAAAAAaAdLFGgIR0CP42EMb3oLdX2UKGgGR0AiAAAAAAAAaAdLCWgIR0CP423cYZVGdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0CP43xaPjn3dX2UKGgGR0AoAAAAAAAAaAdLDGgIR0CP4413MY/FdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0CP46qJdjXndX2UKGgGR0AkAAAAAAAAaAdLCmgIR0CP47u2JBPbdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0CP48Yu01IidX2UKGgGR0A5AAAAAAAAaAdLGWgIR0CP5AhKUVzqdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0CP5BiWmgrZdX2UKGgGR0BmwAAAAAAAaAdLtmgIR0CP5VQrMC9zdX2UKGgGR0BygAAAAAAAaAdNKAFoCEdAj+eam4y44XV9lChoBkdAaSAAAAAAAGgHS8loCEdAj+jscABDHHV9lChoBkdAZWAAAAAAAGgHS6toCEdAj+n3TmW+oXV9lChoBkdAOAAAAAAAAGgHSxhoCEdAj+ohd2PkrHV9lChoBkdAZQAAAAAAAGgHS6hoCEdAj+tLdepn6HV9lChoBkdAYSAAAAAAAGgHS4loCEdAj+xHz6JqI3V9lChoBkdAaqAAAAAAAGgHS9VoCEdAj+1/MW43FXV9lChoBkdAaeAAAAAAAGgHS89oCEdAj+8sr/bTMXV9lChoBkdAaKAAAAAAAGgHS8VoCEdAj/B9upCKJnV9lChoBkdAUYAAAAAAAGgHS0ZoCEdAj/DcVQAMlXV9lChoBkdARIAAAAAAAGgHSyloCEdAj/FA8r7O3XV9lChoBkdAaGAAAAAAAGgHS8NoCEdAj/KvE0iyIHV9lChoBkdAXkAAAAAAAGgHS3loCEdAj/O6Zpi7TXV9lChoBkdAYEAAAAAAAGgHS4JoCEdAj/SKQJXyRXV9lChoBkdAbEAAAAAAAGgHS+JoCEdAj/Y+jVQQ+XV9lChoBkdAXMAAAAAAAGgHS3NoCEdAj/cbYkE9uHV9lChoBkdAcrAAAAAAAGgHTSsBaAhHQI/5Ymqo60Z1fZQoaAZHQFSAAAAAAABoB0tSaAhHQI/57Z+QU6B1fZQoaAZHQECAAAAAAABoB0shaAhHQI/6M0Ltu1p1fZQoaAZHQDgAAAAAAABoB0sYaAhHQI/6X+n62v11fZQoaAZHQGSgAAAAAABoB0ulaAhHQI/7kuez2OB1fZQoaAZHQGLAAAAAAABoB0uWaAhHQI/8lJDmbLF1fZQoaAZHQEAAAAAAAABoB0sgaAhHQI/88U47zTZ1fZQoaAZHQHDwAAAAAABoB00PAWgIR0CP/vmnO0LMdX2UKGgGR0BkIAAAAAAAaAdLoWgIR0CQABP8AJb/dX2UKGgGR0BngAAAAAAAaAdLvGgIR0CQALSPluFYdX2UKGgGR0BNgAAAAAAAaAdLO2gIR0CQAOvLowEhdX2UKGgGR0Bn4AAAAAAAaAdLv2gIR0CQAacp9ZzQdX2UKGgGR0BcQAAAAAAAaAdLcWgIR0CQAgNJe3QVdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0CQAhkdV/+bdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0CQAilUIcBEdX2UKGgGR0A+AAAAAAAAaAdLHmgIR0CQAkBCUorndX2UKGgGR0AxAAAAAAAAaAdLEWgIR0CQAk8/UvwmdX2UKGgGR0A7AAAAAAAAaAdLG2gIR0CQAmvJRwZPdX2UKGgGR0BnIAAAAAAAaAdLuWgIR0CQAyZDArQPdX2UKGgGR0Bv4AAAAAAAaAdL/2gIR0CQA+9itq59dX2UKGgGR0BjgAAAAAAAaAdLnGgIR0CQBIJzDGcXdX2UKGgGR0BkoAAAAAAAaAdLpWgIR0CQBSaIvalDdX2UKGgGR0BzwAAAAAAAaAdNPAFoCEdAkAY8sH0K7nV9lChoBkdAcVAAAAAAAGgHTRUBaAhHQJAHOPdVNpN1fZQoaAZHQGXgAAAAAABoB0uvaAhHQJAHvAWSEDh1fZQoaAZHQGmAAAAAAABoB0vMaAhHQJAIemR/3Fl1fZQoaAZHQGogAAAAAABoB0vRaAhHQJAJNUzbeuV1fZQoaAZHQGcgAAAAAABoB0u5aAhHQJAJ6KUFB6d1fZQoaAZHQGYAAAAAAABoB0uwaAhHQJAKe2PT5O91fZQoaAZHQG8gAAAAAABoB0v5aAhHQJALg7W/ag51fZQoaAZHQHFAAAAAAABoB00UAWgIR0CQDIHs1KoRdX2UKGgGR0Bm4AAAAAAAaAdLt2gIR0CQDRpxFRYSdX2UKGgGR0BnoAAAAAAAaAdLvWgIR0CQDcllK9PDdX2UKGgGR0BnYAAAAAAAaAdLu2gIR0CQDlst03fidX2UKGgGR0BlgAAAAAAAaAdLrGgIR0CQDu9tdiUgdX2UKGgGR0Br4AAAAAAAaAdL32gIR0CQD7kBS1mbdX2UKGgGR0BooAAAAAAAaAdLxWgIR0CQEF/gBLf2dX2UKGgGR0BmYAAAAAAAaAdLs2gIR0CQER/jbSJCdX2UKGgGR0BnQAAAAAAAaAdLumgIR0CQEdZCv5gxdX2UKGgGR0BkwAAAAAAAaAdLpmgIR0CQEo2nbZezdX2UKGgGR0BlIAAAAAAAaAdLqWgIR0CQE1DYRNAUdX2UKGgGR0BiQAAAAAAAaAdLkmgIR0CQE+J0nw5OdX2UKGgGR0BxwAAAAAAAaAdNHAFoCEdAkBTiR0U473V9lChoBkdAb4AAAAAAAGgHS/xoCEdAkBXXFDOTq3V9lChoBkdAZgAAAAAAAGgHS7BoCEdAkBZibH6uXHV9lChoBkdAb+AAAAAAAGgHS/9oCEdAkBdaJEYwZnV9lChoBkdAYYAAAAAAAGgHS4xoCEdAkBfTcynDSHV9lChoBkdAZKAAAAAAAGgHS6VoCEdAkBhrZWaMJnV9lChoBkdAY2AAAAAAAGgHS5toCEdAkBj2XHBDX3V9lChoBkdAZ2AAAAAAAGgHS7toCEdAkBmu5OJtSHV9lChoBkdAbwAAAAAAAGgHS/hoCEdAkBqCLAHminV9lChoBkdAZgAAAAAAAGgHS7BoCEdAkBsU5U96knV9lChoBkdAYYAAAAAAAGgHS4xoCEdAkBuGtuDSPXV9lChoBkdAZ+AAAAAAAGgHS79oCEdAkBwyHuZ1FHV9lChoBkdAYuAAAAAAAGgHS5doCEdAkBzKYVqN63V9lChoBkdAbsAAAAAAAGgHS/ZoCEdAkB2f0h/y5XV9lChoBkdAZMAAAAAAAGgHS6ZoCEdAkB42lQ/HHXV9lChoBkdAZaAAAAAAAGgHS61oCEdAkB7GyC4Bm3V9lChoBkdAX0AAAAAAAGgHS31oCEdAkB87YGt6onV9lChoBkdAZEAAAAAAAGgHS6JoCEdAkB/MD4gzQHV9lChoBkdAawAAAAAAAGgHS9hoCEdAkCCDAzpHJHV9lChoBkdAZ0AAAAAAAGgHS7poCEdAkCEuclPac3V9lChoBkdAZ0AAAAAAAGgHS7poCEdAkCHRgAp8W3V9lChoBkdAbuAAAAAAAGgHS/doCEdAkCKiDAaegHV9lChoBkdAZkAAAAAAAGgHS7JoCEdAkCM4hUzbe3V9lChoBkdAakAAAAAAAGgHS9JoCEdAkCPvGZNO/XV9lChoBkdAZEAAAAAAAGgHS6JoCEdAkCSc1wYLs3V9lChoBkdAcTAAAAAAAGgHTRMBaAhHQJAlw3n6l+F1fZQoaAZHQEgAAAAAAABoB0swaAhHQJAl7fGdZq51fZQoaAZHQGFAAAAAAABoB0uKaAhHQJAmbyauwHJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12500, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVFgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVowEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQqnN8GzqKSV9UPirV0Tn4MowDaW5jlIoQw8h/yc7WETmPSpM6+oSpaHWMCmhhc191aW50MzKUSwGMCHVpbnRlZ2VylIoFG9vm3wB1YnViLg==", "n": "2", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "buffer_size": 1000000, "batch_size": 32, "learning_starts": 50000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7fccdbe2b880>", "add": "<function ReplayBuffer.add at 0x7fccdbe2b910>", "sample": "<function ReplayBuffer.sample at 0x7fccdbe2b9a0>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7fccdbe2ba30>", "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7fccdbe2bac0>)>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fccdbe38600>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 10000, "_n_calls": 100000, "max_grad_norm": 10, "exploration_rate": 0.05, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVAwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaC9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxoL2hvbWUvbnNhbmdoaS9zYW5kYm94L2FwcmVzcy9kcmwtMmVkL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "batch_norm_stats": [], "batch_norm_stats_target": [], "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVowMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGgvaG9tZS9uc2FuZ2hpL3NhbmRib3gvYXByZXNzL2RybC0yZWQvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3FDBgwBBAEYApSMA2VuZJSMDGVuZF9mcmFjdGlvbpSMBXN0YXJ0lIeUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaC9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAqMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoL3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+pmZmZmZmahZRSlGg3Rz+5mZmZmZmahZRSlGg3Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "False", "Numpy": "1.25.1", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}}