Push to Hub
Browse files- README.md +7 -54
- config.json +1 -1
- dqn-LunarLander-v2.zip +2 -2
- dqn-LunarLander-v2/data +58 -63
- dqn-LunarLander-v2/policy.optimizer.pth +2 -2
- dqn-LunarLander-v2/policy.pth +2 -2
- dqn-LunarLander-v2/system_info.txt +3 -3
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -16,69 +16,22 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
# **DQN** Agent playing **LunarLander-v2**
|
25 |
This is a trained model of a **DQN** agent playing **LunarLander-v2**
|
26 |
-
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
-
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
with hyperparameter optimization and pre-trained agents included.
|
32 |
|
33 |
-
## Usage (with SB3 RL Zoo)
|
34 |
|
35 |
-
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
-
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
-
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
-
|
39 |
-
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
-
```bash
|
41 |
-
pip install rl_zoo3
|
42 |
-
```
|
43 |
-
|
44 |
-
```
|
45 |
-
# Download model and save it into the logs/ folder
|
46 |
-
python -m rl_zoo3.load_from_hub --algo dqn --env LunarLander-v2 -orga nsanghi -f logs/
|
47 |
-
python -m rl_zoo3.enjoy --algo dqn --env LunarLander-v2 -f logs/
|
48 |
-
```
|
49 |
-
|
50 |
-
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
-
```
|
52 |
-
python -m rl_zoo3.load_from_hub --algo dqn --env LunarLander-v2 -orga nsanghi -f logs/
|
53 |
-
python -m rl_zoo3.enjoy --algo dqn --env LunarLander-v2 -f logs/
|
54 |
-
```
|
55 |
-
|
56 |
-
## Training (with the RL Zoo)
|
57 |
-
```
|
58 |
-
python -m rl_zoo3.train --algo dqn --env LunarLander-v2 -f logs/
|
59 |
-
# Upload the model and generate video (when possible)
|
60 |
-
python -m rl_zoo3.push_to_hub --algo dqn --env LunarLander-v2 -f logs/ -orga nsanghi
|
61 |
-
```
|
62 |
-
|
63 |
-
## Hyperparameters
|
64 |
```python
|
65 |
-
|
66 |
-
|
67 |
-
('exploration_final_eps', 0.1),
|
68 |
-
('exploration_fraction', 0.12),
|
69 |
-
('gamma', 0.99),
|
70 |
-
('gradient_steps', -1),
|
71 |
-
('learning_rate', 0.00063),
|
72 |
-
('learning_starts', 0),
|
73 |
-
('n_timesteps', 100000.0),
|
74 |
-
('policy', 'MlpPolicy'),
|
75 |
-
('policy_kwargs', 'dict(net_arch=[256, 256])'),
|
76 |
-
('target_update_interval', 250),
|
77 |
-
('train_freq', 4),
|
78 |
-
('normalize', False)])
|
79 |
-
```
|
80 |
|
81 |
-
|
82 |
-
```python
|
83 |
-
{'render_mode': 'rgb_array'}
|
84 |
```
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 87.35 +/- 35.51
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
# **DQN** Agent playing **LunarLander-v2**
|
25 |
This is a trained model of a **DQN** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
|
|
27 |
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
|
|
30 |
|
|
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
...
|
|
|
|
|
37 |
```
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7efd33b69310>", "_build": "<function DQNPolicy._build at 0x7efd33b693a0>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7efd33b69430>", "forward": "<function DQNPolicy.forward at 0x7efd33b694c0>", "_predict": "<function DQNPolicy._predict at 0x7efd33b69550>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7efd33b695e0>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7efd33b69670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efd33b6b0c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709621653573777784, "learning_rate": 0.0001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAIBR6b3lvGw/iyDjPMnrLr4dUSI8S2h8vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAMDe6b3LuG0/iiDjPESdE77s7y48Y2h8vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_episode_num": 614, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGYLIhhYvFqMAWyUS32MAXSUR0BN/qoQ4CIUdX2UKGgGR8B233iYLLIQaAdLdmgIR0BODDziCJ40dX2UKGgGR8BwfjviLl3haAdLbmgIR0BOGZjpcHGCdX2UKGgGR8BioZ+H8CPqaAdLTmgIR0BOJfn4fwI/dX2UKGgGR8BsnNFpfx+baAdLSGgIR0BOP7Rv3rUtdX2UKGgGR8BpOlATqSowaAdLRmgIR0BOUXyiEg4fdX2UKGgGR0AlBwSamXPaaAdLT2gIR0BOWMaCL/CJdX2UKGgGR0Akpho/RmbtaAdLQmgIR0BOX2xQizLPdX2UKGgGR8BkfMH4XXRPaAdLaWgIR0BOckQPI4lydX2UKGgGR8Bh+thE0BOpaAdLdmgIR0BOfmQ0XP7fdX2UKGgGR8B12NfMOf/WaAdLUGgIR0BOirRa5f+kdX2UKGgGR8B0Ux9F4LThaAdLcWgIR0BOmuOjqOcUdX2UKGgGR8BTJ2pQ1rIpaAdLSWgIR0BOp1Oj7ALzdX2UKGgGR8Bh0qJVKf4AaAdLaWgIR0BOuiwr1/UfdX2UKGgGR8BWz0xmCiAUaAdLm2gIR0BO0l5GBnSOdX2UKGgGR8B1KXMA3kxRaAdLXWgIR0BO3UUoKD02dX2UKGgGR8BsEhGKAJ9iaAdLVGgIR0BO58stkFwDdX2UKGgGR8B7wt5dGAkLaAdLWWgIR0BO8c/MW43FdX2UKGgGR8B0eNi1AqusaAdLZGgIR0BPvXQdCE6DdX2UKGgGR8CF1bBLPD51aAdLbWgIR0BRICcslLOBdX2UKGgGR8CKweCih37laAdLjGgIR0BTGpNTLns+dX2UKGgGR8CR2cya/h2oaAdLxWgIR0BVjnr6ciGGdX2UKGgGR8CLGeigTRICaAdLf2gIR0BXNUDMeOn3dX2UKGgGR8CJfEBbwBo3aAdLiGgIR0BZIdXko4MndX2UKGgGR8CGy4a3qiXZaAdLXWgIR0BaT7idat9ydX2UKGgGR8CSbG1rqMWHaAdL3mgIR0BdZOnQ6ZH/dX2UKGgGR8CGYm2n889waAdLiGgIR0Be8UT6BRQ8dX2UKGgGR8CAojPxhDw6aAdLWGgIR0BfyUQoTfzjdX2UKGgGR8CYA/I3zcynaAdL22gIR0BhKuszVMEidX2UKGgGR8CUORBRQ79yaAdLv2gIR0BiSXCCSRr8dX2UKGgGR8CyLUqjBVMmaAdNzAFoCEdAZNJ4i5d4V3V9lChoBkfAeJtB8x9G7WgHS0xoCEdAZWXN9H+ZPXV9lChoBkfAi8F8e8wpOWgHS7hoCEdAZrMX5WRzR3V9lChoBkfAic0FS88La2gHS4BoCEdAZ4IiRnvlVHV9lChoBkfAeZIy+pOvdWgHS5BoCEdAaH02y9mHxnV9lChoBkfAcW63WnTAnGgHS2xoCEdAaScrsByS3nV9lChoBkfAepOA3T/hl2gHTRQBaAhHQGrUsRpUPxx1fZQoaAZHwHl4TeCTUy5oB00qAWgIR0Bsja6Ymb9ZdX2UKGgGR8Blx9BlcyFgaAdLzWgIR0Bty7qOcUdrdX2UKGgGR8Biogg3cYZVaAdLyGgIR0Bubwqy4Wk8dX2UKGgGR8BEolZ5iVjaaAdN6ANoCEdAcLzhUBGQS3V9lChoBkdAVPI4rBj4H2gHTegDaAhHQHPePVmSQo11fZQoaAZHwD0UjSofjjtoB03oA2gIR0B3IXlEJBw/dX2UKGgGR8Ake0ojOcDsaAdL0mgIR0B32heOXE61dX2UKGgGR8BgYvbmEGqxaAdLuGgIR0B4epnUUfxMdX2UKGgGR8BhEFdonKGMaAdLsGgIR0B4mYToMa0hdX2UKGgGR0BvdoXEZR8/aAdNwwFoCEdAePTsyzollnV9lChoBkdAZ0lkpZwGW2gHTZUDaAhHQHqxgTM7lq91fZQoaAZHQG1UaEBbOeJoB01nAmgIR0B8H+0svqTsdX2UKGgGR8BMQIToMa0haAdN6ANoCEdAflWNSIgvDnV9lChoBkfAY33GNrCWNWgHTegDaAhHQH+aBM8HObB1fZQoaAZHwE9sT/Q0GeNoB03oA2gIR0CAiUYNRWLhdX2UKGgGR8Bym/vMKTjeaAdN6ANoCEdAgjphAv+OwXV9lChoBkfAcp2LMLWqcWgHTegDaAhHQILjHfCQ9zR1fZQoaAZHwAoOM+/xlQNoB01cAWgIR0CC9uGr0aqCdX2UKGgGR8BwAo1UEPlNaAdN6ANoCEdAg2pMPJ7swHV9lChoBkfAaywxGlQ/HGgHTegDaAhHQIQE/UWl/H51fZQoaAZHwDnPaoMrmQtoB00bAWgIR0CEJJ7WNFSbdX2UKGgGR8BgEHTuv2XcaAdN6ANoCEdAhKjfyoXKsHV9lChoBkfAYHm2ycCo0mgHTegDaAhHQIUz7/2kBS11fZQoaAZHwEUX79hqj8FoB03oA2gIR0CFnoIP9UCJdX2UKGgGR8BdCqAOJ+DwaAdN6ANoCEdAhexZowmE5HV9lChoBkfAW1YEs8PnS2gHTegDaAhHQIZRrwSamXR1fZQoaAZHQGZESIgvDgtoB02QA2gIR0CGrRQ5WBBidX2UKGgGR0BunPHim2sraAdNAQNoCEdAhw6okzGgjHV9lChoBkdAasH7cfvF32gHTdYBaAhHQIcrZgZ0jkd1fZQoaAZHP+YIFeOXE61oB03oA2gIR0CHjfC3PRiPdX2UKGgGR0Bcm82vStvGaAdNmgNoCEdAh9sU1qFh5XV9lChoBkdAZuxRBNVR12gHTb4DaAhHQIg3LB68g6l1fZQoaAZHQGdMbhegL7ZoB032AmgIR0CIZWGFBY3edX2UKGgGR0BsJmiN83MqaAdNHwNoCEdAiJlCGetjkXV9lChoBkdAYmR6hQFcIWgHTUIDaAhHQIjb+fNA1Nx1fZQoaAZHQGei7jcVQANoB02MAmgIR0CJAUnBLwnZdX2UKGgGR0BiG8neBQN1aAdN0gNoCEdAiUYjPOY6XHV9lChoBkdAZUqohIOH32gHTfkCaAhHQIl2XgFX7tR1fZQoaAZHQGp5SyUs4DNoB00mAmgIR0CJo1ovi97GdX2UKGgGR0BjZona37UHaAdNcANoCEdAigx/ZVXFLnV9lChoBkdAZPdKXfIjnmgHTXIDaAhHQIp0s83dbgV1fZQoaAZHQGfFWY4Qz1toB03MAmgIR0CKoBeWOZLJdX2UKGgGR0Bq8j1RLsa9aAdNnQJoCEdAitDSG8EmpnV9lChoBkdAamH+8XenAWgHTcICaAhHQIsCnw5NoJ11fZQoaAZHQHCwzg/C66JoB00KAmgIR0CLEbaW5YozdX2UKGgGR0BpBNNzr/sFaAdNBgNoCEdAiypnlXA/LXV9lChoBkdAZ48UFjd56mgHTU4DaAhHQItJqFK02Lp1fZQoaAZHQGyZXlbNbC9oB01yAmgIR0CLWDDw6QvIdX2UKGgGR0BksQ5aNdZ8aAdNmQNoCEdAi3QZ0jkdWHV9lChoBkdAZxH3pOerdWgHTScDaAhHQIuR5TsIE8t1fZQoaAZHwFIcxX4j8k5oB031AmgIR0CLp2RbKRuCdX2UKGgGR0BpAwAEMb3oaAdN1gJoCEdAi7m7cXWOInV9lChoBkdAZxHUQTVUdmgHTXgCaAhHQIvJetlqagF1fZQoaAZHQGX6RNZeRgZoB00EA2gIR0CL3wqdYnv2dX2UKGgGR0BpxWFnIyTIaAdNtQJoCEdAi+/K6e5Fw3V9lChoBkdAZU38CPp6hWgHTY0CaAhHQIwBP9ehPCV1fZQoaAZHQGga1tXPqs5oB032AmgIR0CMF3WCEpRXdX2UKGgGR0Bl3i2nbZezaAdN4AJoCEdAjDHCrT6SDHV9lChoBkdAZbH+WGATZmgHTccCaAhHQIxEPO8kD6p1fZQoaAZHQGjNsGgSOBFoB03kAmgIR0CMXAZaV2RrdX2UKGgGR0BxLc4HX2/SaAdNwgJoCEdAjG30qQRwqHV9lChoBkdAatyQg9vCM2gHTZECaAhHQIyCjx0+1Sh1fZQoaAZHQGhYLT6SDAdoB01SAmgIR0CMk2gow22odWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12500, "buffer_size": 1000000, "batch_size": 32, "learning_starts": 50000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7efd33bba8b0>", "add": "<function ReplayBuffer.add at 0x7efd33bba940>", "sample": "<function ReplayBuffer.sample at 0x7efd33bba9d0>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7efd33bbaa60>", "_maybe_cast_dtype": "<staticmethod object at 0x7efd33bbf3d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efd33f2d240>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.1, "exploration_fraction": 0.1, "target_update_interval": 250, "_n_calls": 100000, "max_grad_norm": 10, "exploration_rate": 0.1, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVZgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVxgEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB+MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCqKEZjVN9mFTYBBIuRRlEAkHKUAjANpbmOUihB17S3+WRffTxY2l7BoR6QDdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUigUYs6biAHVidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaS9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52MzkvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaS9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52MzkvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "batch_norm_stats": [], "batch_norm_stats_target": [], "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVjAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxpL2hvbWUvbnNhbmdoaS9zYW5kYm94L2FwcmVzcy9kcmwtMmVkL3ZlbnYzOS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLcUMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxpL2hvbWUvbnNhbmdoaS9zYW5kYm94L2FwcmVzcy9kcmwtMmVkL3ZlbnYzOS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC51jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpRoNkc/uZmZmZmZmoWUUpRoNkc/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.15.133.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Thu Oct 5 21:02:42 UTC 2023", "Python": "3.9.18", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cpu", "GPU Enabled": "False", "Numpy": "1.26.1", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1", "OpenAI Gym": "0.26.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7f7bc1685040>", "_build": "<function DQNPolicy._build at 0x7f7bc16850d0>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7f7bc1685160>", "forward": "<function DQNPolicy.forward at 0x7f7bc16851f0>", "_predict": "<function DQNPolicy._predict at 0x7f7bc1685280>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f7bc1685310>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f7bc16853a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7bc1704700>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709631678889401888, "learning_rate": 0.0001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADPmhL36pw4+gBLTu/CPlb1JVMy8dA2ZOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAALPFhL29VhA+jHgyu5fCmL0NPs68z50YPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_episode_num": 610, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVFgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFeouCf6Gg2MAWyUS1mMAXSUR0AuiLl3hXKbdX2UKGgGR0AJiD9OymhuaAdLgWgIR0AumAU+LWI5dX2UKGgGR8B02WLFXJYDaAdLX2gIR0AupZ7ojfNzdX2UKGgGR8BUIBRVIZqEaAdLQmgIR0AurLAYYR/WdX2UKGgGR8B4fmWkadc0aAdLWmgIR0Aut3HJcPe6dX2UKGgGR8BgSjCJoCdSaAdLeWgIR0AuxGViWmgrdX2UKGgGR8BbZyzHCGeuaAdLZGgIR0AuzwZwXIludX2UKGgGR8BybvLGJemfaAdLW2gIR0Au244Ia99MdX2UKGgGR8B3fbWjGkvcaAdLWWgIR0Au5UbT+ee4dX2UKGgGR8Bj+b6ciGFjaAdLdWgIR0Au9FOO801qdX2UKGgGR8BWStFnZkCnaAdLZmgIR0AvAtFKCg9NdX2UKGgGR8Bo54y/KyOaaAdLZGgIR0AvDyzXz19OdX2UKGgGR8B3O32EkB0ZaAdLTGgIR0AvF0p3HJcPdX2UKGgGR0ABDvgFX7tRaAdLWWgIR0AvIIt16mfodX2UKGgGR8BrrMmShakiaAdLUmgIR0AvKVgQYk3TdX2UKGgGR8BveSqsEJSjaAdLUWgIR0AvMvxpcophdX2UKGgGR8BaUQw9JSR9aAdLSmgIR0AvOw5eZ5RkdX2UKGgGR8BfykGRmseXaAdLXGgIR0AvSMKCxu89dX2UKGgGR8BYowSJ0nw5aAdLc2gIR0AvV7aZhKDkdX2UKGgGR8Bdx8L4N7SiaAdLZ2gIR0AvY7OmixmkdX2UKGgGR8BgtVjbzshQaAdLYGgIR0AvdJ1aGHpKdX2UKGgGR8BgUwn+hoM8aAdLTGgIR0AvhBVuJk5IdX2UKGgGR8BXly6QNkOJaAdLQ2gIR0Avj5SFXaJzdX2UKGgGR8BD95J04iosaAdLi2gIR0Avpaews5GSdX2UKGgGR8BYGnaews5GaAdLcWgIR0AvtQ+lj3EidX2UKGgGR8BiYCQT238XaAdLgmgIR0AvxtD2JzkqdX2UKGgGR8B66kFfReC1aAdLbWgIR0AwSaxHG0eEdX2UKGgGR8BfpUVvddmhaAdLPGgIR0AwVAQxvegtdX2UKGgGR8B4ytnYg7o0aAdLUGgIR0AwY8s+V1OkdX2UKGgGR8CFm6sf7rLRaAdLgWgIR0Awfe/5+H8CdX2UKGgGR8CRvuEwWWQfaAdLnmgIR0Awn3u/k/8mdX2UKGgGR8CGp/68g6ltaAdLZ2gIR0AwuA44p+c6dX2UKGgGR8CBcKIE8q4IaAdLXmgIR0AwzLQ5WBBidX2UKGgGR8CC+FschkiEaAdLdGgIR0Aw7XA/LTx5dX2UKGgGR8CB5mTDfm9yaAdLmWgIR0AxEkZ75VOsdX2UKGgGR8B9yDv6TGHYaAdLXWgIR0AxJpBX0XgtdX2UKGgGR8B6qgbOu7pWaAdLSWgIR0AxNTpgTh5xdX2UKGgGR8CCS6A80UGnaAdLaGgIR0AxVNuLrHENdX2UKGgGR8CsALEGqxTsaAdNbAFoCEdAMcUjX4CZGHV9lChoBkfAe3DV6NVBEGgHS2VoCEdAMeISUTtb93V9lChoBkfAgip6UJOWSmgHS31oCEdAMf9JnQID5nV9lChoBkfAiZS4a5wwTWgHS3ZoCEdAMhd5Qgs9S3V9lChoBkfAhNxUeMhoumgHS6FoCEdAMjtayKNyYHV9lChoBkfArP8IG0NSZWgHTZABaAhHQDKyDlHSWqt1fZQoaAZHwID88cXFcY9oB0traAhHQDLJkc0cfeV1fZQoaAZHwJPGIdZJTVFoB00XAWgIR0AzEYgaFVT8dX2UKGgGR8CNjUX8fmtAaAdNeQFoCEdAM3XHJcPe6HV9lChoBkfAhHBGViWmg2gHTR8BaAhHQDPjkbPyCnR1fZQoaAZHwITt4RK6FuhoB00JAWgIR0A0MbS7Xg+AdX2UKGgGR8B1pPQzDXOGaAdNIgJoCEdANQ/QjUutfXV9lChoBkfAaDv2icoYvWgHTegDaAhHQDdjnX/YJ3R1fZQoaAZHwHX4b/82rGRoB01jAWgIR0A33k0Jng5zdX2UKGgGR8BkPf3xnWauaAdN6ANoCEdAObhQSBbwB3V9lChoBkfAZP9AeJYT02gHS4hoCEdAOdW1hLGrCHV9lChoBkfAdKDmYSg5BGgHS7NoCEdAOf+2VmjCYXV9lChoBkfAXPgQvpQk5mgHS+JoCEdAOjTQ3PzFuXV9lChoBkfAWZh4Y77sOWgHTegDaAhHQDwyOIZZSvV1fZQoaAZHwGJZYYJmdy1oB03DAWgIR0A8xsq8UVSGdX2UKGgGR8BWO0W69TP0aAdN6ANoCEdAPnPTXrdFfHV9lChoBkfAUu72Dg62fGgHTegDaAhHQEAjWXC0ngJ1fZQoaAZHwB30jgQ6IWRoB03oA2gIR0BBP6ews5GSdX2UKGgGR8BhjnBUJfICaAdN6ANoCEdAQg8t9QXQ+nV9lChoBkfAXsjlwLmZE2gHTegDaAhHQEMS6cy31Bd1fZQoaAZHQHDn7PMSsbNoB03WAmgIR0BDmkcjqv/zdX2UKGgGR0AdTIp6QeV+aAdNiAFoCEdAQ9KZ+hGpdnV9lChoBkfAhWgDFAE+xGgHTegDaAhHQETonuRcNYt1fZQoaAZHwHsU0IC2c8VoB03oA2gIR0BFqtL127nQdX2UKGgGR8B0wl3Ux20RaAdN6ANoCEdARnHeSB9TgnV9lChoBkfAch4p6yB062gHTegDaAhHQEd7PepGWld1fZQoaAZHwGTpnQpnYg9oB03oA2gIR0BIkQDmr8zidX2UKGgGR0BLSiHIp6QeaAdN6ANoCEdASdqWzF+/g3V9lChoBkfAIZUBnzxwymgHTegDaAhHQEqpIwM6RyR1fZQoaAZHQEjscMEzO5doB03oA2gIR0BLtB19v0iAdX2UKGgGR0BVK9hiLEUCaAdN6ANoCEdATMx9w3o9tHV9lChoBkdAXESHP/rB02gHTbQDaAhHQE2h7PY4ACJ1fZQoaAZHQDXDiZOSGJxoB03oA2gIR0BOkUSh8IAwdX2UKGgGR0BjcXCAMDwIaAdNhANoCEdAT2Ejopx3mnV9lChoBkdAUqSii7Ciy2gHTegDaAhHQFApGI9C/oJ1fZQoaAZHQFk0ZrYXfqJoB03oA2gIR0BQmSWzF+/hdX2UKGgGR0BBTJhnanJlaAdN6ANoCEdAUTj1Iy0rsnV9lChoBkdAQQys6q8142gHTegDaAhHQFGuoS+QEIR1fZQoaAZHQEgv7qptJnRoB03oA2gIR0BSJZkK/mDEdX2UKGgGR0BJDaAFxGUfaAdN6ANoCEdAUpnCGetjkXV9lChoBkdAYBnmjj7yhGgHTegDaAhHQFL8/eLvTgF1fZQoaAZHQFFlY02tMf1oB03oA2gIR0BTd59NN8E3dX2UKGgGR0Bwe10r9VFQaAdNJgNoCEdAU7wNI9TxXnV9lChoBkdAVxdf2K2rn2gHTegDaAhHQFQprIYFaB91fZQoaAZHQFkgdweeWfNoB03oA2gIR0BUvwAZKnNxdX2UKGgGR0BZRTN2TxG2aAdN6ANoCEdAVVDpdKNADHV9lChoBkdAUUxNj9XLeWgHTegDaAhHQFW1kYGdI5J1fZQoaAZHQGF/fapPykNoB03oA2gIR0BWEbqyGBWgdX2UKGgGR0BYJPNeMQ2/aAdN6ANoCEdAVopTqB3A23V9lChoBkdAWYmpAD7qIWgHTegDaAhHQFcUPluFYdR1fZQoaAZHQFUTix3V091oB03oA2gIR0BXilxffGdadX2UKGgGR0A/V2Pkq+ajaAdN6ANoCEdAWAM3vQWvbHV9lChoBkdAVy/OfNA1N2gHTegDaAhHQFh/3RXwLE11fZQoaAZHQFUvvXsgMc9oB03oA2gIR0BY+611GLDRdX2UKGgGR0BlKN7ngYP5aAdN4ANoCEdAWVhljEvTPXV9lChoBkdAUZk8B+4LC2gHTegDaAhHQFnWwudwvQF1fZQoaAZHQFClRB/qgRNoB03oA2gIR0BaXiP+4smOdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12500, "buffer_size": 1000000, "batch_size": 32, "learning_starts": 50000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7f7bc16db0d0>", "add": "<function ReplayBuffer.add at 0x7f7bc16db160>", "sample": "<function ReplayBuffer.sample at 0x7f7bc16db1f0>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f7bc16db280>", "_maybe_cast_dtype": "<staticmethod object at 0x7f7bc16d2640>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7bc16d6dc0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.1, "exploration_fraction": 0.1, "target_update_interval": 250, "_n_calls": 100000, "max_grad_norm": 10, "exploration_rate": 0.1, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVZgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "low_repr": "[-1.5 -1.5 -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[1.5 1.5 5. 5. 3.1415927 5. 1.\n 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVwwEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB+MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCqKEEwAieA8aVZGBMdyR5gR1n+MA2luY5SKEF1tTxNpeZXnSjBPQglOxit1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpRKkI73T3VidWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVuAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL3ZzY29kZS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL3ZzY29kZS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "batch_norm_stats": [], "batch_norm_stats_target": [], "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVXAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxRL2hvbWUvdnNjb2RlLy5sb2NhbC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLcUMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvdnNjb2RlLy5sb2NhbC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC51jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpRoNkc/uZmZmZmZmoWUUpRoNkc/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-6.2.0-1019-azure-x86_64-with-glibc2.36 # 19~22.04.1-Ubuntu SMP Wed Jan 10 22:57:03 UTC 2024", "Python": "3.9.18", "Stable-Baselines3": "2.1.0", "PyTorch": "2.2.1+cpu", "GPU Enabled": "False", "Numpy": "1.26.4", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1", "OpenAI Gym": "0.26.2"}}
|
dqn-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b213dd6ac78a6ad81330151a21fbfd198a7c9bbc49e50de9571ac38895fe0f48
|
3 |
+
size 106438
|
dqn-LunarLander-v2/data
CHANGED
@@ -5,57 +5,85 @@
|
|
5 |
"__module__": "stable_baselines3.dqn.policies",
|
6 |
"__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
|
7 |
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
8 |
-
"__init__": "<function DQNPolicy.__init__ at
|
9 |
-
"_build": "<function DQNPolicy._build at
|
10 |
-
"make_q_net": "<function DQNPolicy.make_q_net at
|
11 |
-
"forward": "<function DQNPolicy.forward at
|
12 |
-
"_predict": "<function DQNPolicy._predict at
|
13 |
-
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at
|
14 |
-
"set_training_mode": "<function DQNPolicy.set_training_mode at
|
15 |
"__abstractmethods__": "frozenset()",
|
16 |
-
"_abc_impl": "<_abc._abc_data object at
|
17 |
},
|
18 |
"verbose": 1,
|
19 |
-
"policy_kwargs": {
|
20 |
-
|
21 |
-
256,
|
22 |
-
256
|
23 |
-
]
|
24 |
-
},
|
25 |
-
"num_timesteps": 724,
|
26 |
"_total_timesteps": 100000,
|
27 |
"_num_timesteps_at_start": 0,
|
28 |
-
"seed":
|
29 |
"action_noise": null,
|
30 |
-
"start_time":
|
31 |
-
"learning_rate":
|
32 |
-
":type:": "<class 'function'>",
|
33 |
-
":serialized:": "gAWV6AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaS9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52MzkvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaS9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52MzkvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0Sk0rK/202FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
34 |
-
},
|
35 |
"tensorboard_log": null,
|
36 |
-
"_last_obs":
|
|
|
|
|
|
|
37 |
"_last_episode_starts": {
|
38 |
":type:": "<class 'numpy.ndarray'>",
|
39 |
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
40 |
},
|
41 |
"_last_original_obs": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
43 |
-
":serialized:": "
|
44 |
},
|
45 |
-
"_episode_num":
|
46 |
"use_sde": false,
|
47 |
"sde_sample_freq": -1,
|
48 |
-
"_current_progress_remaining": 0.
|
49 |
"_stats_window_size": 100,
|
50 |
"ep_info_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
-
":serialized:": "
|
53 |
},
|
54 |
"ep_success_buffer": {
|
55 |
":type:": "<class 'collections.deque'>",
|
56 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
},
|
58 |
-
"_n_updates":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
"observation_space": {
|
60 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
61 |
":serialized:": "gAWVZgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==",
|
@@ -73,7 +101,7 @@
|
|
73 |
},
|
74 |
"action_space": {
|
75 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
76 |
-
":serialized:": "
|
77 |
"n": "4",
|
78 |
"start": "0",
|
79 |
"_shape": [],
|
@@ -81,47 +109,14 @@
|
|
81 |
"_np_random": "Generator(PCG64)"
|
82 |
},
|
83 |
"n_envs": 1,
|
84 |
-
"buffer_size": 1,
|
85 |
-
"batch_size": 128,
|
86 |
-
"learning_starts": 0,
|
87 |
-
"tau": 1.0,
|
88 |
-
"gamma": 0.99,
|
89 |
-
"gradient_steps": -1,
|
90 |
-
"optimize_memory_usage": false,
|
91 |
-
"replay_buffer_class": {
|
92 |
-
":type:": "<class 'abc.ABCMeta'>",
|
93 |
-
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
94 |
-
"__module__": "stable_baselines3.common.buffers",
|
95 |
-
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
96 |
-
"__init__": "<function ReplayBuffer.__init__ at 0x7fdc7e9b8b80>",
|
97 |
-
"add": "<function ReplayBuffer.add at 0x7fdc7e9b8c10>",
|
98 |
-
"sample": "<function ReplayBuffer.sample at 0x7fdc7e9b8ca0>",
|
99 |
-
"_get_samples": "<function ReplayBuffer._get_samples at 0x7fdc7e9b8d30>",
|
100 |
-
"_maybe_cast_dtype": "<staticmethod object at 0x7fdc7ea34df0>",
|
101 |
-
"__abstractmethods__": "frozenset()",
|
102 |
-
"_abc_impl": "<_abc._abc_data object at 0x7fdc7e9b05c0>"
|
103 |
-
},
|
104 |
-
"replay_buffer_kwargs": {},
|
105 |
-
"train_freq": {
|
106 |
-
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
107 |
-
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
108 |
-
},
|
109 |
-
"use_sde_at_warmup": false,
|
110 |
-
"exploration_initial_eps": 1.0,
|
111 |
-
"exploration_final_eps": 0.1,
|
112 |
-
"exploration_fraction": 0.12,
|
113 |
-
"target_update_interval": 250,
|
114 |
-
"_n_calls": 724,
|
115 |
-
"max_grad_norm": 10,
|
116 |
-
"exploration_rate": 0.9456999999999998,
|
117 |
"lr_schedule": {
|
118 |
":type:": "<class 'function'>",
|
119 |
-
":serialized:": "
|
120 |
},
|
121 |
"batch_norm_stats": [],
|
122 |
"batch_norm_stats_target": [],
|
123 |
"exploration_schedule": {
|
124 |
":type:": "<class 'function'>",
|
125 |
-
":serialized:": "
|
126 |
}
|
127 |
}
|
|
|
5 |
"__module__": "stable_baselines3.dqn.policies",
|
6 |
"__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
|
7 |
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
8 |
+
"__init__": "<function DQNPolicy.__init__ at 0x7f7bc1685040>",
|
9 |
+
"_build": "<function DQNPolicy._build at 0x7f7bc16850d0>",
|
10 |
+
"make_q_net": "<function DQNPolicy.make_q_net at 0x7f7bc1685160>",
|
11 |
+
"forward": "<function DQNPolicy.forward at 0x7f7bc16851f0>",
|
12 |
+
"_predict": "<function DQNPolicy._predict at 0x7f7bc1685280>",
|
13 |
+
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f7bc1685310>",
|
14 |
+
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f7bc16853a0>",
|
15 |
"__abstractmethods__": "frozenset()",
|
16 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f7bc1704700>"
|
17 |
},
|
18 |
"verbose": 1,
|
19 |
+
"policy_kwargs": {},
|
20 |
+
"num_timesteps": 100000,
|
|
|
|
|
|
|
|
|
|
|
21 |
"_total_timesteps": 100000,
|
22 |
"_num_timesteps_at_start": 0,
|
23 |
+
"seed": null,
|
24 |
"action_noise": null,
|
25 |
+
"start_time": 1709631678889401888,
|
26 |
+
"learning_rate": 0.0001,
|
|
|
|
|
|
|
27 |
"tensorboard_log": null,
|
28 |
+
"_last_obs": {
|
29 |
+
":type:": "<class 'numpy.ndarray'>",
|
30 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADPmhL36pw4+gBLTu/CPlb1JVMy8dA2ZOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
31 |
+
},
|
32 |
"_last_episode_starts": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_original_obs": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAALPFhL29VhA+jHgyu5fCmL0NPs68z50YPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
39 |
},
|
40 |
+
"_episode_num": 610,
|
41 |
"use_sde": false,
|
42 |
"sde_sample_freq": -1,
|
43 |
+
"_current_progress_remaining": 0.0,
|
44 |
"_stats_window_size": 100,
|
45 |
"ep_info_buffer": {
|
46 |
":type:": "<class 'collections.deque'>",
|
47 |
+
":serialized:": "gAWVFgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFeouCf6Gg2MAWyUS1mMAXSUR0AuiLl3hXKbdX2UKGgGR0AJiD9OymhuaAdLgWgIR0AumAU+LWI5dX2UKGgGR8B02WLFXJYDaAdLX2gIR0AupZ7ojfNzdX2UKGgGR8BUIBRVIZqEaAdLQmgIR0AurLAYYR/WdX2UKGgGR8B4fmWkadc0aAdLWmgIR0Aut3HJcPe6dX2UKGgGR8BgSjCJoCdSaAdLeWgIR0AuxGViWmgrdX2UKGgGR8BbZyzHCGeuaAdLZGgIR0AuzwZwXIludX2UKGgGR8BybvLGJemfaAdLW2gIR0Au244Ia99MdX2UKGgGR8B3fbWjGkvcaAdLWWgIR0Au5UbT+ee4dX2UKGgGR8Bj+b6ciGFjaAdLdWgIR0Au9FOO801qdX2UKGgGR8BWStFnZkCnaAdLZmgIR0AvAtFKCg9NdX2UKGgGR8Bo54y/KyOaaAdLZGgIR0AvDyzXz19OdX2UKGgGR8B3O32EkB0ZaAdLTGgIR0AvF0p3HJcPdX2UKGgGR0ABDvgFX7tRaAdLWWgIR0AvIIt16mfodX2UKGgGR8BrrMmShakiaAdLUmgIR0AvKVgQYk3TdX2UKGgGR8BveSqsEJSjaAdLUWgIR0AvMvxpcophdX2UKGgGR8BaUQw9JSR9aAdLSmgIR0AvOw5eZ5RkdX2UKGgGR8BfykGRmseXaAdLXGgIR0AvSMKCxu89dX2UKGgGR8BYowSJ0nw5aAdLc2gIR0AvV7aZhKDkdX2UKGgGR8Bdx8L4N7SiaAdLZ2gIR0AvY7OmixmkdX2UKGgGR8BgtVjbzshQaAdLYGgIR0AvdJ1aGHpKdX2UKGgGR8BgUwn+hoM8aAdLTGgIR0AvhBVuJk5IdX2UKGgGR8BXly6QNkOJaAdLQ2gIR0Avj5SFXaJzdX2UKGgGR8BD95J04iosaAdLi2gIR0Avpaews5GSdX2UKGgGR8BYGnaews5GaAdLcWgIR0AvtQ+lj3EidX2UKGgGR8BiYCQT238XaAdLgmgIR0AvxtD2JzkqdX2UKGgGR8B66kFfReC1aAdLbWgIR0AwSaxHG0eEdX2UKGgGR8BfpUVvddmhaAdLPGgIR0AwVAQxvegtdX2UKGgGR8B4ytnYg7o0aAdLUGgIR0AwY8s+V1OkdX2UKGgGR8CFm6sf7rLRaAdLgWgIR0Awfe/5+H8CdX2UKGgGR8CRvuEwWWQfaAdLnmgIR0Awn3u/k/8mdX2UKGgGR8CGp/68g6ltaAdLZ2gIR0AwuA44p+c6dX2UKGgGR8CBcKIE8q4IaAdLXmgIR0AwzLQ5WBBidX2UKGgGR8CC+FschkiEaAdLdGgIR0Aw7XA/LTx5dX2UKGgGR8CB5mTDfm9yaAdLmWgIR0AxEkZ75VOsdX2UKGgGR8B9yDv6TGHYaAdLXWgIR0AxJpBX0XgtdX2UKGgGR8B6qgbOu7pWaAdLSWgIR0AxNTpgTh5xdX2UKGgGR8CCS6A80UGnaAdLaGgIR0AxVNuLrHENdX2UKGgGR8CsALEGqxTsaAdNbAFoCEdAMcUjX4CZGHV9lChoBkfAe3DV6NVBEGgHS2VoCEdAMeISUTtb93V9lChoBkfAgip6UJOWSmgHS31oCEdAMf9JnQID5nV9lChoBkfAiZS4a5wwTWgHS3ZoCEdAMhd5Qgs9S3V9lChoBkfAhNxUeMhoumgHS6FoCEdAMjtayKNyYHV9lChoBkfArP8IG0NSZWgHTZABaAhHQDKyDlHSWqt1fZQoaAZHwID88cXFcY9oB0traAhHQDLJkc0cfeV1fZQoaAZHwJPGIdZJTVFoB00XAWgIR0AzEYgaFVT8dX2UKGgGR8CNjUX8fmtAaAdNeQFoCEdAM3XHJcPe6HV9lChoBkfAhHBGViWmg2gHTR8BaAhHQDPjkbPyCnR1fZQoaAZHwITt4RK6FuhoB00JAWgIR0A0MbS7Xg+AdX2UKGgGR8B1pPQzDXOGaAdNIgJoCEdANQ/QjUutfXV9lChoBkfAaDv2icoYvWgHTegDaAhHQDdjnX/YJ3R1fZQoaAZHwHX4b/82rGRoB01jAWgIR0A33k0Jng5zdX2UKGgGR8BkPf3xnWauaAdN6ANoCEdAObhQSBbwB3V9lChoBkfAZP9AeJYT02gHS4hoCEdAOdW1hLGrCHV9lChoBkfAdKDmYSg5BGgHS7NoCEdAOf+2VmjCYXV9lChoBkfAXPgQvpQk5mgHS+JoCEdAOjTQ3PzFuXV9lChoBkfAWZh4Y77sOWgHTegDaAhHQDwyOIZZSvV1fZQoaAZHwGJZYYJmdy1oB03DAWgIR0A8xsq8UVSGdX2UKGgGR8BWO0W69TP0aAdN6ANoCEdAPnPTXrdFfHV9lChoBkfAUu72Dg62fGgHTegDaAhHQEAjWXC0ngJ1fZQoaAZHwB30jgQ6IWRoB03oA2gIR0BBP6ews5GSdX2UKGgGR8BhjnBUJfICaAdN6ANoCEdAQg8t9QXQ+nV9lChoBkfAXsjlwLmZE2gHTegDaAhHQEMS6cy31Bd1fZQoaAZHQHDn7PMSsbNoB03WAmgIR0BDmkcjqv/zdX2UKGgGR0AdTIp6QeV+aAdNiAFoCEdAQ9KZ+hGpdnV9lChoBkfAhWgDFAE+xGgHTegDaAhHQETonuRcNYt1fZQoaAZHwHsU0IC2c8VoB03oA2gIR0BFqtL127nQdX2UKGgGR8B0wl3Ux20RaAdN6ANoCEdARnHeSB9TgnV9lChoBkfAch4p6yB062gHTegDaAhHQEd7PepGWld1fZQoaAZHwGTpnQpnYg9oB03oA2gIR0BIkQDmr8zidX2UKGgGR0BLSiHIp6QeaAdN6ANoCEdASdqWzF+/g3V9lChoBkfAIZUBnzxwymgHTegDaAhHQEqpIwM6RyR1fZQoaAZHQEjscMEzO5doB03oA2gIR0BLtB19v0iAdX2UKGgGR0BVK9hiLEUCaAdN6ANoCEdATMx9w3o9tHV9lChoBkdAXESHP/rB02gHTbQDaAhHQE2h7PY4ACJ1fZQoaAZHQDXDiZOSGJxoB03oA2gIR0BOkUSh8IAwdX2UKGgGR0BjcXCAMDwIaAdNhANoCEdAT2Ejopx3mnV9lChoBkdAUqSii7Ciy2gHTegDaAhHQFApGI9C/oJ1fZQoaAZHQFk0ZrYXfqJoB03oA2gIR0BQmSWzF+/hdX2UKGgGR0BBTJhnanJlaAdN6ANoCEdAUTj1Iy0rsnV9lChoBkdAQQys6q8142gHTegDaAhHQFGuoS+QEIR1fZQoaAZHQEgv7qptJnRoB03oA2gIR0BSJZkK/mDEdX2UKGgGR0BJDaAFxGUfaAdN6ANoCEdAUpnCGetjkXV9lChoBkdAYBnmjj7yhGgHTegDaAhHQFL8/eLvTgF1fZQoaAZHQFFlY02tMf1oB03oA2gIR0BTd59NN8E3dX2UKGgGR0Bwe10r9VFQaAdNJgNoCEdAU7wNI9TxXnV9lChoBkdAVxdf2K2rn2gHTegDaAhHQFQprIYFaB91fZQoaAZHQFkgdweeWfNoB03oA2gIR0BUvwAZKnNxdX2UKGgGR0BZRTN2TxG2aAdN6ANoCEdAVVDpdKNADHV9lChoBkdAUUxNj9XLeWgHTegDaAhHQFW1kYGdI5J1fZQoaAZHQGF/fapPykNoB03oA2gIR0BWEbqyGBWgdX2UKGgGR0BYJPNeMQ2/aAdN6ANoCEdAVopTqB3A23V9lChoBkdAWYmpAD7qIWgHTegDaAhHQFcUPluFYdR1fZQoaAZHQFUTix3V091oB03oA2gIR0BXilxffGdadX2UKGgGR0A/V2Pkq+ajaAdN6ANoCEdAWAM3vQWvbHV9lChoBkdAVy/OfNA1N2gHTegDaAhHQFh/3RXwLE11fZQoaAZHQFUvvXsgMc9oB03oA2gIR0BY+611GLDRdX2UKGgGR0BlKN7ngYP5aAdN4ANoCEdAWVhljEvTPXV9lChoBkdAUZk8B+4LC2gHTegDaAhHQFnWwudwvQF1fZQoaAZHQFClRB/qgRNoB03oA2gIR0BaXiP+4smOdWUu"
|
48 |
},
|
49 |
"ep_success_buffer": {
|
50 |
":type:": "<class 'collections.deque'>",
|
51 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
52 |
},
|
53 |
+
"_n_updates": 12500,
|
54 |
+
"buffer_size": 1000000,
|
55 |
+
"batch_size": 32,
|
56 |
+
"learning_starts": 50000,
|
57 |
+
"tau": 1.0,
|
58 |
+
"gamma": 0.99,
|
59 |
+
"gradient_steps": 1,
|
60 |
+
"optimize_memory_usage": false,
|
61 |
+
"replay_buffer_class": {
|
62 |
+
":type:": "<class 'abc.ABCMeta'>",
|
63 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
64 |
+
"__module__": "stable_baselines3.common.buffers",
|
65 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
66 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7f7bc16db0d0>",
|
67 |
+
"add": "<function ReplayBuffer.add at 0x7f7bc16db160>",
|
68 |
+
"sample": "<function ReplayBuffer.sample at 0x7f7bc16db1f0>",
|
69 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f7bc16db280>",
|
70 |
+
"_maybe_cast_dtype": "<staticmethod object at 0x7f7bc16d2640>",
|
71 |
+
"__abstractmethods__": "frozenset()",
|
72 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f7bc16d6dc0>"
|
73 |
+
},
|
74 |
+
"replay_buffer_kwargs": {},
|
75 |
+
"train_freq": {
|
76 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
77 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
78 |
+
},
|
79 |
+
"use_sde_at_warmup": false,
|
80 |
+
"exploration_initial_eps": 1.0,
|
81 |
+
"exploration_final_eps": 0.1,
|
82 |
+
"exploration_fraction": 0.1,
|
83 |
+
"target_update_interval": 250,
|
84 |
+
"_n_calls": 100000,
|
85 |
+
"max_grad_norm": 10,
|
86 |
+
"exploration_rate": 0.1,
|
87 |
"observation_space": {
|
88 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
89 |
":serialized:": "gAWVZgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==",
|
|
|
101 |
},
|
102 |
"action_space": {
|
103 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
104 |
+
":serialized:": "gAWVwwEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB+MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCqKEEwAieA8aVZGBMdyR5gR1n+MA2luY5SKEF1tTxNpeZXnSjBPQglOxit1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpRKkI73T3VidWIu",
|
105 |
"n": "4",
|
106 |
"start": "0",
|
107 |
"_shape": [],
|
|
|
109 |
"_np_random": "Generator(PCG64)"
|
110 |
},
|
111 |
"n_envs": 1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
"lr_schedule": {
|
113 |
":type:": "<class 'function'>",
|
114 |
+
":serialized:": "gAWVuAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL3ZzY29kZS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL3ZzY29kZS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
115 |
},
|
116 |
"batch_norm_stats": [],
|
117 |
"batch_norm_stats_target": [],
|
118 |
"exploration_schedule": {
|
119 |
":type:": "<class 'function'>",
|
120 |
+
":serialized:": "gAWVXAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxRL2hvbWUvdnNjb2RlLy5sb2NhbC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLcUMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvdnNjb2RlLy5sb2NhbC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC51jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpRoNkc/uZmZmZmZmoWUUpRoNkc/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
121 |
}
|
122 |
}
|
dqn-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f18d549853c3213be341b35916b696dafabf5b7b83aacf4f7a65b03a20217b5c
|
3 |
+
size 45216
|
dqn-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a6c5b4559a84b25a984d0d95b41c6f173099344303ed48838f11a41016d32c6
|
3 |
+
size 44338
|
dqn-LunarLander-v2/system_info.txt
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
-
- OS: Linux-
|
2 |
- Python: 3.9.18
|
3 |
- Stable-Baselines3: 2.1.0
|
4 |
-
- PyTorch: 2.1
|
5 |
- GPU Enabled: False
|
6 |
-
- Numpy: 1.26.
|
7 |
- Cloudpickle: 3.0.0
|
8 |
- Gymnasium: 0.29.1
|
9 |
- OpenAI Gym: 0.26.2
|
|
|
1 |
+
- OS: Linux-6.2.0-1019-azure-x86_64-with-glibc2.36 # 19~22.04.1-Ubuntu SMP Wed Jan 10 22:57:03 UTC 2024
|
2 |
- Python: 3.9.18
|
3 |
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.2.1+cpu
|
5 |
- GPU Enabled: False
|
6 |
+
- Numpy: 1.26.4
|
7 |
- Cloudpickle: 3.0.0
|
8 |
- Gymnasium: 0.29.1
|
9 |
- OpenAI Gym: 0.26.2
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb107e76cc5f067bb745e1113900d59e6697248fb2b41d5f9054c7698a075a8e
|
3 |
+
size 185478
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 87.34864089741605, "std_reward": 35.51083155982755, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-05T09:45:12.924341"}
|