nsanghi commited on
Commit
5ec9fc4
·
1 Parent(s): 4bc8f76

Initial commit

Browse files
README.md CHANGED
@@ -16,22 +16,69 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 41.68 +/- 30.81
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
  # **DQN** Agent playing **LunarLander-v2**
25
  This is a trained model of a **DQN** agent playing **LunarLander-v2**
26
- using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
 
27
 
28
- ## Usage (with Stable-baselines3)
29
- TODO: Add your code
 
30
 
 
31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  ```python
33
- from stable_baselines3 import ...
34
- from huggingface_sb3 import load_from_hub
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
- ...
 
 
37
  ```
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: -638.18 +/- 102.53
20
  name: mean_reward
21
  verified: false
22
  ---
23
 
24
  # **DQN** Agent playing **LunarLander-v2**
25
  This is a trained model of a **DQN** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
 
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
 
33
+ ## Usage (with SB3 RL Zoo)
34
 
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo dqn --env LunarLander-v2 -orga nsanghi -f logs/
47
+ python -m rl_zoo3.enjoy --algo dqn --env LunarLander-v2 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo dqn --env LunarLander-v2 -orga nsanghi -f logs/
53
+ python -m rl_zoo3.enjoy --algo dqn --env LunarLander-v2 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo dqn --env LunarLander-v2 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo dqn --env LunarLander-v2 -f logs/ -orga nsanghi
61
+ ```
62
+
63
+ ## Hyperparameters
64
  ```python
65
+ OrderedDict([('batch_size', 128),
66
+ ('buffer_size', 50000),
67
+ ('exploration_final_eps', 0.1),
68
+ ('exploration_fraction', 0.12),
69
+ ('gamma', 0.99),
70
+ ('gradient_steps', -1),
71
+ ('learning_rate', 0.00063),
72
+ ('learning_starts', 0),
73
+ ('n_timesteps', 100000.0),
74
+ ('policy', 'MlpPolicy'),
75
+ ('policy_kwargs', 'dict(net_arch=[256, 256])'),
76
+ ('target_update_interval', 250),
77
+ ('train_freq', 4),
78
+ ('normalize', False)])
79
+ ```
80
 
81
+ # Environment Arguments
82
+ ```python
83
+ {'render_mode': 'rgb_array'}
84
  ```
args.yml CHANGED
@@ -54,7 +54,7 @@
54
  - - save_replay_buffer
55
  - false
56
  - - seed
57
- - 2913073355
58
  - - storage
59
  - null
60
  - - study_name
 
54
  - - save_replay_buffer
55
  - false
56
  - - seed
57
+ - 2545653355
58
  - - storage
59
  - null
60
  - - study_name
dqn-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d183bf087a155cce2b6c5e4c27f749661fbd59ce5249caf0d264be1786bfb971
3
- size 106438
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2cadab6a9436fdfa857ff54cb948590e47ad8f3a4a39db8906027aa2586785d
3
+ size 1129713
dqn-LunarLander-v2/data CHANGED
@@ -5,85 +5,57 @@
5
  "__module__": "stable_baselines3.dqn.policies",
6
  "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
7
  "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
8
- "__init__": "<function DQNPolicy.__init__ at 0x7f3e88af11f0>",
9
- "_build": "<function DQNPolicy._build at 0x7f3e88af1280>",
10
- "make_q_net": "<function DQNPolicy.make_q_net at 0x7f3e88af1310>",
11
- "forward": "<function DQNPolicy.forward at 0x7f3e88af13a0>",
12
- "_predict": "<function DQNPolicy._predict at 0x7f3e88af1430>",
13
- "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f3e88af14c0>",
14
- "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f3e88af1550>",
15
  "__abstractmethods__": "frozenset()",
16
- "_abc_impl": "<_abc._abc_data object at 0x7f3e88e829c0>"
17
  },
18
  "verbose": 1,
19
- "policy_kwargs": {},
20
- "num_timesteps": 100000,
 
 
 
 
 
21
  "_total_timesteps": 100000,
22
  "_num_timesteps_at_start": 0,
23
- "seed": null,
24
  "action_noise": null,
25
- "start_time": 1709585141267487266,
26
- "learning_rate": 0.0001,
27
- "tensorboard_log": null,
28
- "_last_obs": {
29
- ":type:": "<class 'numpy.ndarray'>",
30
- ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAABpKAb0wJQc/5ioEPiozir3camk9oXilOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
31
  },
 
 
32
  "_last_episode_starts": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
  ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
35
  },
36
  "_last_original_obs": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
- ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAABqWBr2tiAc/2TcUPkF/sb0fYmg9Y9aGPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
39
  },
40
- "_episode_num": 609,
41
  "use_sde": false,
42
  "sde_sample_freq": -1,
43
- "_current_progress_remaining": 0.0,
44
  "_stats_window_size": 100,
45
  "ep_info_buffer": {
46
  ":type:": "<class 'collections.deque'>",
47
- ":serialized:": "gAWVFgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwF2ssQd0aIiMAWyUS1CMAXSUR0A28rKeTV2BdX2UKGgGR8ByVnEl3QlbaAdLcmgIR0A2+9/z8P4EdX2UKGgGR8BVBr8ejmCAaAdLeGgIR0A3BAGSpzcRdX2UKGgGR8Btz/Zwn6VMaAdLZGgIR0A3CbgjyFwldX2UKGgGR8BnUVoL5RCQaAdLUmgIR0A3DjHXEqDsdX2UKGgGR8BXEyj1wo9caAdLTGgIR0A3Eh5Pdl/ZdX2UKGgGR8BWpC26TW5IaAdLXGgIR0A3GHNHH3lCdX2UKGgGR8Bac9yksSTRaAdLPmgIR0A3HItlI3BIdX2UKGgGR8B3J1DOTq0MaAdLcWgIR0A3JYfW+XZ5dX2UKGgGR8BfAtuUD+zdaAdLj2gIR0A3NbI91U2ldX2UKGgGR8BdC8KohpxnaAdLQWgIR0A3OP/7zkIYdX2UKGgGR8AaKtfXwsoVaAdLamgIR0A3PuW8h9srdX2UKGgGR8BQL/TTfBN3aAdLPGgIR0A3Qlq8DjiodX2UKGgGR8BLwZC4SYgJaAdLW2gIR0A3SaS9ugpSdX2UKGgGR8B4NWab4Ju3aAdLdmgIR0A3Uk0rK/21dX2UKGgGR8BblRHCoCMhaAdLb2gIR0A3WKtPpIMCdX2UKGgGR8B4/7YwqRU4aAdLWGgIR0A3XY/3WWhRdX2UKGgGR8B0VddGAkLQaAdLcGgIR0A3Y+GoJiRXdX2UKGgGR8Bb8HObAk9maAdLPmgIR0A3aDM/yGzsdX2UKGgGR8Azp6xPfsNUaAdLZGgIR0A3bradtl7MdX2UKGgGR8CAwXqIrOJMaAdLYGgIR0A3dRc/t6X0dX2UKGgGR8BRYwjhUBGQaAdLTmgIR0A3ehLoOhCddX2UKGgGR8BV2GIGhVU/aAdLXWgIR0A3fz6ab4JvdX2UKGgGR8B1EdyS3b22aAdLe2gIR0A3iBj4HoovdX2UKGgGR8Bj3mqYJE6UaAdLXmgIR0A3jYoiLVFydX2UKGgGR8BaJsgZCOWCaAdLQWgIR0A35zshPj4pdX2UKGgGR8CT+rP6KtPpaAdL0WgIR0A4GinHeaa1dX2UKGgGR8B7Td/OMVDbaAdLZGgIR0A4L8HObAk+dX2UKGgGR8B+QKzyBkI5aAdLWWgIR0A4Qn3ta6jGdX2UKGgGR8CKX2AiFCb+aAdLimgIR0A4YlkpZwGXdX2UKGgGR8B8c9wMpgCwaAdLaGgIR0A4elp48loldX2UKGgGR8B/Viw9q1w6aAdLX2gIR0A4jqYZ2pyZdX2UKGgGR8CDmyGbCrLhaAdLemgIR0A4qU2kzoECdX2UKGgGR8B9vUqjJuEVaAdLcmgIR0A4wRsMy8BddX2UKGgGR8CC6KOQyRCAaAdLeGgIR0A42ttALRa5dX2UKGgGR8CHV9GZuyeJaAdLfWgIR0A49WRA8jiXdX2UKGgGR8CBTpXqZ+hHaAdLTWgIR0A5BgydnTRZdX2UKGgGR8CkqTg8jiXIaAdNLgFoCEdAOWOglF+d9XV9lChoBkfAgYvSn1nM+2gHS1JoCEdAOXQ+EAYHgXV9lChoBkfAhPi8oYvWYmgHS4VoCEdAOZIKUmlZYHV9lChoBkfAgZNs/pt78mgHS3FoCEdAOaosNDtw73V9lChoBkfAerR9FnZkCmgHS1BoCEdAObxf4REncHV9lChoBkfAjQCg7PppvmgHS9ZoCEdAOfDMmnfl63V9lChoBkfAhNkWyC4Bm2gHS9xoCEdAOjEqUeMho3V9lChoBkfAe1ffbKzRhWgHS9toCEdAOme6/Zdv9HV9lChoBkfAd3KaXrt3OmgHS7xoCEdAOpV8kUsWf3V9lChoBkfAg0Qrkjopx2gHTT0BaAhHQDrqjM3ZPEd1fZQoaAZHwGIUiMHbAUNoB03oA2gIR0A82sySFGoadX2UKGgGR8BjpDLB9Cu2aAdN6ANoCEdAPnXV5KODJ3V9lChoBkfAUiAk+otL+WgHTegDaAhHQEB/2Dg62fF1fZQoaAZHwFzcreIl+mZoB03oA2gIR0BBfKXWvr4WdX2UKGgGR8BblGSlnAZbaAdN6ANoCEdAQrPpGFzuGHV9lChoBkfAT6f1BdD6WWgHTewBaAhHQEMW9W6shgV1fZQoaAZHwEn0kB0ZFXtoB01WAWgIR0BDQwkona37dX2UKGgGR8BilZIlMRHxaAdN6ANoCEdARJKO/+Kjz3V9lChoBkfAcXHhtcfNimgHTegDaAhHQEXCpgCwKSh1fZQoaAZHwGhNDVYp2EFoB03oA2gIR0BG1GMwUQCkdX2UKGgGR8BiWAGIKtxNaAdN6ANoCEdAR+HtIClrM3V9lChoBkfAbHM9du5z52gHTegDaAhHQEjZT1kDp1R1fZQoaAZHwE0QXizcAR1oB03oA2gIR0BJrJSiudPMdX2UKGgGR8BeHDTa0x/NaAdN6ANoCEdASpAH1OCXhXV9lChoBkfAR6ue6I3zc2gHTegDaAhHQEuzgdfb9Ih1fZQoaAZHwE98pbUwztVoB03oA2gIR0BMsky1uzhQdX2UKGgGR8BLsophF3INaAdN3AFoCEdATQMfA9FF2HV9lChoBkfASF3apPykK2gHTegDaAhHQE4hah6By0d1fZQoaAZHQE7ZY/Vy3kRoB03oA2gIR0BPYSNXHR1HdX2UKGgGR8BCVGR/3FkyaAdN6ANoCEdAUEi7PIGQjnV9lChoBkdASJ3VVghKUWgHS71oCEdAUFZum78Nx3V9lChoBkfAYHWO9WZJCmgHTeQCaAhHQFDIAPNFBpp1fZQoaAZHQFn6Xl8w5/9oB01tA2gIR0BRL1fu1F6SdX2UKGgGR0A7u5vcafjCaAdN6ANoCEdAUaUx/NJOFnV9lChoBkfARJp1oxpL3GgHTegDaAhHQFIwWeYlY2d1fZQoaAZHQFfS9iMHbAVoB02RA2gIR0BSr6Mm4RVZdX2UKGgGR8BNnV2A5JbuaAdN6ANoCEdAUzkLZzxPPHV9lChoBkfAVqNZbILgGmgHTfoCaAhHQFOYeSB9Tgl1fZQoaAZHQGG00mUnogVoB00UA2gIR0BUAEZNwiqydX2UKGgGR0BkkBP420iRaAdNHwNoCEdAVEz4h2W6b3V9lChoBkdAYIZltj0+T2gHTZYDaAhHQFTQjPfKp1l1fZQoaAZHQFO2Dxb0OExoB03oA2gIR0BVVUmUnogWdX2UKGgGR0A2Dz9jwx33aAdN6ANoCEdAVczUhFEy+HV9lChoBkdAXBk7IT4+KWgHTegDaAhHQFY8He7+T/11fZQoaAZHQGKmyVObiIdoB01UA2gIR0BWutiMHbAUdX2UKGgGR0BaT1zdUKiPaAdN6ANoCEdAVze0svqTr3V9lChoBkdAZv37ALy+YmgHTV8DaAhHQFebe9Ba9sd1fZQoaAZHwE5RMcIZ62RoB01jAmgIR0BX3jxwyZa3dX2UKGgGR0Bkh2bobGWEaAdNkwJoCEdAWCNsKsuFpXV9lChoBkdATLgvexfOU2gHTegDaAhHQFiT+MqBmPJ1fZQoaAZHQGrT2saKk2xoB03iAmgIR0BY5SNfgJkYdX2UKGgGR0BnpYrYoRZmaAdNwAJoCEdAWTclfJFLFnV9lChoBkdAV/HEYO2AoWgHTegDaAhHQFm7nTRYzSF1fZQoaAZHQGb1q94/u9hoB01wAmgIR0BZ+TF2mpEQdX2UKGgGR0BQkgb+98JEaAdN6ANoCEdAWm+sLfDUE3V9lChoBkdASkJX0XgtOGgHTegDaAhHQFrcFXq7iAF1fZQoaAZHQEyAt3fQ8fVoB03oA2gIR0BbUYEr5IpZdX2UKGgGR0BISWEsasIWaAdN6ANoCEdAW+St/4Irv3V9lChoBkdAS2fp+tr9EWgHTegDaAhHQFxVGO+7Dl51fZQoaAZHwFgOiNbTtsxoB021AmgIR0BcoAOe8PFvdX2UKGgGR0Bk6SLOzIFNaAdNRwNoCEdAXPtkNFz+33V9lChoBkfAUPzl7tzCDWgHTRYDaAhHQF1rkpZwGW51fZQoaAZHwEqBTWoWHk9oB023AmgIR0BdrKUA1ejVdWUu"
48
  },
49
  "ep_success_buffer": {
50
  ":type:": "<class 'collections.deque'>",
51
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
52
  },
53
- "_n_updates": 12500,
54
- "buffer_size": 1000000,
55
- "batch_size": 32,
56
- "learning_starts": 50000,
57
- "tau": 1.0,
58
- "gamma": 0.99,
59
- "gradient_steps": 1,
60
- "optimize_memory_usage": false,
61
- "replay_buffer_class": {
62
- ":type:": "<class 'abc.ABCMeta'>",
63
- ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
64
- "__module__": "stable_baselines3.common.buffers",
65
- "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
66
- "__init__": "<function ReplayBuffer.__init__ at 0x7f3e88ac9280>",
67
- "add": "<function ReplayBuffer.add at 0x7f3e88ac9310>",
68
- "sample": "<function ReplayBuffer.sample at 0x7f3e88ac93a0>",
69
- "_get_samples": "<function ReplayBuffer._get_samples at 0x7f3e88ac9430>",
70
- "_maybe_cast_dtype": "<staticmethod object at 0x7f3e88b3fa90>",
71
- "__abstractmethods__": "frozenset()",
72
- "_abc_impl": "<_abc._abc_data object at 0x7f3e88aca100>"
73
- },
74
- "replay_buffer_kwargs": {},
75
- "train_freq": {
76
- ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
77
- ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
78
- },
79
- "use_sde_at_warmup": false,
80
- "exploration_initial_eps": 1.0,
81
- "exploration_final_eps": 0.1,
82
- "exploration_fraction": 0.1,
83
- "target_update_interval": 250,
84
- "_n_calls": 100000,
85
- "max_grad_norm": 10,
86
- "exploration_rate": 0.1,
87
  "observation_space": {
88
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
89
  ":serialized:": "gAWVZgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==",
@@ -101,7 +73,7 @@
101
  },
102
  "action_space": {
103
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
104
- ":serialized:": "gAWVwwEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB+MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCqKEE/bk64y+iUui2SdksNkw36MA2luY5SKEKHQitigrrOcCjYSDR8ZU351jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpRKiH8deHVidWIu",
105
  "n": "4",
106
  "start": "0",
107
  "_shape": [],
@@ -109,14 +81,47 @@
109
  "_np_random": "Generator(PCG64)"
110
  },
111
  "n_envs": 1,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112
  "lr_schedule": {
113
  ":type:": "<class 'function'>",
114
- ":serialized:": "gAWVuAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUS9ob21lL3ZzY29kZS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUS9ob21lL3ZzY29kZS8ubG9jYWwvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
115
  },
116
  "batch_norm_stats": [],
117
  "batch_norm_stats_target": [],
118
  "exploration_schedule": {
119
  ":type:": "<class 'function'>",
120
- ":serialized:": "gAWVXAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxRL2hvbWUvdnNjb2RlLy5sb2NhbC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLcUMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxRL2hvbWUvdnNjb2RlLy5sb2NhbC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC51jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpRoNkc/uZmZmZmZmoWUUpRoNkc/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
121
  }
122
  }
 
5
  "__module__": "stable_baselines3.dqn.policies",
6
  "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
7
  "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
8
+ "__init__": "<function DQNPolicy.__init__ at 0x7f45ef00d700>",
9
+ "_build": "<function DQNPolicy._build at 0x7f45ef00d790>",
10
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x7f45ef00d820>",
11
+ "forward": "<function DQNPolicy.forward at 0x7f45ef00d8b0>",
12
+ "_predict": "<function DQNPolicy._predict at 0x7f45ef00d940>",
13
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f45ef00d9d0>",
14
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f45ef00da60>",
15
  "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc._abc_data object at 0x7f45ef01adc0>"
17
  },
18
  "verbose": 1,
19
+ "policy_kwargs": {
20
+ "net_arch": [
21
+ 256,
22
+ 256
23
+ ]
24
+ },
25
+ "num_timesteps": 724,
26
  "_total_timesteps": 100000,
27
  "_num_timesteps_at_start": 0,
28
+ "seed": 0,
29
  "action_noise": null,
30
+ "start_time": 1709621687586089877,
31
+ "learning_rate": {
32
+ ":type:": "<class 'function'>",
33
+ ":serialized:": "gAWV6AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaS9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52MzkvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaS9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52MzkvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0Sk0rK/202FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
 
 
34
  },
35
+ "tensorboard_log": null,
36
+ "_last_obs": null,
37
  "_last_episode_starts": {
38
  ":type:": "<class 'numpy.ndarray'>",
39
  ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
40
  },
41
  "_last_original_obs": {
42
  ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAECrMD5pK9U/dq4RPzCMDD6frHC+bVIGvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
44
  },
45
+ "_episode_num": 8,
46
  "use_sde": false,
47
  "sde_sample_freq": -1,
48
+ "_current_progress_remaining": 0.99276,
49
  "_stats_window_size": 100,
50
  "ep_info_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVGAEAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwHd+SbH6uW+MAWyUS1GMAXSUR0AZbjuKGcnWdX2UKGgGR8BO892ovSMMaAdLbWgIR0AltINmUW2xdX2UKGgGR8BUIQqI7/4qaAdLT2gIR0Az87Uoa1kUdX2UKGgGR8B1op5C4SYgaAdLdGgIR0A7xMewLVnVdX2UKGgGR8BXi6XSjQAuaAdLRmgIR0BOa1PFefI0dX2UKGgGR8BbMVMZgogFaAdLS2gIR0BZvFZLZi/gdX2UKGgGR8BtJijafzz3aAdLV2gIR0Bi1y2QXAM2dX2UKGgGR8BLctFBppN9aAdLSGgIR0Bn0oppeu3ddWUu"
53
  },
54
  "ep_success_buffer": {
55
  ":type:": "<class 'collections.deque'>",
56
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
57
  },
58
+ "_n_updates": 720,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
  "observation_space": {
60
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
61
  ":serialized:": "gAWVZgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAADAvwAAwL8AAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAwD8AAMA/AACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFNbLTEuNSAgICAgICAtMS41ICAgICAgIC01LiAgICAgICAgLTUuICAgICAgICAtMy4xNDE1OTI3IC01LgogLTAuICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMS1sxLjUgICAgICAgMS41ICAgICAgIDUuICAgICAgICA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICAxLgogMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==",
 
73
  },
74
  "action_space": {
75
  ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
76
+ ":serialized:": "gAWVwAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwQX19nZW5lcmF0b3JfY3RvcpSTlIwFUENHNjSUaB+MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMBVBDRzY0lIwFc3RhdGWUfZQoaCqKEONhlaa3XlgJLUWWWTS1oRqMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
77
  "n": "4",
78
  "start": "0",
79
  "_shape": [],
 
81
  "_np_random": "Generator(PCG64)"
82
  },
83
  "n_envs": 1,
84
+ "buffer_size": 1,
85
+ "batch_size": 128,
86
+ "learning_starts": 0,
87
+ "tau": 1.0,
88
+ "gamma": 0.99,
89
+ "gradient_steps": -1,
90
+ "optimize_memory_usage": false,
91
+ "replay_buffer_class": {
92
+ ":type:": "<class 'abc.ABCMeta'>",
93
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
94
+ "__module__": "stable_baselines3.common.buffers",
95
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
96
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f45ef077d30>",
97
+ "add": "<function ReplayBuffer.add at 0x7f45ef077dc0>",
98
+ "sample": "<function ReplayBuffer.sample at 0x7f45ef077e50>",
99
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f45ef077ee0>",
100
+ "_maybe_cast_dtype": "<staticmethod object at 0x7f45ef0f6130>",
101
+ "__abstractmethods__": "frozenset()",
102
+ "_abc_impl": "<_abc._abc_data object at 0x7f45ef06fbc0>"
103
+ },
104
+ "replay_buffer_kwargs": {},
105
+ "train_freq": {
106
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
107
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
108
+ },
109
+ "use_sde_at_warmup": false,
110
+ "exploration_initial_eps": 1.0,
111
+ "exploration_final_eps": 0.1,
112
+ "exploration_fraction": 0.12,
113
+ "target_update_interval": 250,
114
+ "_n_calls": 724,
115
+ "max_grad_norm": 10,
116
+ "exploration_rate": 0.9456999999999998,
117
  "lr_schedule": {
118
  ":type:": "<class 'function'>",
119
+ ":serialized:": "gAWV6AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaS9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52MzkvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaS9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52MzkvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0Sk0rK/202FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
120
  },
121
  "batch_norm_stats": [],
122
  "batch_norm_stats_target": [],
123
  "exploration_schedule": {
124
  ":type:": "<class 'function'>",
125
+ ":serialized:": "gAWVjAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxpL2hvbWUvbnNhbmdoaS9zYW5kYm94L2FwcmVzcy9kcmwtMmVkL3ZlbnYzOS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLcUMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxpL2hvbWUvbnNhbmdoaS9zYW5kYm94L2FwcmVzcy9kcmwtMmVkL3ZlbnYzOS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC51jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/uZmZmZmZmoWUUpRoNkc/vrhR64UeuIWUUpRoNkc/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
126
  }
127
  }
dqn-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:476845959fecdf437367bed9cd670a5eb023e895a7c951871c48d58a608a2d05
3
- size 45216
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d23cc94e3d3af4ed7711415633baa414133cf7d025a7de2d4ca34b47f9419485
3
+ size 558240
dqn-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e30b4443e37e89a959f479f32a738958f0157f2bce742e8650a1e4273a076f8a
3
- size 44338
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff5f4deb73f0a24c75f5e69235c87d7913f1b647e9ba6f0927925cf872bc0dac
3
+ size 557362
dqn-LunarLander-v2/system_info.txt CHANGED
@@ -1,9 +1,9 @@
1
- - OS: Linux-6.2.0-1019-azure-x86_64-with-glibc2.36 # 19~22.04.1-Ubuntu SMP Wed Jan 10 22:57:03 UTC 2024
2
  - Python: 3.9.18
3
  - Stable-Baselines3: 2.1.0
4
- - PyTorch: 2.2.1+cpu
5
  - GPU Enabled: False
6
- - Numpy: 1.26.4
7
  - Cloudpickle: 3.0.0
8
  - Gymnasium: 0.29.1
9
  - OpenAI Gym: 0.26.2
 
1
+ - OS: Linux-5.15.133.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Thu Oct 5 21:02:42 UTC 2023
2
  - Python: 3.9.18
3
  - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.1.0+cpu
5
  - GPU Enabled: False
6
+ - Numpy: 1.26.1
7
  - Cloudpickle: 3.0.0
8
  - Gymnasium: 0.29.1
9
  - OpenAI Gym: 0.26.2
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:79b33a95867ba6a27dd005c3dececd1e3d953bdff47135c5fc5eed2817a4e204
3
- size 184963
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe90af5c84d184044f7a991b157b553b2bd6e77fca38d3552a7e3d421e84c5f7
3
+ size 230147
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 41.67939652462665, "std_reward": 30.805182119145357, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-04T20:53:21.302318"}
 
1
+ {"mean_reward": -638.1819969999999, "std_reward": 102.53389534601408, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-05T12:33:22.967837"}
train_eval_metrics.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:57ecbdd22f3478d66d8984a789392627b7629bffdb979b149e52bd0c61f2ef38
3
- size 7889
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a204f20c4d1fec53f52fd6e4f0f2194e1c5d687ea7a7dc18f9271d09e4da3a7
3
+ size 400