nsanghi commited on
Commit
b680cab
1 Parent(s): 0bb0e9a

Push to Hub

Browse files
A2C-Atari-Pong.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68b8e30b2876b54eaa70024e14f56a06590efde46f16a47a9cbbec4a9761ddd9
3
+ size 13826356
A2C-Atari-Pong/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0
A2C-Atari-Pong/data ADDED
The diff for this file is too large to render. See raw diff
 
A2C-Atari-Pong/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e18fd0b72255c6c58102700fc4a2d59b1589497e8f0e8e561e69190fa3f1e5ea
3
+ size 6754177
A2C-Atari-Pong/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aafef197de3abf9c0bd738bd3fe0e5b16e33f007c276e0818d30ec2c3b41ba6f
3
+ size 6757441
A2C-Atari-Pong/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
A2C-Atari-Pong/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0
4
+ - PyTorch: 2.0.1+cu117
5
+ - GPU Enabled: False
6
+ - Numpy: 1.25.0
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.26.2
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PongNoFrameskip-v4
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PongNoFrameskip-v4
16
+ type: PongNoFrameskip-v4
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -20.10 +/- 0.83
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PongNoFrameskip-v4**
25
+ This is a trained model of a **A2C** agent playing **PongNoFrameskip-v4**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
The diff for this file is too large to render. See raw diff
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -20.1, "std_reward": 0.8306623862918076, "is_deterministic": false, "n_eval_episodes": 10, "eval_datetime": "2023-07-10T10:42:50.538178"}