nroggendorff
commited on
Commit
•
0021861
1
Parent(s):
ece5267
Update README.md
Browse files
README.md
CHANGED
@@ -1,63 +1,35 @@
|
|
1 |
-
---
|
2 |
-
license:
|
3 |
-
base_model: distilbert/distilbert-base-uncased
|
4 |
-
|
5 |
-
-
|
6 |
-
|
7 |
-
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
#
|
17 |
-
|
18 |
-
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased)
|
19 |
-
It achieves the following results on the evaluation set:
|
20 |
-
|
21 |
-
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
### Training hyperparameters
|
38 |
-
|
39 |
-
The following hyperparameters were used during training:
|
40 |
-
- learning_rate: 2e-05
|
41 |
-
- train_batch_size: 16
|
42 |
-
- eval_batch_size: 16
|
43 |
-
- seed: 42
|
44 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
-
- lr_scheduler_type: linear
|
46 |
-
- num_epochs: 4
|
47 |
-
|
48 |
-
### Training results
|
49 |
-
|
50 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
-
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
-
| No log | 1.0 | 58 | 0.1070 | 0.9796 |
|
53 |
-
| No log | 2.0 | 116 | 0.1378 | 0.9592 |
|
54 |
-
| No log | 3.0 | 174 | 0.1139 | 0.9592 |
|
55 |
-
| No log | 4.0 | 232 | 0.1084 | 0.9796 |
|
56 |
-
|
57 |
-
|
58 |
-
### Framework versions
|
59 |
-
|
60 |
-
- Transformers 4.40.2
|
61 |
-
- Pytorch 2.3.0+cpu
|
62 |
-
- Datasets 2.19.1
|
63 |
-
- Tokenizers 0.19.1
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: distilbert/distilbert-base-uncased
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
model-index:
|
7 |
+
- name: birthday-detector
|
8 |
+
results: []
|
9 |
+
datasets:
|
10 |
+
- nroggendorff/doug
|
11 |
+
language:
|
12 |
+
- en
|
13 |
+
pipeline_tag: text-classification
|
14 |
+
---
|
15 |
+
|
16 |
+
# Birthday Detector
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased).
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
|
21 |
+
- Loss: 0.0101
|
22 |
+
- Accuracy: 1.0
|
23 |
+
|
24 |
+
You can easily run it with inference, or run it in python with:
|
25 |
+
|
26 |
+
```
|
27 |
+
from transformers import pipeline
|
28 |
+
classifier = pipeline("sentiment-analysis", model="nroggendorff/birthday-detector")
|
29 |
+
|
30 |
+
isBirthday = classifier("happy birthday doug")[0]["label"] == "POSITIVE"
|
31 |
+
```
|
32 |
+
|
33 |
+
Make sure you have the necessary dependencies installed.
|
34 |
+
|
35 |
+
[This models inspiration](https://youtu.be/Q6fjwHPVqjQ)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|