PPO-LunarLander-v2 / config.json
npit's picture
Proper training for HF DRL course unit1
92710c6
raw
history blame
14.4 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa174323af0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa174323b80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa174323c10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa174323ca0>", "_build": "<function ActorCriticPolicy._build at 0x7fa174323d30>", "forward": "<function ActorCriticPolicy.forward at 0x7fa174323dc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa174323e50>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa174323ee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa174323f70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa174328040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa1743280d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa1743251e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670956876796475759, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqv+LxlbZU/qbqKvbJshb4uR6G9NiGFPQAAAAAAAAAAZmYmt/AQqj/SO0486YKSvoQBIrxevi28AAAAAAAAAAC9nFu+gnedP5YSDb7C7IG+sM9bvog8rj0AAAAAAAAAAM1SCL5inYg/LngTvmywnr5unRu+tWY0vQAAAAAAAAAAzbPDPGivoz90UQ8+Dw2kvgqRB707AQy9AAAAAAAAAADmfYE+8YI9P1rHB75z7m2+CXYEPeYalL0AAAAAAAAAADCfoD6mp44+QJddvrJ7nL4dCY49kZuOOgAAAAAAAAAAjbSCvRQIkLqVI1c2PLtQMbGH47qXyYO1AACAPwAAgD/tsAm+f2o2P+io4z03MJe+KfGHOwF/LD0AAAAAAAAAAJqGlD2lhIw//WlrPpP0qL47l3w9m00CPgAAAAAAAAAAwHKtvTbaDD8dOQg+IitnvowABrydAwE+AAAAAAAAAAAAq0a99VaFPvf1t71sGVC+I+GMvCZUx7sAAAAAAAAAAM3sXTswXYU/1X9WvLRYi75e5RO9TXZCvQAAAAAAAAAAzXTZu64pirpoAio4iXqhMt+iPjo6/EO3AACAPwAAgD+A+BA9dCwGP7a1tbvdCG2+mhYnPTrGZb0AAAAAAAAAAGagUbzvOgE/6FcxPedWeb65JKA9c7hIPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIlfQwtDqCcECUhpRSlIwBbJRNawGMAXSUR0CUMdhoM8YAdX2UKGgGaAloD0MIe/ZcpialZkCUhpRSlGgVTegDaBZHQJQyDvjOs1d1fZQoaAZoCWgPQwhRgv5CT6VwQJSGlFKUaBVNSgFoFkdAlDVD6JqIrXV9lChoBmgJaA9DCKvP1VZsK29AlIaUUpRoFU08AWgWR0CUOLMJQcghdX2UKGgGaAloD0MIyJkmbD88a0CUhpRSlGgVTakBaBZHQJQ555Z8rqd1fZQoaAZoCWgPQwhGPxpOmXsXwJSGlFKUaBVNCQFoFkdAlDr4u01IiHV9lChoBmgJaA9DCPcA3Zcz/m5AlIaUUpRoFU2FAWgWR0CUO1oJzDGcdX2UKGgGaAloD0MIpP0PsFa5bUCUhpRSlGgVTZIBaBZHQJQ8Li2lVLl1fZQoaAZoCWgPQwhtjnObsJhwQJSGlFKUaBVNOgFoFkdAlD1bF85S33V9lChoBmgJaA9DCFN7EW1HCXBAlIaUUpRoFU1CAWgWR0CUP4HVwxWUdX2UKGgGaAloD0MIqiheZe2+bkCUhpRSlGgVTVMBaBZHQJQ/2bYsd1d1fZQoaAZoCWgPQwisPIGwE1twQJSGlFKUaBVNIQJoFkdAlD/bUsnRcHV9lChoBmgJaA9DCPjhICFKw25AlIaUUpRoFU2JAmgWR0CUQC2v0RODdX2UKGgGaAloD0MIMLlRZO10cECUhpRSlGgVTY0BaBZHQJRATGipNsZ1fZQoaAZoCWgPQwh1yqMbYbFiQJSGlFKUaBVN6ANoFkdAlED/3i704HV9lChoBmgJaA9DCJ1M3CpILnBAlIaUUpRoFU2KAWgWR0CUVIqtozvadX2UKGgGaAloD0MIFvvL7snrb0CUhpRSlGgVTVQBaBZHQJRVDWXkYGd1fZQoaAZoCWgPQwja/wBr1Z1tQJSGlFKUaBVNagFoFkdAlFgrpV0cO3V9lChoBmgJaA9DCDMxXYhV5W9AlIaUUpRoFU08AWgWR0CUWQUZeiSJdX2UKGgGaAloD0MI0erkDMWjcECUhpRSlGgVTQkCaBZHQJRawOpbUw11fZQoaAZoCWgPQwjk+KHSSNByQJSGlFKUaBVNZAFoFkdAlFtjCUHIIXV9lChoBmgJaA9DCN5y9WOTjG9AlIaUUpRoFU1PAWgWR0CUW6LEUCaJdX2UKGgGaAloD0MIRaFl3T+0RECUhpRSlGgVS/xoFkdAlFvjBInSfHV9lChoBmgJaA9DCGvvU1Xoxm5AlIaUUpRoFU00AWgWR0CUXCrKvFFVdX2UKGgGaAloD0MIIxEawcZbbkCUhpRSlGgVTVUBaBZHQJRces/6frd1fZQoaAZoCWgPQwgHeqhtw2ZwQJSGlFKUaBVNeQFoFkdAlFzfub7TD3V9lChoBmgJaA9DCGGlgorqGXFAlIaUUpRoFU02AWgWR0CUXjE0SAYpdX2UKGgGaAloD0MI3bQZp6EGckCUhpRSlGgVTWABaBZHQJRfoWHk92Z1fZQoaAZoCWgPQwi/SdOg6ENyQJSGlFKUaBVNlwFoFkdAlGEzER8MNXV9lChoBmgJaA9DCIdu9geKBXFAlIaUUpRoFU2BAWgWR0CUYdpCa7VbdX2UKGgGaAloD0MIVWggls36b0CUhpRSlGgVTZYBaBZHQJRjRpSJj2B1fZQoaAZoCWgPQwgBFY4glVhyQJSGlFKUaBVNSAFoFkdAlGRTiKiwjnV9lChoBmgJaA9DCG4zFeIRnXBAlIaUUpRoFU1IAWgWR0CUZUm8ujASdX2UKGgGaAloD0MIjC/a4wVCa0CUhpRSlGgVTTABaBZHQJRmKWE9Mbp1fZQoaAZoCWgPQwhkBb8NsStuQJSGlFKUaBVNKAJoFkdAlGhylenhsXV9lChoBmgJaA9DCCAL0SHwj3FAlIaUUpRoFU1OAWgWR0CUaKnCfpUxdX2UKGgGaAloD0MI4Zumzw6fbECUhpRSlGgVTU8BaBZHQJRp7Pu5SWJ1fZQoaAZoCWgPQwiciH5tPStwQJSGlFKUaBVNdQFoFkdAlGsG5H3DenV9lChoBmgJaA9DCM/Yl2w8KG9AlIaUUpRoFU2zAWgWR0CUbG09hZyNdX2UKGgGaAloD0MI2/tUFZogb0CUhpRSlGgVTagCaBZHQJRsrgwXZXd1fZQoaAZoCWgPQwj2m4npQtVvQJSGlFKUaBVNfAFoFkdAlG11HFxXGXV9lChoBmgJaA9DCHx+GCG8PXBAlIaUUpRoFU1yAWgWR0CUbpPn0TURdX2UKGgGaAloD0MI+KQTCWbZcUCUhpRSlGgVTTYBaBZHQJRwApy6tkp1fZQoaAZoCWgPQwiY++QowGZwQJSGlFKUaBVNbQFoFkdAlHAOe8PFvXV9lChoBmgJaA9DCKlPcodNb2pAlIaUUpRoFU0RAmgWR0CUcGXlKbrkdX2UKGgGaAloD0MIi1QYWwiNb0CUhpRSlGgVTWwBaBZHQJRwoqOLiuN1fZQoaAZoCWgPQwgM6IU7l0dvQJSGlFKUaBVNUQFoFkdAlHHEr5IpY3V9lChoBmgJaA9DCLk0fuGVl3BAlIaUUpRoFU0lAWgWR0CUcd91U2k0dX2UKGgGaAloD0MIEcXkDXC2cECUhpRSlGgVTT8BaBZHQJR3P6be/Hp1fZQoaAZoCWgPQwjuemmKANBtQJSGlFKUaBVNRAFoFkdAlHmVkQPI4nV9lChoBmgJaA9DCNLkYgxsxnJAlIaUUpRoFU1OAWgWR0CUecth/iHZdX2UKGgGaAloD0MIJ7wEpz7ZbECUhpRSlGgVTa4BaBZHQJR59CQcPvt1fZQoaAZoCWgPQwiel4qNOWlwQJSGlFKUaBVNLwFoFkdAlHrmx2SuAHV9lChoBmgJaA9DCDl9PV9z0HBAlIaUUpRoFU0yAWgWR0CUkJ0nw5NodX2UKGgGaAloD0MIr+3tlmRWb0CUhpRSlGgVTaMBaBZHQJSSOQCCBf91fZQoaAZoCWgPQwgK20/GuAVyQJSGlFKUaBVNegFoFkdAlJNSjYZl4HV9lChoBmgJaA9DCBqk4CnkFW5AlIaUUpRoFU1UAWgWR0CUk/MrVe8gdX2UKGgGaAloD0MIh2pKsg5GckCUhpRSlGgVTbUDaBZHQJSWPU2DQJJ1fZQoaAZoCWgPQwjjUpW2uDNwQJSGlFKUaBVNHgFoFkdAlJf/3N9piHV9lChoBmgJaA9DCKH18GUiXW9AlIaUUpRoFU3aAWgWR0CUmBd9lVcVdX2UKGgGaAloD0MI1EUKZSF4cECUhpRSlGgVTa8BaBZHQJSYO+0w8GN1fZQoaAZoCWgPQwi4Agr1dMRtQJSGlFKUaBVNhgJoFkdAlJieMqBmPHV9lChoBmgJaA9DCHtrYKvEuHBAlIaUUpRoFU0OA2gWR0CUmY7W/ag3dX2UKGgGaAloD0MISBXFq6xkbECUhpRSlGgVTUoBaBZHQJSbow5/9YR1fZQoaAZoCWgPQwi4dw360vJtQJSGlFKUaBVNTgFoFkdAlJuklJHy3HV9lChoBmgJaA9DCCdKQiLtlG1AlIaUUpRoFU09AWgWR0CUnAq6OHWSdX2UKGgGaAloD0MI1gClocYHcECUhpRSlGgVTVUBaBZHQJScJtCRfWt1fZQoaAZoCWgPQwjXwcHeRHttQJSGlFKUaBVNZwJoFkdAlJ0Br8BMjHV9lChoBmgJaA9DCJqWWBmNvARAlIaUUpRoFUv/aBZHQJSeFqubI911fZQoaAZoCWgPQwivl6YI8ElvQJSGlFKUaBVNTAFoFkdAlJ+CcXm/33V9lChoBmgJaA9DCELQ0aoWuGxAlIaUUpRoFU1uAWgWR0CUn5VaOgg6dX2UKGgGaAloD0MIPiE7b2PKb0CUhpRSlGgVTU8BaBZHQJSgcYqG1x91fZQoaAZoCWgPQwgt7dRcbutuQJSGlFKUaBVNMgFoFkdAlKNV0o0ALnV9lChoBmgJaA9DCCSX/5B+tV1AlIaUUpRoFU3oA2gWR0CUpL/IsAeadX2UKGgGaAloD0MI+WpHcc7ncECUhpRSlGgVTV8BaBZHQJSlNgXuVop1fZQoaAZoCWgPQwh3aFiMelRwQJSGlFKUaBVNjwFoFkdAlKWcz67/XHV9lChoBmgJaA9DCFMj9DP1fnBAlIaUUpRoFU2FAWgWR0CUpuYlIEr5dX2UKGgGaAloD0MIIGCt2rVCb0CUhpRSlGgVTY0BaBZHQJSnlhBqsU91fZQoaAZoCWgPQwiie9Y1WqhwQJSGlFKUaBVNNAFoFkdAlKeo/eLvTnV9lChoBmgJaA9DCAXc8/xp6WxAlIaUUpRoFU1JAWgWR0CUp+ZML4N7dX2UKGgGaAloD0MI5nXEIZsvbkCUhpRSlGgVTSABaBZHQJSn5lGwzLx1fZQoaAZoCWgPQwiTGW8r/RdyQJSGlFKUaBVNJgFoFkdAlKkMMNMGo3V9lChoBmgJaA9DCBIwury57W5AlIaUUpRoFU14AWgWR0CUqUwDNhVmdX2UKGgGaAloD0MItJPBUfK0cECUhpRSlGgVTdMBaBZHQJSqgPVd5Y51fZQoaAZoCWgPQwiVfsLZ7bdxQJSGlFKUaBVNtQFoFkdAlKuL0nPVu3V9lChoBmgJaA9DCJfJcDyfpXFAlIaUUpRoFU1YAWgWR0CUq9Qnx8UmdX2UKGgGaAloD0MIbHwm+2fncECUhpRSlGgVTYMBaBZHQJStQBdUsFt1fZQoaAZoCWgPQwiH3XcMD0FtQJSGlFKUaBVNuAFoFkdAlLA3avicXnV9lChoBmgJaA9DCD4/jBAeQGxAlIaUUpRoFU1OAWgWR0CUsEzTF2mpdX2UKGgGaAloD0MIcmw9QziyR0CUhpRSlGgVS/5oFkdAlLBYoAn2I3V9lChoBmgJaA9DCGiwqfMowG9AlIaUUpRoFU1LAWgWR0CUsJ1schkidX2UKGgGaAloD0MIIZOMnIU4cUCUhpRSlGgVTX4BaBZHQJSw46V+qip1fZQoaAZoCWgPQwgnEeFfhA5wQJSGlFKUaBVNaQFoFkdAlLH+rZJ04nV9lChoBmgJaA9DCJ+sGK4Oy29AlIaUUpRoFU1TAWgWR0CUsyNLDhtMdX2UKGgGaAloD0MInfaUnBP2b0CUhpRSlGgVTVwBaBZHQJSzvFwT/Q11fZQoaAZoCWgPQwjPEfkuJWlvQJSGlFKUaBVNagFoFkdAlLPnmig00nV9lChoBmgJaA9DCCJt408Us3FAlIaUUpRoFU2OAWgWR0CUtHsRg7YDdX2UKGgGaAloD0MISG5Num08cUCUhpRSlGgVTUUBaBZHQJS0gh+vyLB1fZQoaAZoCWgPQwjQmbSpOsRwQJSGlFKUaBVNNQFoFkdAlLVBpg1FY3V9lChoBmgJaA9DCF7Ymq28vD9AlIaUUpRoFU0NAWgWR0CUtVBX0XgtdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}