Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 239.91 +/- 21.04
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f05301e0dc0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f05301e0e50>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f05301e0ee0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f05301e0f70>", "_build": "<function ActorCriticPolicy._build at 0x7f0530164040>", "forward": "<function ActorCriticPolicy.forward at 0x7f05301640d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0530164160>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f05301641f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0530164280>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0530164310>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f05301643a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0530164430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f05301df3f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676328290240535256, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbysr2PQkm6xvKFOmwO6zXXaG67h8OjuQAAgD8AAIA/TfeyvUh3r7p6yhM6STOQNueKlrk4jS+5AACAPwAAAABmfvk7e5CCuuuhs7oCUcG1C3UvO55E0TkAAIA/AACAPya5jT3smci5XEiBuV7V97ShWb46MvGYOAAAgD8AAIA/2v2xvY8ubLpzhoq7+hDit6aWpDp1uK06AACAPwAAgD9mmqK8jwpCuotf4ztJ14I2rMEHOxKEfjUAAIA/AACAP+ZGdT2an0A/YkKIvc9IX76zU708LVKHvQAAAAAAAAAAswY6vYpHrT/hIyW/VOXCvuUFzjzNN8A8AAAAAAAAAADmbLa9ez6buqvjQT1A7imzPbYYOhUuTrMAAIA/AAAAAM0D37xc/xK6RitWPMswx7XvWei6ZWC/tAAAgD8AAIA/rRcgvtuYdz/Nq2S9xLWFvt0/eb2PWMK8AAAAAAAAAADN9IU74RSvutsURLox+oK1p4WKOmt0YDkAAIA/AACAP8od4j4ls1E/mPCLveebGr6shwc+GI8HvQAAAAAAAAAAAJOmPVRabT8eP6y8apQfviaFpjwdVFa9AAAAAAAAAACambU32hJvPy1lEL0EQ2O+crcKvM6P37wAAAAAAAAAAAAAhzzh+oa6Ek/ZuHx5QbOX/wC7pl38NwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIswqbAa6dZECUhpRSlIwBbJRN6AOMAXSUR0Cg2eSzXz19dX2UKGgGaAloD0MIotKImX3eZUCUhpRSlGgVTegDaBZHQKDarPmgam51fZQoaAZoCWgPQwgJ/Uy9brkgQJSGlFKUaBVNQwFoFkdAoNxklRgqmXV9lChoBmgJaA9DCL5qZcKv9mBAlIaUUpRoFU3oA2gWR0Cg5GdZid8RdX2UKGgGaAloD0MIZd8VwX8dYkCUhpRSlGgVTegDaBZHQKDmXHmzSkV1fZQoaAZoCWgPQwiPiv87oldjQJSGlFKUaBVN6ANoFkdAoOeCI7/4qXV9lChoBmgJaA9DCFgCKbHrL2BAlIaUUpRoFU3oA2gWR0Cg6IDLr5ZbdX2UKGgGaAloD0MINCxGXWv3XECUhpRSlGgVTegDaBZHQKDpSuOjqOd1fZQoaAZoCWgPQwjLhcq/loVjQJSGlFKUaBVN6ANoFkdAoOruipNsWXV9lChoBmgJaA9DCMufbwuWbGJAlIaUUpRoFU3oA2gWR0Cg66WYF7ladX2UKGgGaAloD0MIePF+3P5DZUCUhpRSlGgVTegDaBZHQKDxqFQl8gJ1fZQoaAZoCWgPQwjcLF4sjBVkQJSGlFKUaBVN6ANoFkdAoP1CunuRcXV9lChoBmgJaA9DCPexgt8GSGJAlIaUUpRoFU3oA2gWR0Cg/j0QkHD8dX2UKGgGaAloD0MI0jQomgetYkCUhpRSlGgVTegDaBZHQKEFDc32mHh1fZQoaAZoCWgPQwjZQpCDEvBmQJSGlFKUaBVN6ANoFkdAoQa5T/ACXHV9lChoBmgJaA9DCAwgfCjRgGJAlIaUUpRoFU3oA2gWR0ChDWc8cMmXdX2UKGgGaAloD0MIKgExCRd/Y0CUhpRSlGgVTegDaBZHQKENr9WIXTF1fZQoaAZoCWgPQwj/lZUmpeliQJSGlFKUaBVN6ANoFkdAoQ572i+L33V9lChoBmgJaA9DCO87hsd+cmJAlIaUUpRoFU3oA2gWR0ChEDHW8RL9dX2UKGgGaAloD0MI9l/nps2RXkCUhpRSlGgVTegDaBZHQKEWnOIqLCN1fZQoaAZoCWgPQwjAlIEDWkZYQJSGlFKUaBVN6ANoFkdAoRf7IikftHV9lChoBmgJaA9DCOPBFrv9aWBAlIaUUpRoFU3oA2gWR0ChGMHctXgcdX2UKGgGaAloD0MIKHy2Dg5XYECUhpRSlGgVTegDaBZHQKEZcFTvRZ51fZQoaAZoCWgPQwjQCgxZ3ZRfQJSGlFKUaBVN6ANoFkdAoRoncSGrS3V9lChoBmgJaA9DCMJM27+yGWdAlIaUUpRoFU3oA2gWR0ChHCkXDWK/dX2UKGgGaAloD0MIj20ZcJbhYkCUhpRSlGgVTegDaBZHQKEdRkvK2a51fZQoaAZoCWgPQwjXvRWJCWoLQJSGlFKUaBVNNgFoFkdAoSPS7VawEHV9lChoBmgJaA9DCCygUE8f2VZAlIaUUpRoFU3oA2gWR0ChJnch9srNdX2UKGgGaAloD0MIoaNVLek8XkCUhpRSlGgVTegDaBZHQKEoGyHEdeZ1fZQoaAZoCWgPQwiuug7VlJdbQJSGlFKUaBVN6ANoFkdAoTK7qB3A23V9lChoBmgJaA9DCDf+RGXDvmFAlIaUUpRoFU3oA2gWR0ChN55oXbdrdX2UKGgGaAloD0MIJSAm4cIHYkCUhpRSlGgVTegDaBZHQKE40PsiSq51fZQoaAZoCWgPQwiv0AfLWNNiQJSGlFKUaBVN6ANoFkdAoUIdsUIsy3V9lChoBmgJaA9DCJ+T3je+pVhAlIaUUpRoFU3oA2gWR0ChQovAGjbjdX2UKGgGaAloD0MIhH8RNGZtYECUhpRSlGgVTegDaBZHQKFDwnKGL1p1fZQoaAZoCWgPQwjIX1rUJ75bQJSGlFKUaBVN6ANoFkdAoUWiZH/cWXV9lChoBmgJaA9DCNvEyf0O/GNAlIaUUpRoFU3oA2gWR0ChTfPuogmrdX2UKGgGaAloD0MIDjFe8ypnYkCUhpRSlGgVTegDaBZHQKFOw0zCUHJ1fZQoaAZoCWgPQwhKJNHLKERbQJSGlFKUaBVN6ANoFkdAoU+Eg0TDfnV9lChoBmgJaA9DCBpPBHEeJ1pAlIaUUpRoFU3oA2gWR0ChUE14X40udX2UKGgGaAloD0MIgh3/BYKRXkCUhpRSlGgVTegDaBZHQKFSHA6dUbV1fZQoaAZoCWgPQwgTKji8oI5hQJSGlFKUaBVN6ANoFkdAoVLwctGutHV9lChoBmgJaA9DCHCwNzEk/llAlIaUUpRoFU3oA2gWR0ChV14nv2GqdX2UKGgGaAloD0MIYRiw5KpYZ0CUhpRSlGgVTegDaBZHQKFZ+g/1QIl1fZQoaAZoCWgPQwh4mPbN/b9bQJSGlFKUaBVN6ANoFkdAoVwIgNgBtHV9lChoBmgJaA9DCH7iAPp9HxtAlIaUUpRoFU1yAWgWR0ChXApGFzuGdX2UKGgGaAloD0MI9wFIbeKeX0CUhpRSlGgVTegDaBZHQKFc1vx6OYJ1fZQoaAZoCWgPQwjeO2pMiMU5QJSGlFKUaBVNYwFoFkdAoWsiT6i0wHV9lChoBmgJaA9DCN3qOel9JWRAlIaUUpRoFU3oA2gWR0ChbL0+cH4XdX2UKGgGaAloD0MIvTjx1Y4jYUCUhpRSlGgVTegDaBZHQKFttjyWiUR1fZQoaAZoCWgPQwgVU+knnFJeQJSGlFKUaBVN6ANoFkdAoXO+Tq0MPXV9lChoBmgJaA9DCJks7j8y5mVAlIaUUpRoFU3oA2gWR0ChdAXdj5KwdX2UKGgGaAloD0MIkIZT5uZPWkCUhpRSlGgVTegDaBZHQKF0yqH446x1fZQoaAZoCWgPQwhRgv5Cj+BmQJSGlFKUaBVN6ANoFkdAoXaJQYUFjnV9lChoBmgJaA9DCDfjNEQVek9AlIaUUpRoFU0hAWgWR0CheOW9DhLodX2UKGgGaAloD0MIIoleRjHnY0CUhpRSlGgVTegDaBZHQKGCRUQTVUd1fZQoaAZoCWgPQwheZAJ+DYBjQJSGlFKUaBVN6ANoFkdAoYMMaXKKYXV9lChoBmgJaA9DCATJO4cyE15AlIaUUpRoFU3oA2gWR0Chg85nUUfxdX2UKGgGaAloD0MIPBdGelF3PkCUhpRSlGgVTTABaBZHQKGFF+LFXJZ1fZQoaAZoCWgPQwj1udqKfclgQJSGlFKUaBVN6ANoFkdAoYZpnjABUHV9lChoBmgJaA9DCMVVZd+Vb2FAlIaUUpRoFU3oA2gWR0ChivoQnQY2dX2UKGgGaAloD0MIj6hQ3VyrYECUhpRSlGgVTegDaBZHQKGM0lchTwV1fZQoaAZoCWgPQwgSoKaWrdVGQJSGlFKUaBVL8WgWR0ChjSg00m+kdX2UKGgGaAloD0MIb4Jvmj72VkCUhpRSlGgVTegDaBZHQKGOG5BC2MN1fZQoaAZoCWgPQwjDuBtE6+lhQJSGlFKUaBVN6ANoFkdAoY4cgyM1j3V9lChoBmgJaA9DCOoI4Gbx72FAlIaUUpRoFU3oA2gWR0ChjqV2q1gIdX2UKGgGaAloD0MI4iGMn0b4YkCUhpRSlGgVTegDaBZHQKGdYnrpqyp1fZQoaAZoCWgPQwgSUOEI0pZgQJSGlFKUaBVN6ANoFkdAoZ75S75EdHV9lChoBmgJaA9DCLNCke5nrGJAlIaUUpRoFU3oA2gWR0ChpVjUmUnpdX2UKGgGaAloD0MI7RFqhtRUZUCUhpRSlGgVTegDaBZHQKGlmcH4XXR1fZQoaAZoCWgPQwjR60/i8+FjQJSGlFKUaBVN6ANoFkdAoaZbg88s+XV9lChoBmgJaA9DCNkj1AypWl9AlIaUUpRoFU3oA2gWR0ChqZCZ4Oc2dX2UKGgGaAloD0MINIRjlj0kZkCUhpRSlGgVTegDaBZHQKGwgrp7kXF1fZQoaAZoCWgPQwijBz4GK4VjQJSGlFKUaBVN6ANoFkdAobFMGJN0vHV9lChoBmgJaA9DCP2/6siRrk9AlIaUUpRoFU0/AWgWR0ChsZIwdsBRdX2UKGgGaAloD0MI205bI4I0W0CUhpRSlGgVTegDaBZHQKGyKVcD8tR1fZQoaAZoCWgPQwgtWoC21fBhQJSGlFKUaBVN6ANoFkdAobYhE+gUUXV9lChoBmgJaA9DCMqoMow7pmRAlIaUUpRoFU3oA2gWR0ChvQHE2pAEdX2UKGgGaAloD0MIaM2Pv7RFYUCUhpRSlGgVTegDaBZHQKG/TfqHGjt1fZQoaAZoCWgPQwh3Mc10r95XQJSGlFKUaBVN6ANoFkdAob+9PnB+F3V9lChoBmgJaA9DCCjzj75JVFlAlIaUUpRoFU3oA2gWR0ChwOfShJyydX2UKGgGaAloD0MI3V897tuOYECUhpRSlGgVTegDaBZHQKHA6QL/jsF1fZQoaAZoCWgPQwjba0HvDRVkQJSGlFKUaBVN6ANoFkdAocF9PDYRNHV9lChoBmgJaA9DCCXqBZ/mVF1AlIaUUpRoFU3oA2gWR0ChzjzEJjUedX2UKGgGaAloD0MI/fZ14JyaXkCUhpRSlGgVTegDaBZHQKHP8V1Oj7B1fZQoaAZoCWgPQwjmWUkrvuH3v5SGlFKUaBVNbQFoFkdAodWoy6+WW3V9lChoBmgJaA9DCBjQC3eug2RAlIaUUpRoFU3oA2gWR0Ch2n3sgMc7dX2UKGgGaAloD0MIOX09X7NkXUCUhpRSlGgVTegDaBZHQKHbpsabWmR1fZQoaAZoCWgPQwiwAny3eQ1bQJSGlFKUaBVN6ANoFkdAod+M5sCT2XV9lChoBmgJaA9DCKc/+5Gi3mxAlIaUUpRoFU1GA2gWR0Ch5ZlF+d9VdX2UKGgGaAloD0MIMe2b+ytFYECUhpRSlGgVTegDaBZHQKHniKXv6TJ1fZQoaAZoCWgPQwihn6nXLXVfQJSGlFKUaBVN6ANoFkdAoehbIvJzUHV9lChoBmgJaA9DCIohOZm4mmFAlIaUUpRoFU3oA2gWR0Ch6KUDlo12dX2UKGgGaAloD0MI1UDzOXf8W0CUhpRSlGgVTegDaBZHQKHpLKs+3Yt1fZQoaAZoCWgPQwjcoWEx6tJlQJSGlFKUaBVN6ANoFkdAofZOBczIm3V9lChoBmgJaA9DCLiVXpsNimJAlIaUUpRoFU3oA2gWR0Ch9wYAsCkodX2UKGgGaAloD0MIOgZkr/dfYkCUhpRSlGgVTegDaBZHQKH45zMibDx1fZQoaAZoCWgPQwhz2eicn8NgQJSGlFKUaBVN6ANoFkdAofjovexfOXV9lChoBmgJaA9DCHak+s6vmmFAlIaUUpRoFU3oA2gWR0Ch+ZteD3/QdX2UKGgGaAloD0MIlzldFpM+YUCUhpRSlGgVTegDaBZHQKH81ZDiOvN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:963e45717cf835b1e8dfb231a46ad8da74305a211e145b842d5e70e1e67fab9f
|
3 |
+
size 147424
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f05301e0dc0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f05301e0e50>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f05301e0ee0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f05301e0f70>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f0530164040>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f05301640d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0530164160>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f05301641f0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f0530164280>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0530164310>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f05301643a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0530164430>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f05301df3f0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1676328290240535256,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbysr2PQkm6xvKFOmwO6zXXaG67h8OjuQAAgD8AAIA/TfeyvUh3r7p6yhM6STOQNueKlrk4jS+5AACAPwAAAABmfvk7e5CCuuuhs7oCUcG1C3UvO55E0TkAAIA/AACAPya5jT3smci5XEiBuV7V97ShWb46MvGYOAAAgD8AAIA/2v2xvY8ubLpzhoq7+hDit6aWpDp1uK06AACAPwAAgD9mmqK8jwpCuotf4ztJ14I2rMEHOxKEfjUAAIA/AACAP+ZGdT2an0A/YkKIvc9IX76zU708LVKHvQAAAAAAAAAAswY6vYpHrT/hIyW/VOXCvuUFzjzNN8A8AAAAAAAAAADmbLa9ez6buqvjQT1A7imzPbYYOhUuTrMAAIA/AAAAAM0D37xc/xK6RitWPMswx7XvWei6ZWC/tAAAgD8AAIA/rRcgvtuYdz/Nq2S9xLWFvt0/eb2PWMK8AAAAAAAAAADN9IU74RSvutsURLox+oK1p4WKOmt0YDkAAIA/AACAP8od4j4ls1E/mPCLveebGr6shwc+GI8HvQAAAAAAAAAAAJOmPVRabT8eP6y8apQfviaFpjwdVFa9AAAAAAAAAACambU32hJvPy1lEL0EQ2O+crcKvM6P37wAAAAAAAAAAAAAhzzh+oa6Ek/ZuHx5QbOX/wC7pl38NwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIswqbAa6dZECUhpRSlIwBbJRN6AOMAXSUR0Cg2eSzXz19dX2UKGgGaAloD0MIotKImX3eZUCUhpRSlGgVTegDaBZHQKDarPmgam51fZQoaAZoCWgPQwgJ/Uy9brkgQJSGlFKUaBVNQwFoFkdAoNxklRgqmXV9lChoBmgJaA9DCL5qZcKv9mBAlIaUUpRoFU3oA2gWR0Cg5GdZid8RdX2UKGgGaAloD0MIZd8VwX8dYkCUhpRSlGgVTegDaBZHQKDmXHmzSkV1fZQoaAZoCWgPQwiPiv87oldjQJSGlFKUaBVN6ANoFkdAoOeCI7/4qXV9lChoBmgJaA9DCFgCKbHrL2BAlIaUUpRoFU3oA2gWR0Cg6IDLr5ZbdX2UKGgGaAloD0MINCxGXWv3XECUhpRSlGgVTegDaBZHQKDpSuOjqOd1fZQoaAZoCWgPQwjLhcq/loVjQJSGlFKUaBVN6ANoFkdAoOruipNsWXV9lChoBmgJaA9DCMufbwuWbGJAlIaUUpRoFU3oA2gWR0Cg66WYF7ladX2UKGgGaAloD0MIePF+3P5DZUCUhpRSlGgVTegDaBZHQKDxqFQl8gJ1fZQoaAZoCWgPQwjcLF4sjBVkQJSGlFKUaBVN6ANoFkdAoP1CunuRcXV9lChoBmgJaA9DCPexgt8GSGJAlIaUUpRoFU3oA2gWR0Cg/j0QkHD8dX2UKGgGaAloD0MI0jQomgetYkCUhpRSlGgVTegDaBZHQKEFDc32mHh1fZQoaAZoCWgPQwjZQpCDEvBmQJSGlFKUaBVN6ANoFkdAoQa5T/ACXHV9lChoBmgJaA9DCAwgfCjRgGJAlIaUUpRoFU3oA2gWR0ChDWc8cMmXdX2UKGgGaAloD0MIKgExCRd/Y0CUhpRSlGgVTegDaBZHQKENr9WIXTF1fZQoaAZoCWgPQwj/lZUmpeliQJSGlFKUaBVN6ANoFkdAoQ572i+L33V9lChoBmgJaA9DCO87hsd+cmJAlIaUUpRoFU3oA2gWR0ChEDHW8RL9dX2UKGgGaAloD0MI9l/nps2RXkCUhpRSlGgVTegDaBZHQKEWnOIqLCN1fZQoaAZoCWgPQwjAlIEDWkZYQJSGlFKUaBVN6ANoFkdAoRf7IikftHV9lChoBmgJaA9DCOPBFrv9aWBAlIaUUpRoFU3oA2gWR0ChGMHctXgcdX2UKGgGaAloD0MIKHy2Dg5XYECUhpRSlGgVTegDaBZHQKEZcFTvRZ51fZQoaAZoCWgPQwjQCgxZ3ZRfQJSGlFKUaBVN6ANoFkdAoRoncSGrS3V9lChoBmgJaA9DCMJM27+yGWdAlIaUUpRoFU3oA2gWR0ChHCkXDWK/dX2UKGgGaAloD0MIj20ZcJbhYkCUhpRSlGgVTegDaBZHQKEdRkvK2a51fZQoaAZoCWgPQwjXvRWJCWoLQJSGlFKUaBVNNgFoFkdAoSPS7VawEHV9lChoBmgJaA9DCCygUE8f2VZAlIaUUpRoFU3oA2gWR0ChJnch9srNdX2UKGgGaAloD0MIoaNVLek8XkCUhpRSlGgVTegDaBZHQKEoGyHEdeZ1fZQoaAZoCWgPQwiuug7VlJdbQJSGlFKUaBVN6ANoFkdAoTK7qB3A23V9lChoBmgJaA9DCDf+RGXDvmFAlIaUUpRoFU3oA2gWR0ChN55oXbdrdX2UKGgGaAloD0MIJSAm4cIHYkCUhpRSlGgVTegDaBZHQKE40PsiSq51fZQoaAZoCWgPQwiv0AfLWNNiQJSGlFKUaBVN6ANoFkdAoUIdsUIsy3V9lChoBmgJaA9DCJ+T3je+pVhAlIaUUpRoFU3oA2gWR0ChQovAGjbjdX2UKGgGaAloD0MIhH8RNGZtYECUhpRSlGgVTegDaBZHQKFDwnKGL1p1fZQoaAZoCWgPQwjIX1rUJ75bQJSGlFKUaBVN6ANoFkdAoUWiZH/cWXV9lChoBmgJaA9DCNvEyf0O/GNAlIaUUpRoFU3oA2gWR0ChTfPuogmrdX2UKGgGaAloD0MIDjFe8ypnYkCUhpRSlGgVTegDaBZHQKFOw0zCUHJ1fZQoaAZoCWgPQwhKJNHLKERbQJSGlFKUaBVN6ANoFkdAoU+Eg0TDfnV9lChoBmgJaA9DCBpPBHEeJ1pAlIaUUpRoFU3oA2gWR0ChUE14X40udX2UKGgGaAloD0MIgh3/BYKRXkCUhpRSlGgVTegDaBZHQKFSHA6dUbV1fZQoaAZoCWgPQwgTKji8oI5hQJSGlFKUaBVN6ANoFkdAoVLwctGutHV9lChoBmgJaA9DCHCwNzEk/llAlIaUUpRoFU3oA2gWR0ChV14nv2GqdX2UKGgGaAloD0MIYRiw5KpYZ0CUhpRSlGgVTegDaBZHQKFZ+g/1QIl1fZQoaAZoCWgPQwh4mPbN/b9bQJSGlFKUaBVN6ANoFkdAoVwIgNgBtHV9lChoBmgJaA9DCH7iAPp9HxtAlIaUUpRoFU1yAWgWR0ChXApGFzuGdX2UKGgGaAloD0MI9wFIbeKeX0CUhpRSlGgVTegDaBZHQKFc1vx6OYJ1fZQoaAZoCWgPQwjeO2pMiMU5QJSGlFKUaBVNYwFoFkdAoWsiT6i0wHV9lChoBmgJaA9DCN3qOel9JWRAlIaUUpRoFU3oA2gWR0ChbL0+cH4XdX2UKGgGaAloD0MIvTjx1Y4jYUCUhpRSlGgVTegDaBZHQKFttjyWiUR1fZQoaAZoCWgPQwgVU+knnFJeQJSGlFKUaBVN6ANoFkdAoXO+Tq0MPXV9lChoBmgJaA9DCJks7j8y5mVAlIaUUpRoFU3oA2gWR0ChdAXdj5KwdX2UKGgGaAloD0MIkIZT5uZPWkCUhpRSlGgVTegDaBZHQKF0yqH446x1fZQoaAZoCWgPQwhRgv5Cj+BmQJSGlFKUaBVN6ANoFkdAoXaJQYUFjnV9lChoBmgJaA9DCDfjNEQVek9AlIaUUpRoFU0hAWgWR0CheOW9DhLodX2UKGgGaAloD0MIIoleRjHnY0CUhpRSlGgVTegDaBZHQKGCRUQTVUd1fZQoaAZoCWgPQwheZAJ+DYBjQJSGlFKUaBVN6ANoFkdAoYMMaXKKYXV9lChoBmgJaA9DCATJO4cyE15AlIaUUpRoFU3oA2gWR0Chg85nUUfxdX2UKGgGaAloD0MIPBdGelF3PkCUhpRSlGgVTTABaBZHQKGFF+LFXJZ1fZQoaAZoCWgPQwj1udqKfclgQJSGlFKUaBVN6ANoFkdAoYZpnjABUHV9lChoBmgJaA9DCMVVZd+Vb2FAlIaUUpRoFU3oA2gWR0ChivoQnQY2dX2UKGgGaAloD0MIj6hQ3VyrYECUhpRSlGgVTegDaBZHQKGM0lchTwV1fZQoaAZoCWgPQwgSoKaWrdVGQJSGlFKUaBVL8WgWR0ChjSg00m+kdX2UKGgGaAloD0MIb4Jvmj72VkCUhpRSlGgVTegDaBZHQKGOG5BC2MN1fZQoaAZoCWgPQwjDuBtE6+lhQJSGlFKUaBVN6ANoFkdAoY4cgyM1j3V9lChoBmgJaA9DCOoI4Gbx72FAlIaUUpRoFU3oA2gWR0ChjqV2q1gIdX2UKGgGaAloD0MI4iGMn0b4YkCUhpRSlGgVTegDaBZHQKGdYnrpqyp1fZQoaAZoCWgPQwgSUOEI0pZgQJSGlFKUaBVN6ANoFkdAoZ75S75EdHV9lChoBmgJaA9DCLNCke5nrGJAlIaUUpRoFU3oA2gWR0ChpVjUmUnpdX2UKGgGaAloD0MI7RFqhtRUZUCUhpRSlGgVTegDaBZHQKGlmcH4XXR1fZQoaAZoCWgPQwjR60/i8+FjQJSGlFKUaBVN6ANoFkdAoaZbg88s+XV9lChoBmgJaA9DCNkj1AypWl9AlIaUUpRoFU3oA2gWR0ChqZCZ4Oc2dX2UKGgGaAloD0MINIRjlj0kZkCUhpRSlGgVTegDaBZHQKGwgrp7kXF1fZQoaAZoCWgPQwijBz4GK4VjQJSGlFKUaBVN6ANoFkdAobFMGJN0vHV9lChoBmgJaA9DCP2/6siRrk9AlIaUUpRoFU0/AWgWR0ChsZIwdsBRdX2UKGgGaAloD0MI205bI4I0W0CUhpRSlGgVTegDaBZHQKGyKVcD8tR1fZQoaAZoCWgPQwgtWoC21fBhQJSGlFKUaBVN6ANoFkdAobYhE+gUUXV9lChoBmgJaA9DCMqoMow7pmRAlIaUUpRoFU3oA2gWR0ChvQHE2pAEdX2UKGgGaAloD0MIaM2Pv7RFYUCUhpRSlGgVTegDaBZHQKG/TfqHGjt1fZQoaAZoCWgPQwh3Mc10r95XQJSGlFKUaBVN6ANoFkdAob+9PnB+F3V9lChoBmgJaA9DCCjzj75JVFlAlIaUUpRoFU3oA2gWR0ChwOfShJyydX2UKGgGaAloD0MI3V897tuOYECUhpRSlGgVTegDaBZHQKHA6QL/jsF1fZQoaAZoCWgPQwjba0HvDRVkQJSGlFKUaBVN6ANoFkdAocF9PDYRNHV9lChoBmgJaA9DCCXqBZ/mVF1AlIaUUpRoFU3oA2gWR0ChzjzEJjUedX2UKGgGaAloD0MI/fZ14JyaXkCUhpRSlGgVTegDaBZHQKHP8V1Oj7B1fZQoaAZoCWgPQwjmWUkrvuH3v5SGlFKUaBVNbQFoFkdAodWoy6+WW3V9lChoBmgJaA9DCBjQC3eug2RAlIaUUpRoFU3oA2gWR0Ch2n3sgMc7dX2UKGgGaAloD0MIOX09X7NkXUCUhpRSlGgVTegDaBZHQKHbpsabWmR1fZQoaAZoCWgPQwiwAny3eQ1bQJSGlFKUaBVN6ANoFkdAod+M5sCT2XV9lChoBmgJaA9DCKc/+5Gi3mxAlIaUUpRoFU1GA2gWR0Ch5ZlF+d9VdX2UKGgGaAloD0MIMe2b+ytFYECUhpRSlGgVTegDaBZHQKHniKXv6TJ1fZQoaAZoCWgPQwihn6nXLXVfQJSGlFKUaBVN6ANoFkdAoehbIvJzUHV9lChoBmgJaA9DCIohOZm4mmFAlIaUUpRoFU3oA2gWR0Ch6KUDlo12dX2UKGgGaAloD0MI1UDzOXf8W0CUhpRSlGgVTegDaBZHQKHpLKs+3Yt1fZQoaAZoCWgPQwjcoWEx6tJlQJSGlFKUaBVN6ANoFkdAofZOBczIm3V9lChoBmgJaA9DCLiVXpsNimJAlIaUUpRoFU3oA2gWR0Ch9wYAsCkodX2UKGgGaAloD0MIOgZkr/dfYkCUhpRSlGgVTegDaBZHQKH45zMibDx1fZQoaAZoCWgPQwhz2eicn8NgQJSGlFKUaBVN6ANoFkdAofjovexfOXV9lChoBmgJaA9DCHak+s6vmmFAlIaUUpRoFU3oA2gWR0Ch+ZteD3/QdX2UKGgGaAloD0MIlzldFpM+YUCUhpRSlGgVTegDaBZHQKH81ZDiOvN1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3fe1957f527c4260f19f61927400af40a3514daef12fbd90f7c2cbe470783c3c
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:894d2b7a4b8ad58d291bf3e3a63d592a3e36d7848f3b6234604befd3fac774d3
|
3 |
+
size 43393
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (253 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 239.91027882042204, "std_reward": 21.043381965469056, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-13T23:14:59.174604"}
|