ppo-lunar-lander-v2 / config.json
nosark's picture
Upload PPO LunarLander-v2 trained agent to HuggingFace
1a23c3f
raw
history blame
13.1 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7e015df34550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7e015df345e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7e015df34670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7e015df34700>", "_build": "<function ActorCriticPolicy._build at 0x7e015df34790>", "forward": "<function ActorCriticPolicy.forward at 0x7e015df34820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7e015df348b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7e015df34940>", "_predict": "<function ActorCriticPolicy._predict at 0x7e015df349d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7e015df34a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7e015df34af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7e015df34b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e015ded8f80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1703926953464250383, "learning_rate": 0.0006, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAALMuvz3D/SW688XgOjfIGDhX/4E7jEa/uAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQC3fI0ZWJaeMAWyUS2GMAXSUR0CdsxwM6RyPdX2UKGgGR0BeIcqrilzmaAdN6ANoCEdAnbsJ5eJHiHV9lChoBkdASzbmEGqxT2gHS6VoCEdAnbwR/RVp9XV9lChoBkdAYLH/axoqTmgHTegDaAhHQJ3DpiLEUCd1fZQoaAZHQFECRx95QgtoB0ucaAhHQJ3EluTA31l1fZQoaAZHQGGWb1Iy0rtoB03oA2gIR0CdzaHoHLRsdX2UKGgGR0BbkCkCV8kVaAdN6ANoCEdAndcFajesP3V9lChoBkdAUCG27Wd3CGgHS6ZoCEdAndgJZ8rqdHV9lChoBkdAYK+psGgSOGgHTegDaAhHQJ3f/a37UG51fZQoaAZHQFzFuXu3MINoB03oA2gIR0Cd5/EXtShrdX2UKGgGR0BTTePmxMWXaAdLl2gIR0Cd6NjrRjSYdX2UKGgGR0BjYGr8zhxYaAdN6ANoCEdAnfCQg9vCM3V9lChoBkdAYlGQMhHLBGgHTegDaAhHQJ34bE9+w1R1fZQoaAZHQGJvw4bS7XhoB03oA2gIR0CeATmg8KXwdX2UKGgGR0BiZ+bXpW3jaAdN6ANoCEdAngqyx3V093V9lChoBkdAYc29CeEqUmgHTegDaAhHQJ4Sao4uK4x1fZQoaAZHQE7LpVS4vvloB0usaAhHQJ4TY89wFTx1fZQoaAZHQGDtVj7Q9idoB03oA2gIR0CeGyjopx3ndX2UKGgGR0BmNX6/IsAeaAdN6ANoCEdAniL7fk3juXV9lChoBkdASEPXVbzK92gHS7VoCEdAniQJ1A7gbnV9lChoBkdAY0O1mapgkWgHTegDaAhHQJ4rzYf4h2Z1fZQoaAZHQGS/XkPtlZpoB03oA2gIR0CeNNE/0NBodX2UKGgGR0Bj+lUZNwiraAdN6ANoCEdAnj5AIhQm/nV9lChoBkdAVGMbkwN9Y2gHS6RoCEdAnj836uW8iHV9lChoBkdAY3MCNjslcGgHTegDaAhHQJ5G9PykKu11fZQoaAZHQGMxZ31SOzZoB03oA2gIR0CeTpYjSofkdX2UKGgGR0Bmkagbp/wzaAdN6ANoCEdAnlZrKaG5+nV9lChoBkdAYITld1MdtGgHTegDaAhHQJ5eJ6C17Y11fZQoaAZHQF+bWdEsrd5oB03oA2gIR0CeZptkWhysdX2UKGgGR0BR2zmnwXqJaAdLqGgIR0CeZ+KF7D2rdX2UKGgGR0BgAUOTaCcxaAdN6ANoCEdAnnGseGO+7HV9lChoBkdAZwoK0lZ5iWgHTegDaAhHQJ55gZccENh1fZQoaAZHQEpUwCbMHKRoB0ukaAhHQJ56d5prULF1fZQoaAZHQF/oqASWZ7ZoB03oA2gIR0Cegihib2DhdX2UKGgGR0BoGacAiml7aAdN6ANoCEdAnonBXfZVXHV9lChoBkdAYhmq814xDmgHTegDaAhHQJ6RgwVTJhh1fZQoaAZHQGMtPRRdhRZoB03oA2gIR0CemegM+eOGdX2UKGgGR0BkLTxEv0yyaAdN6ANoCEdAnqOxoqTbFnV9lChoBkdAY8MaQ3gk1WgHTegDaAhHQJ6rVvQ4S6F1fZQoaAZHQGdKxYA80UJoB03oA2gIR0CesugTAWSEdX2UKGgGR0BhzgSHuZ1FaAdN6ANoCEdAnrqOTzND+nV9lChoBkdAZE4XqJMxoWgHTegDaAhHQJ7CIPf8/EB1fZQoaAZHQGSdfReC04RoB03oA2gIR0Ceyet6ol2NdX2UKGgGR0BmBsP6KtPpaAdN6ANoCEdAntOTw+dK/XV9lChoBkdAYm98GcFyJmgHTegDaAhHQJ7cDVqesgd1fZQoaAZHQGMKy+pOvdNoB03oA2gIR0Ce46xeLNwBdX2UKGgGR0BgCOSIP9UCaAdN6ANoCEdAnusd/vv0AnV9lChoBkdAS9PhfjS5RWgHS5VoCEdAnuv3k92X9nV9lChoBkdAXe0BJZntfGgHTegDaAhHQJ7zohr30wt1fZQoaAZHQGKXCfYjB2xoB03oA2gIR0Ce+0Gxlg+hdX2UKGgGR0Bj20rNGEwnaAdN6ANoCEdAnwQRbjcVQHV9lChoBkdAYKiPJaJQ+GgHTegDaAhHQJ8NrlhgE2Z1fZQoaAZHQGDNZXMhX8xoB03oA2gIR0CfFXcH4XXRdX2UKGgGR0BiclAkcCHRaAdN6ANoCEdAnx0rb1yvLXV9lChoBkdAQ/F9Wp6yB2gHS9ZoCEdAnx5rdSEUTXV9lChoBkdAZEy1+iJwbWgHTegDaAhHQJ8l5n+Q2dd1fZQoaAZHQGZp5ftx+8ZoB03oA2gIR0CfLWa1TisGdX2UKGgGR0Bezj7uUliSaAdN6ANoCEdAnzYWqo60Y3V9lChoBkdAZDIpwS8J2WgHTegDaAhHQJ8/iLR8c+91fZQoaAZHQGGzWN3np0RoB03oA2gIR0CfR3E+gUUPdX2UKGgGR0BhiFc8kleGaAdN6ANoCEdAn08zPWxyGXV9lChoBkdAXV6za9K28mgHTegDaAhHQJ9W29xp+MJ1fZQoaAZHQGNPprULDyhoB03oA2gIR0CfXpygf2bodX2UKGgGR0BjiWPgeii7aAdN6ANoCEdAn2ZEAxSHd3V9lChoBkdAYpXeMQ2/BWgHTegDaAhHQJ9wGhf0Eox1fZQoaAZHQGXntrj5sTFoB03oA2gIR0CfeGRJmNBGdX2UKGgGR0BmTbIo3JgcaAdN6ANoCEdAn4AY1pCa7XV9lChoBkdATSfbAUL2H2gHS5FoCEdAn4D73Cbc5HV9lChoBkdAUAQlAu7HyWgHS6JoCEdAn4H+doWYW3V9lChoBkdAZhgAxSHdoGgHTegDaAhHQJ+KEgEEC/51fZQoaAZHQF5WBrvb48FoB03oA2gIR0CfkoocrAgxdX2UKGgGR0Bf09DD0lJIaAdN6ANoCEdAn5uJBC2MKnV9lChoBkdAY/csqaw2VGgHTegDaAhHQJ+lpm4Ajpt1fZQoaAZHQGedKMefZmJoB03oA2gIR0CfrXq9oN/fdX2UKGgGR0BkszoSteUqaAdN6ANoCEdAn7Vf+sHSnnV9lChoBkdAY3yabWmP52gHTegDaAhHQJ+9UNLDhtN1fZQoaAZHQGdQhshxHXpoB03oA2gIR0CfxQFzMibEdX2UKGgGR0BLb+yzHCGfaAdLj2gIR0CfxdUnXumadX2UKGgGR0Bi/LtqpLmIaAdN6ANoCEdAn82OSW7e23V9lChoBkdAZcAwj+rEL2gHTegDaAhHQJ/XSx7iQ1d1fZQoaAZHQGBVVk+X7choB03oA2gIR0Cf34KyOaOQdX2UKGgGR0BhPzWoWHk+aAdN6ANoCEdAn+ctD6WPcXV9lChoBkdAQlvb0voNeGgHS7loCEdAn+hBVQyhz3V9lChoBkdAY/zZK3/gi2gHTegDaAhHQJ/v0cuJ1q51fZQoaAZHQGDsmY8dPtVoB03oA2gIR0Cf93NPxhDxdX2UKGgGR0BkPlpudf9haAdN6ANoCEdAn/8nC0ngHnV9lChoBkdAZey4e9zwMGgHTegDaAhHQKAEPjZteld1fZQoaAZHQF6nf/3nIQxoB03oA2gIR0CgCJ1v/BFedX2UKGgGR0AvVTm4iHIqaAdL1WgIR0CgCTtKAavSdX2UKGgGR0BNDVVghKUWaAdLoGgIR0CgCpxIJ7b+dX2UKGgGR0BgcVQ40dilaAdN6ANoCEdAoA6NxdY4hnV9lChoBkdARBTlLeyiVWgHS69oCEdAoA8Ou3c583V9lChoBkdAY9hy8zyjHmgHTegDaAhHQKAS8tyPuG91fZQoaAZHQDhErRSgoPVoB0vXaAhHQKATmlj3Eht1fZQoaAZHQGBu7GvOhTRoB03oA2gIR0CgF3Rh2GIsdX2UKGgGR0BjXGPFNtZWaAdN6ANoCEdAoBvBd4Vym3V9lChoBkdAYvMeCkGiYmgHTegDaAhHQKAgsCq6vq11fZQoaAZHQGVmPVd5Y5loB03oA2gIR0CgJIBY/3WXdX2UKGgGR0BhsZYFJQLvaAdN6ANoCEdAoChTJdSl33V9lChoBkdAZAUdYnv2G2gHTegDaAhHQKAsHpHqeK91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5862, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+EeuFHrhR7hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9DqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}