<s> | |
<pad> | |
</s> | |
<unk> | |
<mask> | |
. | |
0 | |
1 | |
2 | |
3 | |
5 | |
6 | |
_ | |
a | |
b | |
c | |
d | |
e | |
f | |
g | |
h | |
i | |
j | |
l | |
m | |
n | |
o | |
p | |
q | |
r | |
s | |
t | |
u | |
v | |
w | |
x | |
y | |
##u | |
##l | |
##_ | |
##s | |
##i | |
##m | |
##p | |
##t | |
##a | |
##c | |
##r | |
##o | |
##b | |
##f | |
##e | |
##x | |
##h | |
##v | |
##g | |
##y | |
##. | |
##d | |
##n | |
##2 | |
##j | |
##w | |
##1 | |
##6 | |
##q | |
##0 | |
##5 | |
##3 | |
##_t | |
##ac | |
##_tac | |
##ef | |
##_d | |
##_def | |
##re | |
##in | |
##al | |
##al_ | |
##xt | |
##real_ | |
ext | |
extreal_ | |
lt | |
##w_tac | |
##_in | |
##ft | |
##fty | |
##le | |
##_infty | |
##et | |
rw_tac | |
##is | |
##an | |
##_s | |
met | |
##is_tac | |
metis_tac | |
##ran | |
##_tran | |
##_trans | |
extreal_m | |
##lt | |
##ax | |
##en | |
##lt_def | |
##_le | |
##te | |
##le_def | |
##ore | |
d_ | |
lt_le | |
lt_infty | |
extreal_lt_def | |
extreal_le_def | |
##on | |
##im | |
##ot | |
##ite | |
##ion | |
##ch | |
##in_def | |
##isch | |
extreal_min_def | |
##isch_tac | |
min | |
max | |
##e_trans | |
lte_trans | |
max_infty | |
let | |
##_tot | |
lt_tot | |
min_infty | |
let_trans | |
lt_total | |
disch_tac | |
##_sim | |
##p_tac | |
##rite | |
##write | |
##write_tac | |
sr | |
##bef | |
srw_tac | |
##before | |
gs | |
extreal_max | |
extreal_max_def | |
##pe | |
##tion | |
##e_ | |
##pec | |
##ic | |
##if | |
##ation | |
gspec | |
##ication | |
##ification | |
gspecification | |
##before_def | |
th | |
then | |
##ul | |
then1 | |
##ts | |
##ven | |
##d_s | |
st | |
##pac | |
##d_ss | |
std_ss | |
##or | |
##and | |
##pace | |
ful | |
##l_sim | |
full_sim | |
full_simp_tac | |
##_re | |
##ab | |
##_rewrite_tac | |
##as | |
##_space | |
##_e | |
##s_def | |
##ep | |
##ets_def | |
##orel | |
d_and | |
d_and_def | |
##able | |
##vents | |
##_space_def | |
events | |
d_before_def | |
d_or | |
d_or_def | |
re | |
##_n | |
##ar | |
##cl | |
in | |
##us | |
##ur | |
##eas | |
##clus | |
##urable | |
##easurable | |
##_inclus | |
d_sim | |
d_inclus | |
##ult_def | |
##_v | |
##iv | |
##e_before_def | |
rewrite_tac | |
d_simult_def | |
d_inclusiv | |
##_var | |
d_inclusive_before_def | |
##m_rewrite_tac | |
as | |
mp_tac | |
##sion | |
exten | |
extension | |
lb | |
measurable | |
##um | |
##of | |
extreal_of | |
##_sets_def | |
##_num | |
lborel | |
measurable_sets_def | |
extreal_of_num | |
extreal_of_num_def | |
le | |
le_ | |
p_space_def | |
q. | |
##inite | |
le_infty | |
le_lt | |
##dep | |
indep | |
indep_var | |
##ex | |
##ists | |
asm_rewrite_tac | |
q.ex | |
##ists_tac | |
q.exists_tac | |
dft | |
dep | |
extreal_real_ | |
##vent | |
##_event | |
dep_rewrite_tac | |
##ub | |
##ter | |
borel | |
sub | |
##sets_def | |
##ma | |
##_inter | |
dft_event | |
extreal_real_le | |
subsets_def | |
finite | |
m_space_def | |
nor | |
##mal_ | |
##ing | |
events_def | |
normal_ | |
##ct | |
##om | |
##real | |
##_sing | |
gen | |
pr | |
##lim | |
##hm | |
##_thm | |
##_elim | |
normal_real | |
gen_tac | |
pro | |
##ig | |
events_inter | |
indep_vars | |
et | |
se | |
sig | |
##_c | |
##ag | |
##a_thm | |
##nd | |
##lect | |
##et_tac | |
##imag | |
##ot_infty | |
##ma_def | |
dft_event_def | |
finite_sing | |
##_elim_tac | |
eta_thm | |
select | |
sigma_def | |
select_elim_tac | |
eq | |
##un | |
##_m | |
##ve | |
prob | |
eq_tac | |
on | |
rand | |
space | |
und | |
##_before | |
##iab | |
##table | |
##ce_ | |
##oun | |
##finite | |
##gt | |
##reimag | |
##ist | |
##asm_rewrite_tac | |
events_space | |
in_m | |
##_variab | |
lborel_le | |
##om_variab | |
prob_ | |
once_ | |
random_variab | |
space_def | |
undisch_tac | |
##ountable | |
in_measurable | |
once_asm_rewrite_tac | |
random_variable_def | |
##_p | |
##_as | |
##so | |
##m_s | |
##dd | |
extreal_le | |
##_eq | |
asm_s | |
##gt0 | |
##_asso | |
extreal_le_eq | |
asm_set_tac | |
##_assoc | |
cd | |
mul | |
ne | |
pi | |
preimag | |
##_gt0 | |
##r_def | |
##f_def | |
##ext | |
##e_le | |
##ym | |
##not_infty | |
extreal_mul | |
gsym | |
##_not_infty | |
##omm | |
##_countable | |
##_comm | |
##ver_def | |
prob_finite | |
cdf_def | |
never_def | |
pie_le | |
extreal_mul_def | |
pie_lem | |
al | |
add | |
con | |
car | |
ps | |
##l_d | |
##_and | |
##se | |
##inct | |
extreal_not_infty | |
##e_ext | |
dft_event_and | |
prove | |
##istinct | |
preimage_ext | |
pie_lemma | |
all_d | |
conj | |
pset_tac | |
dft_event_and_before | |
preimage_extreal_ | |
all_distinct | |
and | |
countable | |
dist | |
ima | |
me | |
not | |
po | |
rv | |
##ution | |
##_l | |
##_imag | |
##ss | |
##ir | |
##ib | |
##mp | |
##mul | |
##ty | |
##add | |
##air | |
##rv | |
##rib | |
##ose | |
##ge_ | |
##2rv | |
##infty | |
##al_ss | |
##real_mul | |
##real_2rv | |
##ispec | |
min_comm | |
##_emp | |
events_countable | |
real | |
real_ss | |
##_ninfty | |
in_elim | |
q.ispec | |
dft_before | |
extreal_real_lt | |
##_event_gt0 | |
finite_def | |
finite_countable | |
normal_real_mul | |
##_sing_emp | |
##_preimag | |
##_pair | |
mul_not_infty | |
##_gt0_ninfty | |
add_assoc | |
card | |
conj_assoc | |
dft_event_and_before_preimag | |
preimage_extreal_real_2rv | |
and_inter | |
countable_imag | |
distrib | |
image_ | |
mem | |
not_sing_emp | |
rv_gt0_ninfty | |
##ution_def | |
##osed | |
events_countable_inter | |
in_elim_pair | |
q.ispecl | |
dft_before_event_gt0 | |
countable_image | |
distribution_def | |
image_finite | |
not_sing_empty | |
rv_gt0_ninfty_def | |
in_elim_pair_thm | |