ppo-LunarLander-v2 / config.json
normanq's picture
PPO LunarLander-v2 agent from RL Unit 1.
b729415 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff933465120>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff9334651b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff933465240>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff9334652d0>", "_build": "<function ActorCriticPolicy._build at 0x7ff933465360>", "forward": "<function ActorCriticPolicy.forward at 0x7ff9334653f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff933465480>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff933465510>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff9334655a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff933465630>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff9334656c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff933465750>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff8d5846d80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1732507341398837583, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAObWZb3hCJ26bFynPd6zkzzJDUe7BkuAPQAAgD8AAIA/po8avjj1uz8PaBC/N2Vwvk1FCL5jBQ2+AAAAAAAAAADNzJu73L+0P+2V9r7HtFc90sG0O91r3z0AAAAAAAAAAGVhg76RmA0/iNNUPXz8p75uv8C9qKCoPAAAAAAAAAAAQESCPYp6Szyi82y+BIedvXNnV73z5Ua9AAAAAAAAAAAzD+q7MLq5P/86mL1ax3A9n8rcOqvZaTwAAAAAAAAAADNdjL2UW3Q/LhE9O7a+6r5xFwC+TdY3PQAAAAAAAAAAoIotPt0qFj4FPj2+vdWBvib0NDzYZ4W8AAAAAAAAAAAgFpe+D5eKPylLxb6nERC/nzmcvgIjDL0AAAAAAAAAAGaG+zycbzc9PgzwvfGDdb567fq8e3NSPAAAAAAAAAAAGqURPuwU4btIw4A7VmO7uQroK718DZ66AACAPwAAgD8AkKC8dO6bPZFvvb3UMli+loswvAu+RDwAAAAAAAAAAACsCb7gFuo+rQ8+PY1Zq75XJre9Cvy5PQAAAAAAAAAA5pfyPW5xGz9u7wm9/yjXvobC/Dy4hTI7AAAAAAAAAADmAGU95IeGPZ6noT3uSCi+ez81Pex2Nj0AAAAAAAAAAGYLKT1cT3q6hdl1N02mErJW4i+78z+MtgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAQAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEwdE1EVnGMAWyUS/uMAXSUR0CYTDAAhje9dX2UKGgGR0ByIZmXgLqmaAdL2GgIR0CYTdaz/p+udX2UKGgGR0Bx6MBbOeJ6aAdL22gIR0CYTp+OfdyldX2UKGgGR0BxEXTOPeYVaAdL4mgIR0CYTxC04R29dX2UKGgGR0BtUXl8w5/9aAdL5mgIR0CYTzPVNHpbdX2UKGgGR0BxvKOCGvfTaAdL82gIR0CYT1DiwSrYdX2UKGgGR0BzJVkAggX/aAdL52gIR0CYUKbFjurqdX2UKGgGR0Bw/iQJXyRTaAdL22gIR0CYUJxmkFfRdX2UKGgGR0Bv4IkNWluWaAdL9WgIR0CYUKiV0Lc9dX2UKGgGR0BwX0m+j/MoaAdL8WgIR0CYUQHJLdvbdX2UKGgGR0Bx7bnHNorXaAdL52gIR0CYUabJwKjSdX2UKGgGR0Bsj+EwnH/+aAdL6WgIR0CYUdQ6ZH/cdX2UKGgGR0BxHw1O0svqaAdL9mgIR0CYUgHhCMP0dX2UKGgGR0BxNVKvmozfaAdL+mgIR0CYVDlNlAeJdX2UKGgGR0BuKmfqX4TLaAdL42gIR0CYVPv+fh/BdX2UKGgGR0BwWSZWq95AaAdL2mgIR0CYVVFeOXE7dX2UKGgGR0BxFUYAKfFraAdL4WgIR0CYVctnf2sadX2UKGgGR0Bx8Cu/1xsEaAdL72gIR0CYVmPxhDw6dX2UKGgGR0BwMeX2M85kaAdL3WgIR0CYVtjW07bMdX2UKGgGR0ByjpV3ljmTaAdNCQFoCEdAmFcl5KODJ3V9lChoBkdActscuJ1q32gHS+poCEdAmFc4omXw9nV9lChoBkdAcJveqaPS2GgHS+VoCEdAmFdz1f3N93V9lChoBkdAcO5LiMo+fWgHS/1oCEdAmFfKyfL9uXV9lChoBkdAcZ1iEQGwA2gHS9ZoCEdAmFf3q7iAD3V9lChoBkdAcfjZ4fOlf2gHS+toCEdAmFhRwhnrZHV9lChoBkdAcpJtDlYEGWgHTQ0BaAhHQJhZntQbdad1fZQoaAZHQG7y1W0Z3s5oB0vbaAhHQJhak6r/82t1fZQoaAZHQHMHGlhw2l5oB0vuaAhHQJhb+3BpHqh1fZQoaAZHQHF2FJ6IFeRoB0vaaAhHQJhcOZnctXh1fZQoaAZHQHGdLOmixmloB0v/aAhHQJhc5U6xPft1fZQoaAZHQHF2gZflZHNoB0vYaAhHQJhdUP5HmRx1fZQoaAZHQG84WnbZezFoB0vZaAhHQJhdopPRArx1fZQoaAZHQG08BXCCSRtoB0v4aAhHQJhd3lcQiA51fZQoaAZHQG8k3Onl4khoB0vtaAhHQJhelygf2bp1fZQoaAZHQHGixwIdELJoB0vsaAhHQJhfJXS0BwN1fZQoaAZHQHDKEc0cfeVoB00FAWgIR0CYXxqN6w+udX2UKGgGR0BvXCYoiLVGaAdL5WgIR0CYX1SBbwBpdX2UKGgGR0ByE48/2TPjaAdL+WgIR0CYX1jPv8ZUdX2UKGgGR0BlseIRAbADaAdN6ANoCEdAmGFSGrS3LHV9lChoBkdAcn6sUqQRw2gHS+doCEdAmGHC00FbFHV9lChoBkdAc4tocrAgxWgHTQsBaAhHQJhh3+PzWf91fZQoaAZHQGDuFPJq7AdoB03oA2gIR0CYYxpMHryEdX2UKGgGR0BxVBCqp97XaAdL6WgIR0CYY1TlDF6zdX2UKGgGR0BxJ93ljmSyaAdL3mgIR0CYY5vzvqkedX2UKGgGR0BxCDDl5nlGaAdL5mgIR0CYZCmfGuLadX2UKGgGR0Bu+HoaDPGAaAdL5WgIR0CYZGLMs6JZdX2UKGgGR0BwW9Ec81XOaAdL/GgIR0CYZTc2BJ7LdX2UKGgGR0BxEAUO/cnFaAdL52gIR0CYZcgXdj5LdX2UKGgGR0Bvi1FYuCf6aAdL62gIR0CYZds/IKc/dX2UKGgGR0BwgySV4X41aAdL6GgIR0CYZf7655JLdX2UKGgGR0BzihWdVea8aAdL/WgIR0CYZowK0D2bdX2UKGgGR0By0ma4MF2WaAdNagNoCEdAmGbbVOKwZHV9lChoBkdAcVSEDyOJcmgHS89oCEdAmGeDp9qk/XV9lChoBkdAcFIQTVUdaWgHS9VoCEdAmGfG/8EV33V9lChoBkdAccJdKujh1mgHS+toCEdAmGfjJQtSRHV9lChoBkdAcwLj0L+glGgHS+poCEdAmGmGEkB0ZHV9lChoBkdAcOApWV/tpmgHS/toCEdAmGpJdKNADHV9lChoBkdAcLMlKsdT52gHS/hoCEdAmGp9CVrylXV9lChoBkdAbr71DjR2KWgHS+xoCEdAmGrCZfD1oXV9lChoBkdAcZtmYjSofmgHS/xoCEdAmGuAiV0LdHV9lChoBkdAcTyeQuEmIGgHS+poCEdAmGvpKSPluHV9lChoBkdAcCCM3qAz6GgHS9JoCEdAmGwBH5Jsf3V9lChoBkdAcEETuOS4fGgHS+toCEdAmGyG8IzFdnV9lChoBkdAcdrZGKAJ9mgHS+9oCEdAmGy8NtqHoHV9lChoBkdAbf4VfNRm9WgHS+doCEdAmG1Gnfl6q3V9lChoBkdAcKEEmICU5mgHS+JoCEdAmG19fXwsoXV9lChoBkdAcBU6tknTiWgHS+ZoCEdAmG5aQeV9nnV9lChoBkdAcfLWdmQKbGgHS99oCEdAmG5si8nNPnV9lChoBkdAcADRbKRuCWgHS+doCEdAmG7CtmtheHV9lChoBkdAcOv88s+V1WgHS9hoCEdAmHAeRcNYsHV9lChoBkdAcds8FpwjuGgHS99oCEdAmHFlO9FnZnV9lChoBkdAcyPHkLhJiGgHTQQBaAhHQJhyfPTodMl1fZQoaAZHQHCkZFspG4JoB00JAWgIR0CYczCqZML4dX2UKGgGR0BxZ5UgjhUBaAdL8mgIR0CYc7L39JjEdX2UKGgGR0BxhfaFmFrVaAdLz2gIR0CYdAQnhKlIdX2UKGgGR0BxQ27Dl5nlaAdL5mgIR0CYdAYwIt17dX2UKGgGR0BwUyOHWSU1aAdL6WgIR0CYdFUbkwN9dX2UKGgGR0Byoq47Rv3raAdNEAFoCEdAmHTMT8HfM3V9lChoBkdAc05p5NXYDmgHTQQBaAhHQJh18QGwA2h1fZQoaAZHQHAViqZML4NoB0v1aAhHQJh2a8Fpwjt1fZQoaAZHQG5WcF6iTMdoB0vwaAhHQJh2uasp5NZ1fZQoaAZHQHOWY0dilSFoB00FAWgIR0CYdwPSUkfLdX2UKGgGR0BwFtGViWmhaAdNAAFoCEdAmHi+IMz/InV9lChoBkdAcorx+KCQLmgHTZYBaAhHQJh4tSl3yI51fZQoaAZHQHF6DAN5MURoB0vuaAhHQJh5ln003wV1fZQoaAZHQG82gyuZCv5oB0vXaAhHQJh5/O/tY0V1fZQoaAZHQHBg0ovzvqloB0vdaAhHQJh7EHfMwDh1fZQoaAZHQGHLJY1YQrdoB03oA2gIR0CYe28QI2OydX2UKGgGR0Bw5WsySFGoaAdL4GgIR0CYfBnWrfcfdX2UKGgGR0BwhFKEnLJTaAdL4WgIR0CYfHWfK6nSdX2UKGgGR0ByUrSRbKRuaAdL42gIR0CYfQvqC6H1dX2UKGgGR0ByGEJBw++uaAdL/mgIR0CYfR+tbLU1dX2UKGgGR0BmFd2xIJ7caAdN6ANoCEdAmH5Ss4ku6HV9lChoBkdAb6sjZcs19GgHS+poCEdAmH6aZ6Uqx3V9lChoBkdAcX+cIqsls2gHS/RoCEdAmH+F6E8JU3V9lChoBkdAcPWsEJSiumgHS+poCEdAmH/U9+w1SHV9lChoBkdAcoLIVdonKGgHTQQBaAhHQJiAcmD15B11fZQoaAZHQHC9AswtapxoB0vqaAhHQJiBl5fMOgB1fZQoaAZHQG7+USh8IAxoB0v5aAhHQJiCKFxn3+N1fZQoaAZHQHDamldkauRoB0vuaAhHQJiCg+wC8vp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 312, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}