noodlynoodle commited on
Commit
4880bdb
1 Parent(s): d0e49a4

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.94 +/- 0.28
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d87130ce5c21e9573b6d3568f90e3da705a1d870edb78d1f2a6165493a76e594
3
+ size 108023
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7feb2ee77ee0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc_data object at 0x7feb2ee74510>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "observation_space": {
23
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
24
+ ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
25
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
26
+ "_shape": null,
27
+ "dtype": null,
28
+ "_np_random": null
29
+ },
30
+ "action_space": {
31
+ ":type:": "<class 'gym.spaces.box.Box'>",
32
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
33
+ "dtype": "float32",
34
+ "_shape": [
35
+ 3
36
+ ],
37
+ "low": "[-1. -1. -1.]",
38
+ "high": "[1. 1. 1.]",
39
+ "bounded_below": "[ True True True]",
40
+ "bounded_above": "[ True True True]",
41
+ "_np_random": null
42
+ },
43
+ "n_envs": 4,
44
+ "num_timesteps": 1000000,
45
+ "_total_timesteps": 1000000,
46
+ "_num_timesteps_at_start": 0,
47
+ "seed": null,
48
+ "action_noise": null,
49
+ "start_time": 1676614597879727151,
50
+ "learning_rate": 0.0007,
51
+ "tensorboard_log": null,
52
+ "lr_schedule": {
53
+ ":type:": "<class 'function'>",
54
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
55
+ },
56
+ "_last_obs": {
57
+ ":type:": "<class 'collections.OrderedDict'>",
58
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAfLvBPkEdMr2f/RU/fLvBPkEdMr2f/RU/fLvBPkEdMr2f/RU/fLvBPkEdMr2f/RU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAeMOcPfYT1r+rKaq/YcCevhVpLz9hLn2/w58CP38vwD/LEtE/M4eqv5G+ir+BsJe/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB8u8E+QR0yvZ/9FT+cqD48+KN6u/WH5jt8u8E+QR0yvZ/9FT+cqD48+KN6u/WH5jt8u8E+QR0yvZ/9FT+cqD48+KN6u/WH5jt8u8E+QR0yvZ/9FT+cqD48+KN6u/WH5juUaA5LBEsGhpRoEnSUUpR1Lg==",
59
+ "achieved_goal": "[[ 0.37838352 -0.04348493 0.5859012 ]\n [ 0.37838352 -0.04348493 0.5859012 ]\n [ 0.37838352 -0.04348493 0.5859012 ]\n [ 0.37838352 -0.04348493 0.5859012 ]]",
60
+ "desired_goal": "[[ 0.0765447 -1.6724842 -1.3293966 ]\n [-0.31006148 0.6851972 -0.98898894]\n [ 0.5102503 1.5014495 1.633386 ]\n [-1.332251 -1.0839406 -1.185074 ]]",
61
+ "observation": "[[ 0.37838352 -0.04348493 0.5859012 0.01163688 -0.00382447 0.00703525]\n [ 0.37838352 -0.04348493 0.5859012 0.01163688 -0.00382447 0.00703525]\n [ 0.37838352 -0.04348493 0.5859012 0.01163688 -0.00382447 0.00703525]\n [ 0.37838352 -0.04348493 0.5859012 0.01163688 -0.00382447 0.00703525]]"
62
+ },
63
+ "_last_episode_starts": {
64
+ ":type:": "<class 'numpy.ndarray'>",
65
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
66
+ },
67
+ "_last_original_obs": {
68
+ ":type:": "<class 'collections.OrderedDict'>",
69
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABAMJPvuFrj1/mDg+1j4fvUJOvb2JVx8+5CgKvpIBXz3A7wU+3bLCvapTFz4Q++o7lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
70
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
71
+ "desired_goal": "[[ 0.13380057 0.08521648 0.18026923]\n [-0.03887828 -0.09243442 0.15560736]\n [-0.13492161 0.05444486 0.13079739]\n [-0.09506772 0.14778009 0.00717104]]",
72
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
73
+ },
74
+ "_episode_num": 0,
75
+ "use_sde": false,
76
+ "sde_sample_freq": -1,
77
+ "_current_progress_remaining": 0.0,
78
+ "ep_info_buffer": {
79
+ ":type:": "<class 'collections.deque'>",
80
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISPyKNVxk4L+UhpRSlIwBbJRLMowBdJRHQKcwNDye7MB1fZQoaAZoCWgPQwjD19e61Ajkv5SGlFKUaBVLMmgWR0CnL/oZIg/1dX2UKGgGaAloD0MIgv5Cjxi967+UhpRSlGgVSzJoFkdApy+9thuwYHV9lChoBmgJaA9DCDdUjPM3ofG/lIaUUpRoFUsyaBZHQKcvgNpdrwh1fZQoaAZoCWgPQwhhw9MrZZn4v5SGlFKUaBVLMmgWR0CnMiM2WIGhdX2UKGgGaAloD0MIRkCFI0gl9L+UhpRSlGgVSzJoFkdApzHpQUHpr3V9lChoBmgJaA9DCEIHXcKht+q/lIaUUpRoFUsyaBZHQKcxrNr0rbx1fZQoaAZoCWgPQwgZHZCEfTvav5SGlFKUaBVLMmgWR0CnMXATAWSEdX2UKGgGaAloD0MIyJQPQdUo8b+UhpRSlGgVSzJoFkdApzP6tRvWH3V9lChoBmgJaA9DCFch5SfVfvG/lIaUUpRoFUsyaBZHQKczwJfpljF1fZQoaAZoCWgPQwgkXp7OFSX/v5SGlFKUaBVLMmgWR0CnM4QHJLdvdX2UKGgGaAloD0MIX7hzYaQX4L+UhpRSlGgVSzJoFkdApzNHLDAJs3V9lChoBmgJaA9DCPRRRlwA2va/lIaUUpRoFUsyaBZHQKc1J/e+Eh91fZQoaAZoCWgPQwgOSS2UTM7kv5SGlFKUaBVLMmgWR0CnNOzmOlwcdX2UKGgGaAloD0MIz4QmiSVl8L+UhpRSlGgVSzJoFkdApzSvlIVdonV9lChoBmgJaA9DCK3B+6pcqPy/lIaUUpRoFUsyaBZHQKc0cbMHKOl1fZQoaAZoCWgPQwjy64fYYOHwv5SGlFKUaBVLMmgWR0CnNkKpT/ACdX2UKGgGaAloD0MIzvqUY7I49r+UhpRSlGgVSzJoFkdApzYHkBCD3HV9lChoBmgJaA9DCDF72XbaWvG/lIaUUpRoFUsyaBZHQKc1ykDZDiR1fZQoaAZoCWgPQwi2ErpL4qzmv5SGlFKUaBVLMmgWR0CnNYxmbsnidX2UKGgGaAloD0MIAeDYs+ey57+UhpRSlGgVSzJoFkdApzdfVNHpbHV9lChoBmgJaA9DCC3uPzId+vO/lIaUUpRoFUsyaBZHQKc3JHKfWc11fZQoaAZoCWgPQwhrJ0pCIm32v5SGlFKUaBVLMmgWR0CnNudKNAC5dX2UKGgGaAloD0MIyyvX22Yq7b+UhpRSlGgVSzJoFkdApzapn13+uXV9lChoBmgJaA9DCFlPrb66que/lIaUUpRoFUsyaBZHQKc4eyOaOPx1fZQoaAZoCWgPQwgx0LUvoJfqv5SGlFKUaBVLMmgWR0CnOEAIppevdX2UKGgGaAloD0MI6dfWT/9Z6L+UhpRSlGgVSzJoFkdApzgCoMrmQ3V9lChoBmgJaA9DCDljmBO0yeK/lIaUUpRoFUsyaBZHQKc3xMj/uLJ1fZQoaAZoCWgPQwiuDoC4q9fkv5SGlFKUaBVLMmgWR0CnOZAhbGFSdX2UKGgGaAloD0MIUmUYd4Oo+b+UhpRSlGgVSzJoFkdApzlVBa9sanV9lChoBmgJaA9DCKUuGcdIduC/lIaUUpRoFUsyaBZHQKc5F557gKp1fZQoaAZoCWgPQwjwF7MlqyLjv5SGlFKUaBVLMmgWR0CnONnrpqyodX2UKGgGaAloD0MIw2UVNgNc5b+UhpRSlGgVSzJoFkdApzqvkNnXd3V9lChoBmgJaA9DCKD6B5EM+fm/lIaUUpRoFUsyaBZHQKc6dJAdGRV1fZQoaAZoCWgPQwjNAYI5enzqv5SGlFKUaBVLMmgWR0CnOjdEb5uZdX2UKGgGaAloD0MIopxoVyFl4r+UhpRSlGgVSzJoFkdApzn5Y/3WWnV9lChoBmgJaA9DCE3WqIdo9Oe/lIaUUpRoFUsyaBZHQKc7y4yXUpd1fZQoaAZoCWgPQwh5rBkZ5C7hv5SGlFKUaBVLMmgWR0CnO5C3w1BMdX2UKGgGaAloD0MICf1MvW5R8b+UhpRSlGgVSzJoFkdApztTzRQaaXV9lChoBmgJaA9DCGzoZn+gXOm/lIaUUpRoFUsyaBZHQKc7FjjrAxl1fZQoaAZoCWgPQwj7ITZYOEnyv5SGlFKUaBVLMmgWR0CnPOJ7CzkZdX2UKGgGaAloD0MISu6wiczc67+UhpRSlGgVSzJoFkdApzynYcvM83V9lChoBmgJaA9DCJQXmYBfI9K/lIaUUpRoFUsyaBZHQKc8aiTt9hJ1fZQoaAZoCWgPQwiGrkSg+gfov5SGlFKUaBVLMmgWR0CnPCxLbpNcdX2UKGgGaAloD0MIhxqFJLP65b+UhpRSlGgVSzJoFkdApz39a2WpqHV9lChoBmgJaA9DCBkD6zh+KOm/lIaUUpRoFUsyaBZHQKc9wm6XjVB1fZQoaAZoCWgPQwiy2ZHqO7/kv5SGlFKUaBVLMmgWR0CnPYUyP+4tdX2UKGgGaAloD0MInRN7aB8r57+UhpRSlGgVSzJoFkdApz1HXyy2QXV9lChoBmgJaA9DCNEDH4MVp+G/lIaUUpRoFUsyaBZHQKc/FBacI7h1fZQoaAZoCWgPQwguqkVEMXn0v5SGlFKUaBVLMmgWR0CnPtkK/mDEdX2UKGgGaAloD0MI5WTiVkGM8L+UhpRSlGgVSzJoFkdApz6bwjMV13V9lChoBmgJaA9DCDM1Cd6QxuW/lIaUUpRoFUsyaBZHQKc+XefqX4V1fZQoaAZoCWgPQwh+GYwRicLtv5SGlFKUaBVLMmgWR0CnQC+evpyIdX2UKGgGaAloD0MIAdpWs8548r+UhpRSlGgVSzJoFkdApz/0lJHy3HV9lChoBmgJaA9DCGt+/KVFPfC/lIaUUpRoFUsyaBZHQKc/t1Ng0CR1fZQoaAZoCWgPQwhO0CaHT7rpv5SGlFKUaBVLMmgWR0CnP3mJFb3XdX2UKGgGaAloD0MIQN8WLNUF6b+UhpRSlGgVSzJoFkdAp0FInKGL1nV9lChoBmgJaA9DCFH2lnK+2Om/lIaUUpRoFUsyaBZHQKdBDZbpu/F1fZQoaAZoCWgPQwgraFpiZbTmv5SGlFKUaBVLMmgWR0CnQNApz90jdX2UKGgGaAloD0MIA5SGGoUk7L+UhpRSlGgVSzJoFkdAp0CSTB68hHV9lChoBmgJaA9DCPcBSG3iZO2/lIaUUpRoFUsyaBZHQKdCZGus90R1fZQoaAZoCWgPQwhdUN8yp0vlv5SGlFKUaBVLMmgWR0CnQil/hESedX2UKGgGaAloD0MIVkeOdAZG77+UhpRSlGgVSzJoFkdAp0HsKw6hg3V9lChoBmgJaA9DCIDUJk7u9+W/lIaUUpRoFUsyaBZHQKdBrsMRYih1fZQoaAZoCWgPQwidgZGXNTHzv5SGlFKUaBVLMmgWR0CnQ4C4jKPodX2UKGgGaAloD0MI1gEQd/Wq4b+UhpRSlGgVSzJoFkdAp0NFvCMxXXV9lChoBmgJaA9DCC2yne+nxuC/lIaUUpRoFUsyaBZHQKdDCJaaCtl1fZQoaAZoCWgPQwgJUb6ghQTnv5SGlFKUaBVLMmgWR0CnQsr+YMOPdX2UKGgGaAloD0MI0J1g/3Xu5r+UhpRSlGgVSzJoFkdAp0SlECvHLnV9lChoBmgJaA9DCLd9j/rrFeG/lIaUUpRoFUsyaBZHQKdEaiUPhAJ1fZQoaAZoCWgPQwgb9ntinarov5SGlFKUaBVLMmgWR0CnRCy4Wk8BdX2UKGgGaAloD0MIq3e4HRoW7r+UhpRSlGgVSzJoFkdAp0Pu0G/vfHV9lChoBmgJaA9DCDsYsU8AReS/lIaUUpRoFUsyaBZHQKdFvsWweNl1fZQoaAZoCWgPQwhTWRR2UXT1v5SGlFKUaBVLMmgWR0CnRYOuzQeFdX2UKGgGaAloD0MIvr1r0Jfe3b+UhpRSlGgVSzJoFkdAp0VGVcD8tXV9lChoBmgJaA9DCCGx3T1Ad+q/lIaUUpRoFUsyaBZHQKdFCJ66asp1fZQoaAZoCWgPQwg/4IEBhA/vv5SGlFKUaBVLMmgWR0CnRvSFwkxAdX2UKGgGaAloD0MISkONQpJZ+r+UhpRSlGgVSzJoFkdAp0a6J/G2kXV9lChoBmgJaA9DCFnC2hg74ei/lIaUUpRoFUsyaBZHQKdGfLxqfvp1fZQoaAZoCWgPQwgA/b5/8+Ljv5SGlFKUaBVLMmgWR0CnRj7jcVQAdX2UKGgGaAloD0MINjtSfedX9L+UhpRSlGgVSzJoFkdAp0gTJOnEVHV9lChoBmgJaA9DCAjNrnsrEuK/lIaUUpRoFUsyaBZHQKdH2EQGwA51fZQoaAZoCWgPQwhffNEeL6Tav5SGlFKUaBVLMmgWR0CnR5rvsqrjdX2UKGgGaAloD0MIKgExCRfy67+UhpRSlGgVSzJoFkdAp0ddA7gbZXV9lChoBmgJaA9DCEzChTyCm/C/lIaUUpRoFUsyaBZHQKdJyutfXwt1fZQoaAZoCWgPQwifPgJ/+Dnwv5SGlFKUaBVLMmgWR0CnSZDGT9sKdX2UKGgGaAloD0MIO6qaIOo+87+UhpRSlGgVSzJoFkdAp0lUJa7mMnV9lChoBmgJaA9DCPQxHxDoTOy/lIaUUpRoFUsyaBZHQKdJFyd4FA51fZQoaAZoCWgPQwg9RKM7iB30v5SGlFKUaBVLMmgWR0CnS5lDfFaTdX2UKGgGaAloD0MIj6uRXWkZ6r+UhpRSlGgVSzJoFkdAp0tfJV81GnV9lChoBmgJaA9DCDUKSWb1Dui/lIaUUpRoFUsyaBZHQKdLIoOQQtl1fZQoaAZoCWgPQwhYG2MnvATfv5SGlFKUaBVLMmgWR0CnSuVopQUIdX2UKGgGaAloD0MIesa+ZOOB8b+UhpRSlGgVSzJoFkdAp01vv4M4LnV9lChoBmgJaA9DCBw/VBoxs+W/lIaUUpRoFUsyaBZHQKdNNaLXL/11fZQoaAZoCWgPQwjH155ZEqDvv5SGlFKUaBVLMmgWR0CnTPrVFx4qdX2UKGgGaAloD0MIzhq8r8qF3b+UhpRSlGgVSzJoFkdAp0y94u9OAXV9lChoBmgJaA9DCL0aoDTUKPG/lIaUUpRoFUsyaBZHQKdPU+cpb2V1fZQoaAZoCWgPQwguq7AZ4MLxv5SGlFKUaBVLMmgWR0CnTxnB+F10dX2UKGgGaAloD0MI10//WfPj6b+UhpRSlGgVSzJoFkdAp07dcKPXCnV9lChoBmgJaA9DCAMJih9j7vC/lIaUUpRoFUsyaBZHQKdOoIYWLxZ1ZS4="
81
+ },
82
+ "ep_success_buffer": {
83
+ ":type:": "<class 'collections.deque'>",
84
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
85
+ },
86
+ "_n_updates": 50000,
87
+ "n_steps": 5,
88
+ "gamma": 0.99,
89
+ "gae_lambda": 1.0,
90
+ "ent_coef": 0.0,
91
+ "vf_coef": 0.5,
92
+ "max_grad_norm": 0.5,
93
+ "normalize_advantage": false
94
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e628db134d8af6202eb45d8dcb088ae71eac5e71795d53442471cf39187c9f75
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba4983525403b980cc878716fb803755479c788f5a3ba88ac3b724b18dfcad9b
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7feb2ee77ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7feb2ee74510>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676614597879727151, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAfLvBPkEdMr2f/RU/fLvBPkEdMr2f/RU/fLvBPkEdMr2f/RU/fLvBPkEdMr2f/RU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAeMOcPfYT1r+rKaq/YcCevhVpLz9hLn2/w58CP38vwD/LEtE/M4eqv5G+ir+BsJe/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB8u8E+QR0yvZ/9FT+cqD48+KN6u/WH5jt8u8E+QR0yvZ/9FT+cqD48+KN6u/WH5jt8u8E+QR0yvZ/9FT+cqD48+KN6u/WH5jt8u8E+QR0yvZ/9FT+cqD48+KN6u/WH5juUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.37838352 -0.04348493 0.5859012 ]\n [ 0.37838352 -0.04348493 0.5859012 ]\n [ 0.37838352 -0.04348493 0.5859012 ]\n [ 0.37838352 -0.04348493 0.5859012 ]]", "desired_goal": "[[ 0.0765447 -1.6724842 -1.3293966 ]\n [-0.31006148 0.6851972 -0.98898894]\n [ 0.5102503 1.5014495 1.633386 ]\n [-1.332251 -1.0839406 -1.185074 ]]", "observation": "[[ 0.37838352 -0.04348493 0.5859012 0.01163688 -0.00382447 0.00703525]\n [ 0.37838352 -0.04348493 0.5859012 0.01163688 -0.00382447 0.00703525]\n [ 0.37838352 -0.04348493 0.5859012 0.01163688 -0.00382447 0.00703525]\n [ 0.37838352 -0.04348493 0.5859012 0.01163688 -0.00382447 0.00703525]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAABAMJPvuFrj1/mDg+1j4fvUJOvb2JVx8+5CgKvpIBXz3A7wU+3bLCvapTFz4Q++o7lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.13380057 0.08521648 0.18026923]\n [-0.03887828 -0.09243442 0.15560736]\n [-0.13492161 0.05444486 0.13079739]\n [-0.09506772 0.14778009 0.00717104]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMISPyKNVxk4L+UhpRSlIwBbJRLMowBdJRHQKcwNDye7MB1fZQoaAZoCWgPQwjD19e61Ajkv5SGlFKUaBVLMmgWR0CnL/oZIg/1dX2UKGgGaAloD0MIgv5Cjxi967+UhpRSlGgVSzJoFkdApy+9thuwYHV9lChoBmgJaA9DCDdUjPM3ofG/lIaUUpRoFUsyaBZHQKcvgNpdrwh1fZQoaAZoCWgPQwhhw9MrZZn4v5SGlFKUaBVLMmgWR0CnMiM2WIGhdX2UKGgGaAloD0MIRkCFI0gl9L+UhpRSlGgVSzJoFkdApzHpQUHpr3V9lChoBmgJaA9DCEIHXcKht+q/lIaUUpRoFUsyaBZHQKcxrNr0rbx1fZQoaAZoCWgPQwgZHZCEfTvav5SGlFKUaBVLMmgWR0CnMXATAWSEdX2UKGgGaAloD0MIyJQPQdUo8b+UhpRSlGgVSzJoFkdApzP6tRvWH3V9lChoBmgJaA9DCFch5SfVfvG/lIaUUpRoFUsyaBZHQKczwJfpljF1fZQoaAZoCWgPQwgkXp7OFSX/v5SGlFKUaBVLMmgWR0CnM4QHJLdvdX2UKGgGaAloD0MIX7hzYaQX4L+UhpRSlGgVSzJoFkdApzNHLDAJs3V9lChoBmgJaA9DCPRRRlwA2va/lIaUUpRoFUsyaBZHQKc1J/e+Eh91fZQoaAZoCWgPQwgOSS2UTM7kv5SGlFKUaBVLMmgWR0CnNOzmOlwcdX2UKGgGaAloD0MIz4QmiSVl8L+UhpRSlGgVSzJoFkdApzSvlIVdonV9lChoBmgJaA9DCK3B+6pcqPy/lIaUUpRoFUsyaBZHQKc0cbMHKOl1fZQoaAZoCWgPQwjy64fYYOHwv5SGlFKUaBVLMmgWR0CnNkKpT/ACdX2UKGgGaAloD0MIzvqUY7I49r+UhpRSlGgVSzJoFkdApzYHkBCD3HV9lChoBmgJaA9DCDF72XbaWvG/lIaUUpRoFUsyaBZHQKc1ykDZDiR1fZQoaAZoCWgPQwi2ErpL4qzmv5SGlFKUaBVLMmgWR0CnNYxmbsnidX2UKGgGaAloD0MIAeDYs+ey57+UhpRSlGgVSzJoFkdApzdfVNHpbHV9lChoBmgJaA9DCC3uPzId+vO/lIaUUpRoFUsyaBZHQKc3JHKfWc11fZQoaAZoCWgPQwhrJ0pCIm32v5SGlFKUaBVLMmgWR0CnNudKNAC5dX2UKGgGaAloD0MIyyvX22Yq7b+UhpRSlGgVSzJoFkdApzapn13+uXV9lChoBmgJaA9DCFlPrb66que/lIaUUpRoFUsyaBZHQKc4eyOaOPx1fZQoaAZoCWgPQwgx0LUvoJfqv5SGlFKUaBVLMmgWR0CnOEAIppevdX2UKGgGaAloD0MI6dfWT/9Z6L+UhpRSlGgVSzJoFkdApzgCoMrmQ3V9lChoBmgJaA9DCDljmBO0yeK/lIaUUpRoFUsyaBZHQKc3xMj/uLJ1fZQoaAZoCWgPQwiuDoC4q9fkv5SGlFKUaBVLMmgWR0CnOZAhbGFSdX2UKGgGaAloD0MIUmUYd4Oo+b+UhpRSlGgVSzJoFkdApzlVBa9sanV9lChoBmgJaA9DCKUuGcdIduC/lIaUUpRoFUsyaBZHQKc5F557gKp1fZQoaAZoCWgPQwjwF7MlqyLjv5SGlFKUaBVLMmgWR0CnONnrpqyodX2UKGgGaAloD0MIw2UVNgNc5b+UhpRSlGgVSzJoFkdApzqvkNnXd3V9lChoBmgJaA9DCKD6B5EM+fm/lIaUUpRoFUsyaBZHQKc6dJAdGRV1fZQoaAZoCWgPQwjNAYI5enzqv5SGlFKUaBVLMmgWR0CnOjdEb5uZdX2UKGgGaAloD0MIopxoVyFl4r+UhpRSlGgVSzJoFkdApzn5Y/3WWnV9lChoBmgJaA9DCE3WqIdo9Oe/lIaUUpRoFUsyaBZHQKc7y4yXUpd1fZQoaAZoCWgPQwh5rBkZ5C7hv5SGlFKUaBVLMmgWR0CnO5C3w1BMdX2UKGgGaAloD0MICf1MvW5R8b+UhpRSlGgVSzJoFkdApztTzRQaaXV9lChoBmgJaA9DCGzoZn+gXOm/lIaUUpRoFUsyaBZHQKc7FjjrAxl1fZQoaAZoCWgPQwj7ITZYOEnyv5SGlFKUaBVLMmgWR0CnPOJ7CzkZdX2UKGgGaAloD0MISu6wiczc67+UhpRSlGgVSzJoFkdApzynYcvM83V9lChoBmgJaA9DCJQXmYBfI9K/lIaUUpRoFUsyaBZHQKc8aiTt9hJ1fZQoaAZoCWgPQwiGrkSg+gfov5SGlFKUaBVLMmgWR0CnPCxLbpNcdX2UKGgGaAloD0MIhxqFJLP65b+UhpRSlGgVSzJoFkdApz39a2WpqHV9lChoBmgJaA9DCBkD6zh+KOm/lIaUUpRoFUsyaBZHQKc9wm6XjVB1fZQoaAZoCWgPQwiy2ZHqO7/kv5SGlFKUaBVLMmgWR0CnPYUyP+4tdX2UKGgGaAloD0MInRN7aB8r57+UhpRSlGgVSzJoFkdApz1HXyy2QXV9lChoBmgJaA9DCNEDH4MVp+G/lIaUUpRoFUsyaBZHQKc/FBacI7h1fZQoaAZoCWgPQwguqkVEMXn0v5SGlFKUaBVLMmgWR0CnPtkK/mDEdX2UKGgGaAloD0MI5WTiVkGM8L+UhpRSlGgVSzJoFkdApz6bwjMV13V9lChoBmgJaA9DCDM1Cd6QxuW/lIaUUpRoFUsyaBZHQKc+XefqX4V1fZQoaAZoCWgPQwh+GYwRicLtv5SGlFKUaBVLMmgWR0CnQC+evpyIdX2UKGgGaAloD0MIAdpWs8548r+UhpRSlGgVSzJoFkdApz/0lJHy3HV9lChoBmgJaA9DCGt+/KVFPfC/lIaUUpRoFUsyaBZHQKc/t1Ng0CR1fZQoaAZoCWgPQwhO0CaHT7rpv5SGlFKUaBVLMmgWR0CnP3mJFb3XdX2UKGgGaAloD0MIQN8WLNUF6b+UhpRSlGgVSzJoFkdAp0FInKGL1nV9lChoBmgJaA9DCFH2lnK+2Om/lIaUUpRoFUsyaBZHQKdBDZbpu/F1fZQoaAZoCWgPQwgraFpiZbTmv5SGlFKUaBVLMmgWR0CnQNApz90jdX2UKGgGaAloD0MIA5SGGoUk7L+UhpRSlGgVSzJoFkdAp0CSTB68hHV9lChoBmgJaA9DCPcBSG3iZO2/lIaUUpRoFUsyaBZHQKdCZGus90R1fZQoaAZoCWgPQwhdUN8yp0vlv5SGlFKUaBVLMmgWR0CnQil/hESedX2UKGgGaAloD0MIVkeOdAZG77+UhpRSlGgVSzJoFkdAp0HsKw6hg3V9lChoBmgJaA9DCIDUJk7u9+W/lIaUUpRoFUsyaBZHQKdBrsMRYih1fZQoaAZoCWgPQwidgZGXNTHzv5SGlFKUaBVLMmgWR0CnQ4C4jKPodX2UKGgGaAloD0MI1gEQd/Wq4b+UhpRSlGgVSzJoFkdAp0NFvCMxXXV9lChoBmgJaA9DCC2yne+nxuC/lIaUUpRoFUsyaBZHQKdDCJaaCtl1fZQoaAZoCWgPQwgJUb6ghQTnv5SGlFKUaBVLMmgWR0CnQsr+YMOPdX2UKGgGaAloD0MI0J1g/3Xu5r+UhpRSlGgVSzJoFkdAp0SlECvHLnV9lChoBmgJaA9DCLd9j/rrFeG/lIaUUpRoFUsyaBZHQKdEaiUPhAJ1fZQoaAZoCWgPQwgb9ntinarov5SGlFKUaBVLMmgWR0CnRCy4Wk8BdX2UKGgGaAloD0MIq3e4HRoW7r+UhpRSlGgVSzJoFkdAp0Pu0G/vfHV9lChoBmgJaA9DCDsYsU8AReS/lIaUUpRoFUsyaBZHQKdFvsWweNl1fZQoaAZoCWgPQwhTWRR2UXT1v5SGlFKUaBVLMmgWR0CnRYOuzQeFdX2UKGgGaAloD0MIvr1r0Jfe3b+UhpRSlGgVSzJoFkdAp0VGVcD8tXV9lChoBmgJaA9DCCGx3T1Ad+q/lIaUUpRoFUsyaBZHQKdFCJ66asp1fZQoaAZoCWgPQwg/4IEBhA/vv5SGlFKUaBVLMmgWR0CnRvSFwkxAdX2UKGgGaAloD0MISkONQpJZ+r+UhpRSlGgVSzJoFkdAp0a6J/G2kXV9lChoBmgJaA9DCFnC2hg74ei/lIaUUpRoFUsyaBZHQKdGfLxqfvp1fZQoaAZoCWgPQwgA/b5/8+Ljv5SGlFKUaBVLMmgWR0CnRj7jcVQAdX2UKGgGaAloD0MINjtSfedX9L+UhpRSlGgVSzJoFkdAp0gTJOnEVHV9lChoBmgJaA9DCAjNrnsrEuK/lIaUUpRoFUsyaBZHQKdH2EQGwA51fZQoaAZoCWgPQwhffNEeL6Tav5SGlFKUaBVLMmgWR0CnR5rvsqrjdX2UKGgGaAloD0MIKgExCRfy67+UhpRSlGgVSzJoFkdAp0ddA7gbZXV9lChoBmgJaA9DCEzChTyCm/C/lIaUUpRoFUsyaBZHQKdJyutfXwt1fZQoaAZoCWgPQwifPgJ/+Dnwv5SGlFKUaBVLMmgWR0CnSZDGT9sKdX2UKGgGaAloD0MIO6qaIOo+87+UhpRSlGgVSzJoFkdAp0lUJa7mMnV9lChoBmgJaA9DCPQxHxDoTOy/lIaUUpRoFUsyaBZHQKdJFyd4FA51fZQoaAZoCWgPQwg9RKM7iB30v5SGlFKUaBVLMmgWR0CnS5lDfFaTdX2UKGgGaAloD0MIj6uRXWkZ6r+UhpRSlGgVSzJoFkdAp0tfJV81GnV9lChoBmgJaA9DCDUKSWb1Dui/lIaUUpRoFUsyaBZHQKdLIoOQQtl1fZQoaAZoCWgPQwhYG2MnvATfv5SGlFKUaBVLMmgWR0CnSuVopQUIdX2UKGgGaAloD0MIesa+ZOOB8b+UhpRSlGgVSzJoFkdAp01vv4M4LnV9lChoBmgJaA9DCBw/VBoxs+W/lIaUUpRoFUsyaBZHQKdNNaLXL/11fZQoaAZoCWgPQwjH155ZEqDvv5SGlFKUaBVLMmgWR0CnTPrVFx4qdX2UKGgGaAloD0MIzhq8r8qF3b+UhpRSlGgVSzJoFkdAp0y94u9OAXV9lChoBmgJaA9DCL0aoDTUKPG/lIaUUpRoFUsyaBZHQKdPU+cpb2V1fZQoaAZoCWgPQwguq7AZ4MLxv5SGlFKUaBVLMmgWR0CnTxnB+F10dX2UKGgGaAloD0MI10//WfPj6b+UhpRSlGgVSzJoFkdAp07dcKPXCnV9lChoBmgJaA9DCAMJih9j7vC/lIaUUpRoFUsyaBZHQKdOoIYWLxZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (329 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.9391009560436941, "std_reward": 0.28308239743387587, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-17T07:06:43.730172"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55238afc43e1b9f0dbf60f371d92410df42309a291b9da5ac3acc347ee0997f9
3
+ size 3056