update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- glue
|
6 |
+
metrics:
|
7 |
+
- matthews_correlation
|
8 |
+
model-index:
|
9 |
+
- name: cola-pixel-handwritten-mean-vatrpp-256-64-4-5e-5-15000-42
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# cola-pixel-handwritten-mean-vatrpp-256-64-4-5e-5-15000-42
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [noniewiem/pixel-handwritten](https://huggingface.co/noniewiem/pixel-handwritten) on the glue dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.7009
|
21 |
+
- Matthews Correlation: 0.0757
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 5e-05
|
41 |
+
- train_batch_size: 64
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 4
|
45 |
+
- total_train_batch_size: 256
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_steps: 200
|
49 |
+
- training_steps: 15000
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------:|
|
56 |
+
| 0.6426 | 3.03 | 100 | 0.6255 | 0.0 |
|
57 |
+
| 0.6176 | 6.06 | 200 | 0.6308 | 0.0 |
|
58 |
+
| 0.6183 | 9.09 | 300 | 0.6187 | 0.0 |
|
59 |
+
| 0.6162 | 12.12 | 400 | 0.6158 | 0.0 |
|
60 |
+
| 0.614 | 15.15 | 500 | 0.6250 | -0.0293 |
|
61 |
+
| 0.6096 | 18.18 | 600 | 0.6185 | 0.0 |
|
62 |
+
| 0.6055 | 21.21 | 700 | 0.6224 | 0.0175 |
|
63 |
+
| 0.6001 | 24.24 | 800 | 0.6551 | 0.1301 |
|
64 |
+
| 0.5909 | 27.27 | 900 | 0.6534 | 0.0566 |
|
65 |
+
| 0.5726 | 30.3 | 1000 | 0.6679 | 0.1029 |
|
66 |
+
| 0.5524 | 33.33 | 1100 | 0.6901 | 0.0631 |
|
67 |
+
| 0.5167 | 36.36 | 1200 | 0.7027 | 0.0948 |
|
68 |
+
| 0.4779 | 39.39 | 1300 | 0.7578 | 0.1012 |
|
69 |
+
| 0.4271 | 42.42 | 1400 | 0.8021 | 0.1108 |
|
70 |
+
| 0.3888 | 45.45 | 1500 | 0.8813 | 0.1025 |
|
71 |
+
| 0.3428 | 48.48 | 1600 | 0.9362 | 0.1437 |
|
72 |
+
| 0.2977 | 51.51 | 1700 | 1.0786 | 0.1118 |
|
73 |
+
| 0.2642 | 54.54 | 1800 | 1.0610 | 0.0901 |
|
74 |
+
| 0.2272 | 57.57 | 1900 | 1.1835 | 0.1155 |
|
75 |
+
| 0.1915 | 60.6 | 2000 | 1.2531 | 0.1224 |
|
76 |
+
| 0.1691 | 63.63 | 2100 | 1.3903 | 0.0754 |
|
77 |
+
| 0.1491 | 66.66 | 2200 | 1.4947 | 0.0674 |
|
78 |
+
| 0.1339 | 69.69 | 2300 | 1.5434 | 0.0736 |
|
79 |
+
| 0.1164 | 72.72 | 2400 | 1.5793 | 0.1165 |
|
80 |
+
| 0.1078 | 75.75 | 2500 | 1.5938 | 0.0995 |
|
81 |
+
| 0.0974 | 78.78 | 2600 | 1.7009 | 0.0757 |
|
82 |
+
|
83 |
+
|
84 |
+
### Framework versions
|
85 |
+
|
86 |
+
- Transformers 4.17.0
|
87 |
+
- Pytorch 2.3.0+cu121
|
88 |
+
- Datasets 2.0.0
|
89 |
+
- Tokenizers 0.13.3
|