noniewiem commited on
Commit
e669a89
1 Parent(s): c97556b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - glue
6
+ metrics:
7
+ - matthews_correlation
8
+ model-index:
9
+ - name: cola-pixel-handwritten-mean-vatrpp-256-64-4-5e-5-15000-42
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # cola-pixel-handwritten-mean-vatrpp-256-64-4-5e-5-15000-42
17
+
18
+ This model is a fine-tuned version of [noniewiem/pixel-handwritten](https://huggingface.co/noniewiem/pixel-handwritten) on the glue dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.7009
21
+ - Matthews Correlation: 0.0757
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 5e-05
41
+ - train_batch_size: 64
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - gradient_accumulation_steps: 4
45
+ - total_train_batch_size: 256
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_steps: 200
49
+ - training_steps: 15000
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation |
55
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------:|
56
+ | 0.6426 | 3.03 | 100 | 0.6255 | 0.0 |
57
+ | 0.6176 | 6.06 | 200 | 0.6308 | 0.0 |
58
+ | 0.6183 | 9.09 | 300 | 0.6187 | 0.0 |
59
+ | 0.6162 | 12.12 | 400 | 0.6158 | 0.0 |
60
+ | 0.614 | 15.15 | 500 | 0.6250 | -0.0293 |
61
+ | 0.6096 | 18.18 | 600 | 0.6185 | 0.0 |
62
+ | 0.6055 | 21.21 | 700 | 0.6224 | 0.0175 |
63
+ | 0.6001 | 24.24 | 800 | 0.6551 | 0.1301 |
64
+ | 0.5909 | 27.27 | 900 | 0.6534 | 0.0566 |
65
+ | 0.5726 | 30.3 | 1000 | 0.6679 | 0.1029 |
66
+ | 0.5524 | 33.33 | 1100 | 0.6901 | 0.0631 |
67
+ | 0.5167 | 36.36 | 1200 | 0.7027 | 0.0948 |
68
+ | 0.4779 | 39.39 | 1300 | 0.7578 | 0.1012 |
69
+ | 0.4271 | 42.42 | 1400 | 0.8021 | 0.1108 |
70
+ | 0.3888 | 45.45 | 1500 | 0.8813 | 0.1025 |
71
+ | 0.3428 | 48.48 | 1600 | 0.9362 | 0.1437 |
72
+ | 0.2977 | 51.51 | 1700 | 1.0786 | 0.1118 |
73
+ | 0.2642 | 54.54 | 1800 | 1.0610 | 0.0901 |
74
+ | 0.2272 | 57.57 | 1900 | 1.1835 | 0.1155 |
75
+ | 0.1915 | 60.6 | 2000 | 1.2531 | 0.1224 |
76
+ | 0.1691 | 63.63 | 2100 | 1.3903 | 0.0754 |
77
+ | 0.1491 | 66.66 | 2200 | 1.4947 | 0.0674 |
78
+ | 0.1339 | 69.69 | 2300 | 1.5434 | 0.0736 |
79
+ | 0.1164 | 72.72 | 2400 | 1.5793 | 0.1165 |
80
+ | 0.1078 | 75.75 | 2500 | 1.5938 | 0.0995 |
81
+ | 0.0974 | 78.78 | 2600 | 1.7009 | 0.0757 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.17.0
87
+ - Pytorch 2.3.0+cu121
88
+ - Datasets 2.0.0
89
+ - Tokenizers 0.13.3