noneUsername commited on
Commit
f643a35
1 Parent(s): 5de22e3

Upload folder using huggingface_hub

Browse files
added_tokens.json ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|assistant|>": 32001,
3
+ "<|end|>": 32000,
4
+ "<|im_end|>": 32007,
5
+ "<|im_start|>": 32010,
6
+ "<|placeholder100|>": 32104,
7
+ "<|placeholder101|>": 32105,
8
+ "<|placeholder102|>": 32106,
9
+ "<|placeholder103|>": 32107,
10
+ "<|placeholder104|>": 32108,
11
+ "<|placeholder105|>": 32109,
12
+ "<|placeholder106|>": 32110,
13
+ "<|placeholder107|>": 32111,
14
+ "<|placeholder108|>": 32112,
15
+ "<|placeholder109|>": 32113,
16
+ "<|placeholder10|>": 32014,
17
+ "<|placeholder110|>": 32114,
18
+ "<|placeholder111|>": 32115,
19
+ "<|placeholder112|>": 32116,
20
+ "<|placeholder113|>": 32117,
21
+ "<|placeholder114|>": 32118,
22
+ "<|placeholder115|>": 32119,
23
+ "<|placeholder116|>": 32120,
24
+ "<|placeholder117|>": 32121,
25
+ "<|placeholder118|>": 32122,
26
+ "<|placeholder119|>": 32123,
27
+ "<|placeholder11|>": 32015,
28
+ "<|placeholder120|>": 32124,
29
+ "<|placeholder121|>": 32125,
30
+ "<|placeholder122|>": 32126,
31
+ "<|placeholder123|>": 32127,
32
+ "<|placeholder12|>": 32016,
33
+ "<|placeholder13|>": 32017,
34
+ "<|placeholder14|>": 32018,
35
+ "<|placeholder15|>": 32019,
36
+ "<|placeholder16|>": 32020,
37
+ "<|placeholder17|>": 32021,
38
+ "<|placeholder18|>": 32022,
39
+ "<|placeholder19|>": 32023,
40
+ "<|placeholder1|>": 32002,
41
+ "<|placeholder20|>": 32024,
42
+ "<|placeholder21|>": 32025,
43
+ "<|placeholder22|>": 32026,
44
+ "<|placeholder23|>": 32027,
45
+ "<|placeholder24|>": 32028,
46
+ "<|placeholder25|>": 32029,
47
+ "<|placeholder26|>": 32030,
48
+ "<|placeholder27|>": 32031,
49
+ "<|placeholder28|>": 32032,
50
+ "<|placeholder29|>": 32033,
51
+ "<|placeholder2|>": 32003,
52
+ "<|placeholder30|>": 32034,
53
+ "<|placeholder31|>": 32035,
54
+ "<|placeholder32|>": 32036,
55
+ "<|placeholder33|>": 32037,
56
+ "<|placeholder34|>": 32038,
57
+ "<|placeholder35|>": 32039,
58
+ "<|placeholder36|>": 32040,
59
+ "<|placeholder37|>": 32041,
60
+ "<|placeholder38|>": 32042,
61
+ "<|placeholder39|>": 32043,
62
+ "<|placeholder3|>": 32004,
63
+ "<|placeholder40|>": 32044,
64
+ "<|placeholder41|>": 32045,
65
+ "<|placeholder42|>": 32046,
66
+ "<|placeholder43|>": 32047,
67
+ "<|placeholder44|>": 32048,
68
+ "<|placeholder45|>": 32049,
69
+ "<|placeholder46|>": 32050,
70
+ "<|placeholder47|>": 32051,
71
+ "<|placeholder48|>": 32052,
72
+ "<|placeholder49|>": 32053,
73
+ "<|placeholder4|>": 32005,
74
+ "<|placeholder50|>": 32054,
75
+ "<|placeholder51|>": 32055,
76
+ "<|placeholder52|>": 32056,
77
+ "<|placeholder53|>": 32057,
78
+ "<|placeholder54|>": 32058,
79
+ "<|placeholder55|>": 32059,
80
+ "<|placeholder56|>": 32060,
81
+ "<|placeholder57|>": 32061,
82
+ "<|placeholder58|>": 32062,
83
+ "<|placeholder59|>": 32063,
84
+ "<|placeholder5|>": 32008,
85
+ "<|placeholder60|>": 32064,
86
+ "<|placeholder61|>": 32065,
87
+ "<|placeholder62|>": 32066,
88
+ "<|placeholder63|>": 32067,
89
+ "<|placeholder64|>": 32068,
90
+ "<|placeholder65|>": 32069,
91
+ "<|placeholder66|>": 32070,
92
+ "<|placeholder67|>": 32071,
93
+ "<|placeholder68|>": 32072,
94
+ "<|placeholder69|>": 32073,
95
+ "<|placeholder6|>": 32009,
96
+ "<|placeholder70|>": 32074,
97
+ "<|placeholder71|>": 32075,
98
+ "<|placeholder72|>": 32076,
99
+ "<|placeholder73|>": 32077,
100
+ "<|placeholder74|>": 32078,
101
+ "<|placeholder75|>": 32079,
102
+ "<|placeholder76|>": 32080,
103
+ "<|placeholder77|>": 32081,
104
+ "<|placeholder78|>": 32082,
105
+ "<|placeholder79|>": 32083,
106
+ "<|placeholder7|>": 32011,
107
+ "<|placeholder80|>": 32084,
108
+ "<|placeholder81|>": 32085,
109
+ "<|placeholder82|>": 32086,
110
+ "<|placeholder83|>": 32087,
111
+ "<|placeholder84|>": 32088,
112
+ "<|placeholder85|>": 32089,
113
+ "<|placeholder86|>": 32090,
114
+ "<|placeholder87|>": 32091,
115
+ "<|placeholder88|>": 32092,
116
+ "<|placeholder89|>": 32093,
117
+ "<|placeholder8|>": 32012,
118
+ "<|placeholder90|>": 32094,
119
+ "<|placeholder91|>": 32095,
120
+ "<|placeholder92|>": 32096,
121
+ "<|placeholder93|>": 32097,
122
+ "<|placeholder94|>": 32098,
123
+ "<|placeholder95|>": 32099,
124
+ "<|placeholder96|>": 32100,
125
+ "<|placeholder97|>": 32101,
126
+ "<|placeholder98|>": 32102,
127
+ "<|placeholder99|>": 32103,
128
+ "<|placeholder9|>": 32013,
129
+ "<|system|>": 32006
130
+ }
config.json ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/autodl-tmp/solar-pro-preview-instruct",
3
+ "architectures": [
4
+ "SolarForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_solar.SolarConfig",
10
+ "AutoModelForCausalLM": "modeling_solar.SolarForCausalLM"
11
+ },
12
+ "bos_token_id": 1,
13
+ "bskcn_1": [
14
+ 12,
15
+ 20,
16
+ 32,
17
+ 44
18
+ ],
19
+ "bskcn_2": [
20
+ 20,
21
+ 32
22
+ ],
23
+ "bskcn_3": [
24
+ 16,
25
+ 24,
26
+ 36,
27
+ 48
28
+ ],
29
+ "bskcn_4": [
30
+ 28,
31
+ 40
32
+ ],
33
+ "bskcn_tv": [
34
+ 0.9,
35
+ 0.8
36
+ ],
37
+ "compression_config": {
38
+ "config_groups": {
39
+ "group_0": {
40
+ "input_activations": {
41
+ "actorder": null,
42
+ "block_structure": null,
43
+ "dynamic": true,
44
+ "group_size": null,
45
+ "num_bits": 8,
46
+ "observer": "memoryless",
47
+ "observer_kwargs": {},
48
+ "strategy": "token",
49
+ "symmetric": true,
50
+ "type": "int"
51
+ },
52
+ "output_activations": null,
53
+ "targets": [
54
+ "Linear"
55
+ ],
56
+ "weights": {
57
+ "actorder": null,
58
+ "block_structure": null,
59
+ "dynamic": false,
60
+ "group_size": null,
61
+ "num_bits": 8,
62
+ "observer": "minmax",
63
+ "observer_kwargs": {},
64
+ "strategy": "channel",
65
+ "symmetric": true,
66
+ "type": "int"
67
+ }
68
+ }
69
+ },
70
+ "format": "int-quantized",
71
+ "global_compression_ratio": 1.2405783163466424,
72
+ "ignore": [
73
+ "lm_head"
74
+ ],
75
+ "kv_cache_scheme": null,
76
+ "quant_method": "compressed-tensors",
77
+ "quantization_status": "compressed"
78
+ },
79
+ "eos_token_id": 32007,
80
+ "hidden_act": "silu",
81
+ "hidden_size": 5120,
82
+ "initializer_range": 0.02,
83
+ "intermediate_size": 17920,
84
+ "max_position_embeddings": 4096,
85
+ "mlp_bias": false,
86
+ "model_type": "solar",
87
+ "num_attention_heads": 40,
88
+ "num_hidden_layers": 64,
89
+ "num_key_value_heads": 10,
90
+ "pretraining_tp": 1,
91
+ "rms_norm_eps": 1e-05,
92
+ "rope_scaling": null,
93
+ "rope_theta": 10000.0,
94
+ "sliding_window": 2047,
95
+ "tie_word_embeddings": false,
96
+ "torch_dtype": "bfloat16",
97
+ "transformers_version": "4.45.1",
98
+ "use_cache": true,
99
+ "vocab_size": 32128
100
+ }
configuration_solar.py ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """Solar model configuration"""
21
+
22
+ from transformers.configuration_utils import PretrainedConfig
23
+ from transformers.utils import logging
24
+
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+
29
+ class SolarConfig(PretrainedConfig):
30
+ r"""
31
+ This is the configuration class to store the configuration of a [`SolarModel`]. It is used to instantiate an LLaMA
32
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
33
+ defaults will yield a similar configuration to that of the LLaMA-7B.
34
+
35
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
36
+ documentation from [`PretrainedConfig`] for more information.
37
+
38
+
39
+ Args:
40
+ vocab_size (`int`, *optional*, defaults to 32000):
41
+ Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
42
+ `inputs_ids` passed when calling [`SolarModel`]
43
+ hidden_size (`int`, *optional*, defaults to 4096):
44
+ Dimension of the hidden representations.
45
+ intermediate_size (`int`, *optional*, defaults to 11008):
46
+ Dimension of the MLP representations.
47
+ num_hidden_layers (`int`, *optional*, defaults to 32):
48
+ Number of hidden layers in the Transformer decoder.
49
+ num_attention_heads (`int`, *optional*, defaults to 32):
50
+ Number of attention heads for each attention layer in the Transformer decoder.
51
+ num_key_value_heads (`int`, *optional*):
52
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
53
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
54
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
55
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
56
+ by meanpooling all the original heads within that group. For more details checkout [this
57
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
58
+ `num_attention_heads`.
59
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
60
+ The non-linear activation function (function or string) in the decoder.
61
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
62
+ The maximum sequence length that this model might ever be used with. Solar 1 supports up to 2048 tokens,
63
+ Solar 2 up to 4096, CodeSolar up to 16384.
64
+ initializer_range (`float`, *optional*, defaults to 0.02):
65
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
66
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
67
+ The epsilon used by the rms normalization layers.
68
+ use_cache (`bool`, *optional*, defaults to `True`):
69
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
70
+ relevant if `config.is_decoder=True`.
71
+ pad_token_id (`int`, *optional*):
72
+ Padding token id.
73
+ bos_token_id (`int`, *optional*, defaults to 1):
74
+ Beginning of stream token id.
75
+ eos_token_id (`int`, *optional*, defaults to 2):
76
+ End of stream token id.
77
+ pretraining_tp (`int`, *optional*, defaults to 1):
78
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
79
+ document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to understand more about it. This value is
80
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
81
+ issue](https://github.com/pytorch/pytorch/issues/76232).
82
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
83
+ Whether to tie weight embeddings
84
+ rope_theta (`float`, *optional*, defaults to 10000.0):
85
+ The base period of the RoPE embeddings.
86
+ rope_scaling (`Dict`, *optional*):
87
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
88
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
89
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
90
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
91
+ these scaling strategies behave:
92
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
93
+ experimental feature, subject to breaking API changes in future versions.
94
+ attention_bias (`bool`, *optional*, defaults to `False`):
95
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
96
+ attention_dropout (`float`, *optional*, defaults to 0.0):
97
+ The dropout ratio for the attention probabilities.
98
+ mlp_bias (`bool`, *optional*, defaults to `False`):
99
+ Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
100
+ sliding_window (`int`, *optional*, defaults to 2047):
101
+ Sliding window attention window size. If not specified, will default to `2047`.
102
+
103
+ ```python
104
+ >>> from transformers import SolarModel, SolarConfig
105
+
106
+ >>> # Initializing a Solar-pro style configuration
107
+ >>> configuration = SolarConfig()
108
+
109
+ >>> # Initializing a model from the Solar-pro style configuration
110
+ >>> model = SolarModel(configuration)
111
+
112
+ >>> # Accessing the model configuration
113
+ >>> configuration = model.config
114
+ ```"""
115
+
116
+ model_type = "solar"
117
+ keys_to_ignore_at_inference = ["past_key_values"]
118
+
119
+ def __init__(
120
+ self,
121
+ vocab_size=32000,
122
+ hidden_size=4096,
123
+ intermediate_size=11008,
124
+ num_hidden_layers=32,
125
+ num_attention_heads=32,
126
+ num_key_value_heads=None,
127
+ hidden_act="silu",
128
+ max_position_embeddings=2048,
129
+ initializer_range=0.02,
130
+ rms_norm_eps=1e-6,
131
+ use_cache=True,
132
+ pad_token_id=None,
133
+ bos_token_id=1,
134
+ eos_token_id=2,
135
+ pretraining_tp=1,
136
+ tie_word_embeddings=False,
137
+ rope_theta=10000.0,
138
+ rope_scaling=None,
139
+ attention_bias=False,
140
+ attention_dropout=0.0,
141
+ mlp_bias=False,
142
+ sliding_window=2047,
143
+ bskcn_1=[12, 20, 32, 44],
144
+ bskcn_2=[20, 32],
145
+ bskcn_3=[16, 24, 36, 48],
146
+ bskcn_4=[28, 40],
147
+ bskcn_tv=[0.9,0.8],
148
+ **kwargs,
149
+ ):
150
+ self.vocab_size = vocab_size
151
+ self.max_position_embeddings = max_position_embeddings
152
+ self.hidden_size = hidden_size
153
+ self.intermediate_size = intermediate_size
154
+ self.num_hidden_layers = num_hidden_layers
155
+ self.num_attention_heads = num_attention_heads
156
+
157
+ # for backward compatibility
158
+ if num_key_value_heads is None:
159
+ num_key_value_heads = num_attention_heads
160
+
161
+ self.num_key_value_heads = num_key_value_heads
162
+ self.hidden_act = hidden_act
163
+ self.initializer_range = initializer_range
164
+ self.rms_norm_eps = rms_norm_eps
165
+ self.pretraining_tp = pretraining_tp
166
+ self.use_cache = use_cache
167
+ self.rope_theta = rope_theta
168
+ self.rope_scaling = rope_scaling
169
+ self._rope_scaling_validation()
170
+ self.attention_bias = attention_bias
171
+ self.attention_dropout = attention_dropout
172
+ self.mlp_bias = mlp_bias
173
+ self.sliding_window = sliding_window
174
+ self.bskcn_1 = bskcn_1
175
+ self.bskcn_2 = bskcn_2
176
+ self.bskcn_3 = bskcn_3
177
+ self.bskcn_4 = bskcn_4
178
+ self.bskcn_tv = bskcn_tv
179
+
180
+ super().__init__(
181
+ pad_token_id=pad_token_id,
182
+ bos_token_id=bos_token_id,
183
+ eos_token_id=eos_token_id,
184
+ tie_word_embeddings=tie_word_embeddings,
185
+ **kwargs,
186
+ )
187
+
188
+ def _rope_scaling_validation(self):
189
+ """
190
+ Validate the `rope_scaling` configuration.
191
+ """
192
+ if self.rope_scaling is None:
193
+ return
194
+
195
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
196
+ raise ValueError(
197
+ "`rope_scaling` must be a dictionary with two fields, `type` and `factor`, " f"got {self.rope_scaling}"
198
+ )
199
+ rope_scaling_type = self.rope_scaling.get("type", None)
200
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
201
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
202
+ raise ValueError(
203
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
204
+ )
205
+ if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
206
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": [
5
+ 2,
6
+ 32000,
7
+ 32007
8
+ ],
9
+ "transformers_version": "4.45.1"
10
+ }
model-00001-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78f44a2b95011cac3f8111bc1cef732b0442ec47e35fdfdf3b4a4d3cdfd174be
3
+ size 4918261424
model-00002-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce7859affe09d40695a4a4d2ff8d493c5208968888d7b63b3bc9f70c18060317
3
+ size 4995743824
model-00003-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea8d3db5920d9ae2855e863281116bdbaf4a334450711c4500aeb9e45d1bbad8
3
+ size 4982635952
model-00004-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2ae577fc5e51776503ab55e889e22ac9a43e8f418f0c7ad186393c82ff673b7
3
+ size 4930182232
model-00005-of-00005.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08bdaa74789363b123c60193f61f5c683cdb0c7742b6d6896ba0464636881f65
3
+ size 2649858016
model.safetensors.index.json ADDED
@@ -0,0 +1,1034 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 22476564480
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00005-of-00005.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00005.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
10
+ "model.layers.0.mlp.down_proj.weight_scale": "model-00001-of-00005.safetensors",
11
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
12
+ "model.layers.0.mlp.gate_proj.weight_scale": "model-00001-of-00005.safetensors",
13
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
14
+ "model.layers.0.mlp.up_proj.weight_scale": "model-00001-of-00005.safetensors",
15
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
16
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
17
+ "model.layers.0.self_attn.k_proj.weight_scale": "model-00001-of-00005.safetensors",
18
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
19
+ "model.layers.0.self_attn.o_proj.weight_scale": "model-00001-of-00005.safetensors",
20
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
21
+ "model.layers.0.self_attn.q_proj.weight_scale": "model-00001-of-00005.safetensors",
22
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
23
+ "model.layers.0.self_attn.v_proj.weight_scale": "model-00001-of-00005.safetensors",
24
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors",
25
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
26
+ "model.layers.1.mlp.down_proj.weight_scale": "model-00001-of-00005.safetensors",
27
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
28
+ "model.layers.1.mlp.gate_proj.weight_scale": "model-00001-of-00005.safetensors",
29
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
30
+ "model.layers.1.mlp.up_proj.weight_scale": "model-00001-of-00005.safetensors",
31
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
32
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
33
+ "model.layers.1.self_attn.k_proj.weight_scale": "model-00001-of-00005.safetensors",
34
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
35
+ "model.layers.1.self_attn.o_proj.weight_scale": "model-00001-of-00005.safetensors",
36
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
37
+ "model.layers.1.self_attn.q_proj.weight_scale": "model-00001-of-00005.safetensors",
38
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
39
+ "model.layers.1.self_attn.v_proj.weight_scale": "model-00001-of-00005.safetensors",
40
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00005.safetensors",
41
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
42
+ "model.layers.10.mlp.down_proj.weight_scale": "model-00001-of-00005.safetensors",
43
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
44
+ "model.layers.10.mlp.gate_proj.weight_scale": "model-00001-of-00005.safetensors",
45
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
46
+ "model.layers.10.mlp.up_proj.weight_scale": "model-00001-of-00005.safetensors",
47
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
48
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
49
+ "model.layers.10.self_attn.k_proj.weight_scale": "model-00001-of-00005.safetensors",
50
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
51
+ "model.layers.10.self_attn.o_proj.weight_scale": "model-00001-of-00005.safetensors",
52
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
53
+ "model.layers.10.self_attn.q_proj.weight_scale": "model-00001-of-00005.safetensors",
54
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
55
+ "model.layers.10.self_attn.v_proj.weight_scale": "model-00001-of-00005.safetensors",
56
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00005.safetensors",
57
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
58
+ "model.layers.11.mlp.down_proj.weight_scale": "model-00001-of-00005.safetensors",
59
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
60
+ "model.layers.11.mlp.gate_proj.weight_scale": "model-00001-of-00005.safetensors",
61
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
62
+ "model.layers.11.mlp.up_proj.weight_scale": "model-00001-of-00005.safetensors",
63
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
64
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
65
+ "model.layers.11.self_attn.k_proj.weight_scale": "model-00001-of-00005.safetensors",
66
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
67
+ "model.layers.11.self_attn.o_proj.weight_scale": "model-00001-of-00005.safetensors",
68
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
69
+ "model.layers.11.self_attn.q_proj.weight_scale": "model-00001-of-00005.safetensors",
70
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
71
+ "model.layers.11.self_attn.v_proj.weight_scale": "model-00001-of-00005.safetensors",
72
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00005.safetensors",
73
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
74
+ "model.layers.12.mlp.down_proj.weight_scale": "model-00001-of-00005.safetensors",
75
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
76
+ "model.layers.12.mlp.gate_proj.weight_scale": "model-00001-of-00005.safetensors",
77
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
78
+ "model.layers.12.mlp.up_proj.weight_scale": "model-00001-of-00005.safetensors",
79
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
80
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
81
+ "model.layers.12.self_attn.k_proj.weight_scale": "model-00001-of-00005.safetensors",
82
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
83
+ "model.layers.12.self_attn.o_proj.weight_scale": "model-00001-of-00005.safetensors",
84
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
85
+ "model.layers.12.self_attn.q_proj.weight_scale": "model-00001-of-00005.safetensors",
86
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
87
+ "model.layers.12.self_attn.v_proj.weight_scale": "model-00001-of-00005.safetensors",
88
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00005.safetensors",
89
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
90
+ "model.layers.13.mlp.down_proj.weight_scale": "model-00002-of-00005.safetensors",
91
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
92
+ "model.layers.13.mlp.gate_proj.weight_scale": "model-00001-of-00005.safetensors",
93
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
94
+ "model.layers.13.mlp.up_proj.weight_scale": "model-00002-of-00005.safetensors",
95
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
96
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
97
+ "model.layers.13.self_attn.k_proj.weight_scale": "model-00001-of-00005.safetensors",
98
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
99
+ "model.layers.13.self_attn.o_proj.weight_scale": "model-00001-of-00005.safetensors",
100
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
101
+ "model.layers.13.self_attn.q_proj.weight_scale": "model-00001-of-00005.safetensors",
102
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
103
+ "model.layers.13.self_attn.v_proj.weight_scale": "model-00001-of-00005.safetensors",
104
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00005.safetensors",
105
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
106
+ "model.layers.14.mlp.down_proj.weight_scale": "model-00002-of-00005.safetensors",
107
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
108
+ "model.layers.14.mlp.gate_proj.weight_scale": "model-00002-of-00005.safetensors",
109
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
110
+ "model.layers.14.mlp.up_proj.weight_scale": "model-00002-of-00005.safetensors",
111
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
112
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
113
+ "model.layers.14.self_attn.k_proj.weight_scale": "model-00002-of-00005.safetensors",
114
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
115
+ "model.layers.14.self_attn.o_proj.weight_scale": "model-00002-of-00005.safetensors",
116
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
117
+ "model.layers.14.self_attn.q_proj.weight_scale": "model-00002-of-00005.safetensors",
118
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
119
+ "model.layers.14.self_attn.v_proj.weight_scale": "model-00002-of-00005.safetensors",
120
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00005.safetensors",
121
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
122
+ "model.layers.15.mlp.down_proj.weight_scale": "model-00002-of-00005.safetensors",
123
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
124
+ "model.layers.15.mlp.gate_proj.weight_scale": "model-00002-of-00005.safetensors",
125
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
126
+ "model.layers.15.mlp.up_proj.weight_scale": "model-00002-of-00005.safetensors",
127
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
128
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
129
+ "model.layers.15.self_attn.k_proj.weight_scale": "model-00002-of-00005.safetensors",
130
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
131
+ "model.layers.15.self_attn.o_proj.weight_scale": "model-00002-of-00005.safetensors",
132
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
133
+ "model.layers.15.self_attn.q_proj.weight_scale": "model-00002-of-00005.safetensors",
134
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
135
+ "model.layers.15.self_attn.v_proj.weight_scale": "model-00002-of-00005.safetensors",
136
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00005.safetensors",
137
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
138
+ "model.layers.16.mlp.down_proj.weight_scale": "model-00002-of-00005.safetensors",
139
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
140
+ "model.layers.16.mlp.gate_proj.weight_scale": "model-00002-of-00005.safetensors",
141
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
142
+ "model.layers.16.mlp.up_proj.weight_scale": "model-00002-of-00005.safetensors",
143
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
144
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
145
+ "model.layers.16.self_attn.k_proj.weight_scale": "model-00002-of-00005.safetensors",
146
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
147
+ "model.layers.16.self_attn.o_proj.weight_scale": "model-00002-of-00005.safetensors",
148
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
149
+ "model.layers.16.self_attn.q_proj.weight_scale": "model-00002-of-00005.safetensors",
150
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
151
+ "model.layers.16.self_attn.v_proj.weight_scale": "model-00002-of-00005.safetensors",
152
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00005.safetensors",
153
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
154
+ "model.layers.17.mlp.down_proj.weight_scale": "model-00002-of-00005.safetensors",
155
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
156
+ "model.layers.17.mlp.gate_proj.weight_scale": "model-00002-of-00005.safetensors",
157
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
158
+ "model.layers.17.mlp.up_proj.weight_scale": "model-00002-of-00005.safetensors",
159
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
160
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
161
+ "model.layers.17.self_attn.k_proj.weight_scale": "model-00002-of-00005.safetensors",
162
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
163
+ "model.layers.17.self_attn.o_proj.weight_scale": "model-00002-of-00005.safetensors",
164
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
165
+ "model.layers.17.self_attn.q_proj.weight_scale": "model-00002-of-00005.safetensors",
166
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
167
+ "model.layers.17.self_attn.v_proj.weight_scale": "model-00002-of-00005.safetensors",
168
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00005.safetensors",
169
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
170
+ "model.layers.18.mlp.down_proj.weight_scale": "model-00002-of-00005.safetensors",
171
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
172
+ "model.layers.18.mlp.gate_proj.weight_scale": "model-00002-of-00005.safetensors",
173
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
174
+ "model.layers.18.mlp.up_proj.weight_scale": "model-00002-of-00005.safetensors",
175
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
176
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
177
+ "model.layers.18.self_attn.k_proj.weight_scale": "model-00002-of-00005.safetensors",
178
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
179
+ "model.layers.18.self_attn.o_proj.weight_scale": "model-00002-of-00005.safetensors",
180
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
181
+ "model.layers.18.self_attn.q_proj.weight_scale": "model-00002-of-00005.safetensors",
182
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
183
+ "model.layers.18.self_attn.v_proj.weight_scale": "model-00002-of-00005.safetensors",
184
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00005.safetensors",
185
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
186
+ "model.layers.19.mlp.down_proj.weight_scale": "model-00002-of-00005.safetensors",
187
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
188
+ "model.layers.19.mlp.gate_proj.weight_scale": "model-00002-of-00005.safetensors",
189
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
190
+ "model.layers.19.mlp.up_proj.weight_scale": "model-00002-of-00005.safetensors",
191
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
192
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
193
+ "model.layers.19.self_attn.k_proj.weight_scale": "model-00002-of-00005.safetensors",
194
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
195
+ "model.layers.19.self_attn.o_proj.weight_scale": "model-00002-of-00005.safetensors",
196
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
197
+ "model.layers.19.self_attn.q_proj.weight_scale": "model-00002-of-00005.safetensors",
198
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
199
+ "model.layers.19.self_attn.v_proj.weight_scale": "model-00002-of-00005.safetensors",
200
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors",
201
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
202
+ "model.layers.2.mlp.down_proj.weight_scale": "model-00001-of-00005.safetensors",
203
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
204
+ "model.layers.2.mlp.gate_proj.weight_scale": "model-00001-of-00005.safetensors",
205
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
206
+ "model.layers.2.mlp.up_proj.weight_scale": "model-00001-of-00005.safetensors",
207
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
208
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
209
+ "model.layers.2.self_attn.k_proj.weight_scale": "model-00001-of-00005.safetensors",
210
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
211
+ "model.layers.2.self_attn.o_proj.weight_scale": "model-00001-of-00005.safetensors",
212
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
213
+ "model.layers.2.self_attn.q_proj.weight_scale": "model-00001-of-00005.safetensors",
214
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
215
+ "model.layers.2.self_attn.v_proj.weight_scale": "model-00001-of-00005.safetensors",
216
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00005.safetensors",
217
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
218
+ "model.layers.20.mlp.down_proj.weight_scale": "model-00002-of-00005.safetensors",
219
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
220
+ "model.layers.20.mlp.gate_proj.weight_scale": "model-00002-of-00005.safetensors",
221
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
222
+ "model.layers.20.mlp.up_proj.weight_scale": "model-00002-of-00005.safetensors",
223
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
224
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
225
+ "model.layers.20.self_attn.k_proj.weight_scale": "model-00002-of-00005.safetensors",
226
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
227
+ "model.layers.20.self_attn.o_proj.weight_scale": "model-00002-of-00005.safetensors",
228
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
229
+ "model.layers.20.self_attn.q_proj.weight_scale": "model-00002-of-00005.safetensors",
230
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
231
+ "model.layers.20.self_attn.v_proj.weight_scale": "model-00002-of-00005.safetensors",
232
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00005.safetensors",
233
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
234
+ "model.layers.21.mlp.down_proj.weight_scale": "model-00002-of-00005.safetensors",
235
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
236
+ "model.layers.21.mlp.gate_proj.weight_scale": "model-00002-of-00005.safetensors",
237
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
238
+ "model.layers.21.mlp.up_proj.weight_scale": "model-00002-of-00005.safetensors",
239
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
240
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
241
+ "model.layers.21.self_attn.k_proj.weight_scale": "model-00002-of-00005.safetensors",
242
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
243
+ "model.layers.21.self_attn.o_proj.weight_scale": "model-00002-of-00005.safetensors",
244
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
245
+ "model.layers.21.self_attn.q_proj.weight_scale": "model-00002-of-00005.safetensors",
246
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
247
+ "model.layers.21.self_attn.v_proj.weight_scale": "model-00002-of-00005.safetensors",
248
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00005.safetensors",
249
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
250
+ "model.layers.22.mlp.down_proj.weight_scale": "model-00002-of-00005.safetensors",
251
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
252
+ "model.layers.22.mlp.gate_proj.weight_scale": "model-00002-of-00005.safetensors",
253
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
254
+ "model.layers.22.mlp.up_proj.weight_scale": "model-00002-of-00005.safetensors",
255
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
256
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
257
+ "model.layers.22.self_attn.k_proj.weight_scale": "model-00002-of-00005.safetensors",
258
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
259
+ "model.layers.22.self_attn.o_proj.weight_scale": "model-00002-of-00005.safetensors",
260
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
261
+ "model.layers.22.self_attn.q_proj.weight_scale": "model-00002-of-00005.safetensors",
262
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
263
+ "model.layers.22.self_attn.v_proj.weight_scale": "model-00002-of-00005.safetensors",
264
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00005.safetensors",
265
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
266
+ "model.layers.23.mlp.down_proj.weight_scale": "model-00002-of-00005.safetensors",
267
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
268
+ "model.layers.23.mlp.gate_proj.weight_scale": "model-00002-of-00005.safetensors",
269
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
270
+ "model.layers.23.mlp.up_proj.weight_scale": "model-00002-of-00005.safetensors",
271
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
272
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
273
+ "model.layers.23.self_attn.k_proj.weight_scale": "model-00002-of-00005.safetensors",
274
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
275
+ "model.layers.23.self_attn.o_proj.weight_scale": "model-00002-of-00005.safetensors",
276
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
277
+ "model.layers.23.self_attn.q_proj.weight_scale": "model-00002-of-00005.safetensors",
278
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
279
+ "model.layers.23.self_attn.v_proj.weight_scale": "model-00002-of-00005.safetensors",
280
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00005.safetensors",
281
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
282
+ "model.layers.24.mlp.down_proj.weight_scale": "model-00002-of-00005.safetensors",
283
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
284
+ "model.layers.24.mlp.gate_proj.weight_scale": "model-00002-of-00005.safetensors",
285
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
286
+ "model.layers.24.mlp.up_proj.weight_scale": "model-00002-of-00005.safetensors",
287
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
288
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
289
+ "model.layers.24.self_attn.k_proj.weight_scale": "model-00002-of-00005.safetensors",
290
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
291
+ "model.layers.24.self_attn.o_proj.weight_scale": "model-00002-of-00005.safetensors",
292
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
293
+ "model.layers.24.self_attn.q_proj.weight_scale": "model-00002-of-00005.safetensors",
294
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
295
+ "model.layers.24.self_attn.v_proj.weight_scale": "model-00002-of-00005.safetensors",
296
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00005.safetensors",
297
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
298
+ "model.layers.25.mlp.down_proj.weight_scale": "model-00002-of-00005.safetensors",
299
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
300
+ "model.layers.25.mlp.gate_proj.weight_scale": "model-00002-of-00005.safetensors",
301
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
302
+ "model.layers.25.mlp.up_proj.weight_scale": "model-00002-of-00005.safetensors",
303
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
304
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
305
+ "model.layers.25.self_attn.k_proj.weight_scale": "model-00002-of-00005.safetensors",
306
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
307
+ "model.layers.25.self_attn.o_proj.weight_scale": "model-00002-of-00005.safetensors",
308
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
309
+ "model.layers.25.self_attn.q_proj.weight_scale": "model-00002-of-00005.safetensors",
310
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
311
+ "model.layers.25.self_attn.v_proj.weight_scale": "model-00002-of-00005.safetensors",
312
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00005.safetensors",
313
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
314
+ "model.layers.26.mlp.down_proj.weight_scale": "model-00002-of-00005.safetensors",
315
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
316
+ "model.layers.26.mlp.gate_proj.weight_scale": "model-00002-of-00005.safetensors",
317
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
318
+ "model.layers.26.mlp.up_proj.weight_scale": "model-00002-of-00005.safetensors",
319
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
320
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
321
+ "model.layers.26.self_attn.k_proj.weight_scale": "model-00002-of-00005.safetensors",
322
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
323
+ "model.layers.26.self_attn.o_proj.weight_scale": "model-00002-of-00005.safetensors",
324
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
325
+ "model.layers.26.self_attn.q_proj.weight_scale": "model-00002-of-00005.safetensors",
326
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
327
+ "model.layers.26.self_attn.v_proj.weight_scale": "model-00002-of-00005.safetensors",
328
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00005.safetensors",
329
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00005.safetensors",
330
+ "model.layers.27.mlp.down_proj.weight_scale": "model-00002-of-00005.safetensors",
331
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
332
+ "model.layers.27.mlp.gate_proj.weight_scale": "model-00002-of-00005.safetensors",
333
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00005.safetensors",
334
+ "model.layers.27.mlp.up_proj.weight_scale": "model-00002-of-00005.safetensors",
335
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
336
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
337
+ "model.layers.27.self_attn.k_proj.weight_scale": "model-00002-of-00005.safetensors",
338
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
339
+ "model.layers.27.self_attn.o_proj.weight_scale": "model-00002-of-00005.safetensors",
340
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
341
+ "model.layers.27.self_attn.q_proj.weight_scale": "model-00002-of-00005.safetensors",
342
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
343
+ "model.layers.27.self_attn.v_proj.weight_scale": "model-00002-of-00005.safetensors",
344
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00005.safetensors",
345
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
346
+ "model.layers.28.mlp.down_proj.weight_scale": "model-00003-of-00005.safetensors",
347
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
348
+ "model.layers.28.mlp.gate_proj.weight_scale": "model-00003-of-00005.safetensors",
349
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
350
+ "model.layers.28.mlp.up_proj.weight_scale": "model-00003-of-00005.safetensors",
351
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
352
+ "model.layers.28.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
353
+ "model.layers.28.self_attn.k_proj.weight_scale": "model-00002-of-00005.safetensors",
354
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
355
+ "model.layers.28.self_attn.o_proj.weight_scale": "model-00003-of-00005.safetensors",
356
+ "model.layers.28.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
357
+ "model.layers.28.self_attn.q_proj.weight_scale": "model-00002-of-00005.safetensors",
358
+ "model.layers.28.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
359
+ "model.layers.28.self_attn.v_proj.weight_scale": "model-00002-of-00005.safetensors",
360
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00005.safetensors",
361
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
362
+ "model.layers.29.mlp.down_proj.weight_scale": "model-00003-of-00005.safetensors",
363
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
364
+ "model.layers.29.mlp.gate_proj.weight_scale": "model-00003-of-00005.safetensors",
365
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
366
+ "model.layers.29.mlp.up_proj.weight_scale": "model-00003-of-00005.safetensors",
367
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
368
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
369
+ "model.layers.29.self_attn.k_proj.weight_scale": "model-00003-of-00005.safetensors",
370
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
371
+ "model.layers.29.self_attn.o_proj.weight_scale": "model-00003-of-00005.safetensors",
372
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
373
+ "model.layers.29.self_attn.q_proj.weight_scale": "model-00003-of-00005.safetensors",
374
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
375
+ "model.layers.29.self_attn.v_proj.weight_scale": "model-00003-of-00005.safetensors",
376
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00005.safetensors",
377
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
378
+ "model.layers.3.mlp.down_proj.weight_scale": "model-00001-of-00005.safetensors",
379
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
380
+ "model.layers.3.mlp.gate_proj.weight_scale": "model-00001-of-00005.safetensors",
381
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
382
+ "model.layers.3.mlp.up_proj.weight_scale": "model-00001-of-00005.safetensors",
383
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
384
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
385
+ "model.layers.3.self_attn.k_proj.weight_scale": "model-00001-of-00005.safetensors",
386
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
387
+ "model.layers.3.self_attn.o_proj.weight_scale": "model-00001-of-00005.safetensors",
388
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
389
+ "model.layers.3.self_attn.q_proj.weight_scale": "model-00001-of-00005.safetensors",
390
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
391
+ "model.layers.3.self_attn.v_proj.weight_scale": "model-00001-of-00005.safetensors",
392
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00005.safetensors",
393
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
394
+ "model.layers.30.mlp.down_proj.weight_scale": "model-00003-of-00005.safetensors",
395
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
396
+ "model.layers.30.mlp.gate_proj.weight_scale": "model-00003-of-00005.safetensors",
397
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
398
+ "model.layers.30.mlp.up_proj.weight_scale": "model-00003-of-00005.safetensors",
399
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
400
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
401
+ "model.layers.30.self_attn.k_proj.weight_scale": "model-00003-of-00005.safetensors",
402
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
403
+ "model.layers.30.self_attn.o_proj.weight_scale": "model-00003-of-00005.safetensors",
404
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
405
+ "model.layers.30.self_attn.q_proj.weight_scale": "model-00003-of-00005.safetensors",
406
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
407
+ "model.layers.30.self_attn.v_proj.weight_scale": "model-00003-of-00005.safetensors",
408
+ "model.layers.31.input_layernorm.weight": "model-00003-of-00005.safetensors",
409
+ "model.layers.31.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
410
+ "model.layers.31.mlp.down_proj.weight_scale": "model-00003-of-00005.safetensors",
411
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
412
+ "model.layers.31.mlp.gate_proj.weight_scale": "model-00003-of-00005.safetensors",
413
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
414
+ "model.layers.31.mlp.up_proj.weight_scale": "model-00003-of-00005.safetensors",
415
+ "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
416
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
417
+ "model.layers.31.self_attn.k_proj.weight_scale": "model-00003-of-00005.safetensors",
418
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
419
+ "model.layers.31.self_attn.o_proj.weight_scale": "model-00003-of-00005.safetensors",
420
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
421
+ "model.layers.31.self_attn.q_proj.weight_scale": "model-00003-of-00005.safetensors",
422
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
423
+ "model.layers.31.self_attn.v_proj.weight_scale": "model-00003-of-00005.safetensors",
424
+ "model.layers.32.input_layernorm.weight": "model-00003-of-00005.safetensors",
425
+ "model.layers.32.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
426
+ "model.layers.32.mlp.down_proj.weight_scale": "model-00003-of-00005.safetensors",
427
+ "model.layers.32.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
428
+ "model.layers.32.mlp.gate_proj.weight_scale": "model-00003-of-00005.safetensors",
429
+ "model.layers.32.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
430
+ "model.layers.32.mlp.up_proj.weight_scale": "model-00003-of-00005.safetensors",
431
+ "model.layers.32.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
432
+ "model.layers.32.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
433
+ "model.layers.32.self_attn.k_proj.weight_scale": "model-00003-of-00005.safetensors",
434
+ "model.layers.32.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
435
+ "model.layers.32.self_attn.o_proj.weight_scale": "model-00003-of-00005.safetensors",
436
+ "model.layers.32.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
437
+ "model.layers.32.self_attn.q_proj.weight_scale": "model-00003-of-00005.safetensors",
438
+ "model.layers.32.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
439
+ "model.layers.32.self_attn.v_proj.weight_scale": "model-00003-of-00005.safetensors",
440
+ "model.layers.33.input_layernorm.weight": "model-00003-of-00005.safetensors",
441
+ "model.layers.33.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
442
+ "model.layers.33.mlp.down_proj.weight_scale": "model-00003-of-00005.safetensors",
443
+ "model.layers.33.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
444
+ "model.layers.33.mlp.gate_proj.weight_scale": "model-00003-of-00005.safetensors",
445
+ "model.layers.33.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
446
+ "model.layers.33.mlp.up_proj.weight_scale": "model-00003-of-00005.safetensors",
447
+ "model.layers.33.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
448
+ "model.layers.33.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
449
+ "model.layers.33.self_attn.k_proj.weight_scale": "model-00003-of-00005.safetensors",
450
+ "model.layers.33.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
451
+ "model.layers.33.self_attn.o_proj.weight_scale": "model-00003-of-00005.safetensors",
452
+ "model.layers.33.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
453
+ "model.layers.33.self_attn.q_proj.weight_scale": "model-00003-of-00005.safetensors",
454
+ "model.layers.33.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
455
+ "model.layers.33.self_attn.v_proj.weight_scale": "model-00003-of-00005.safetensors",
456
+ "model.layers.34.input_layernorm.weight": "model-00003-of-00005.safetensors",
457
+ "model.layers.34.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
458
+ "model.layers.34.mlp.down_proj.weight_scale": "model-00003-of-00005.safetensors",
459
+ "model.layers.34.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
460
+ "model.layers.34.mlp.gate_proj.weight_scale": "model-00003-of-00005.safetensors",
461
+ "model.layers.34.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
462
+ "model.layers.34.mlp.up_proj.weight_scale": "model-00003-of-00005.safetensors",
463
+ "model.layers.34.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
464
+ "model.layers.34.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
465
+ "model.layers.34.self_attn.k_proj.weight_scale": "model-00003-of-00005.safetensors",
466
+ "model.layers.34.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
467
+ "model.layers.34.self_attn.o_proj.weight_scale": "model-00003-of-00005.safetensors",
468
+ "model.layers.34.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
469
+ "model.layers.34.self_attn.q_proj.weight_scale": "model-00003-of-00005.safetensors",
470
+ "model.layers.34.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
471
+ "model.layers.34.self_attn.v_proj.weight_scale": "model-00003-of-00005.safetensors",
472
+ "model.layers.35.input_layernorm.weight": "model-00003-of-00005.safetensors",
473
+ "model.layers.35.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
474
+ "model.layers.35.mlp.down_proj.weight_scale": "model-00003-of-00005.safetensors",
475
+ "model.layers.35.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
476
+ "model.layers.35.mlp.gate_proj.weight_scale": "model-00003-of-00005.safetensors",
477
+ "model.layers.35.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
478
+ "model.layers.35.mlp.up_proj.weight_scale": "model-00003-of-00005.safetensors",
479
+ "model.layers.35.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
480
+ "model.layers.35.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
481
+ "model.layers.35.self_attn.k_proj.weight_scale": "model-00003-of-00005.safetensors",
482
+ "model.layers.35.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
483
+ "model.layers.35.self_attn.o_proj.weight_scale": "model-00003-of-00005.safetensors",
484
+ "model.layers.35.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
485
+ "model.layers.35.self_attn.q_proj.weight_scale": "model-00003-of-00005.safetensors",
486
+ "model.layers.35.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
487
+ "model.layers.35.self_attn.v_proj.weight_scale": "model-00003-of-00005.safetensors",
488
+ "model.layers.36.input_layernorm.weight": "model-00003-of-00005.safetensors",
489
+ "model.layers.36.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
490
+ "model.layers.36.mlp.down_proj.weight_scale": "model-00003-of-00005.safetensors",
491
+ "model.layers.36.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
492
+ "model.layers.36.mlp.gate_proj.weight_scale": "model-00003-of-00005.safetensors",
493
+ "model.layers.36.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
494
+ "model.layers.36.mlp.up_proj.weight_scale": "model-00003-of-00005.safetensors",
495
+ "model.layers.36.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
496
+ "model.layers.36.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
497
+ "model.layers.36.self_attn.k_proj.weight_scale": "model-00003-of-00005.safetensors",
498
+ "model.layers.36.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
499
+ "model.layers.36.self_attn.o_proj.weight_scale": "model-00003-of-00005.safetensors",
500
+ "model.layers.36.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
501
+ "model.layers.36.self_attn.q_proj.weight_scale": "model-00003-of-00005.safetensors",
502
+ "model.layers.36.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
503
+ "model.layers.36.self_attn.v_proj.weight_scale": "model-00003-of-00005.safetensors",
504
+ "model.layers.37.input_layernorm.weight": "model-00003-of-00005.safetensors",
505
+ "model.layers.37.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
506
+ "model.layers.37.mlp.down_proj.weight_scale": "model-00003-of-00005.safetensors",
507
+ "model.layers.37.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
508
+ "model.layers.37.mlp.gate_proj.weight_scale": "model-00003-of-00005.safetensors",
509
+ "model.layers.37.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
510
+ "model.layers.37.mlp.up_proj.weight_scale": "model-00003-of-00005.safetensors",
511
+ "model.layers.37.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
512
+ "model.layers.37.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
513
+ "model.layers.37.self_attn.k_proj.weight_scale": "model-00003-of-00005.safetensors",
514
+ "model.layers.37.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
515
+ "model.layers.37.self_attn.o_proj.weight_scale": "model-00003-of-00005.safetensors",
516
+ "model.layers.37.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
517
+ "model.layers.37.self_attn.q_proj.weight_scale": "model-00003-of-00005.safetensors",
518
+ "model.layers.37.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
519
+ "model.layers.37.self_attn.v_proj.weight_scale": "model-00003-of-00005.safetensors",
520
+ "model.layers.38.input_layernorm.weight": "model-00003-of-00005.safetensors",
521
+ "model.layers.38.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
522
+ "model.layers.38.mlp.down_proj.weight_scale": "model-00003-of-00005.safetensors",
523
+ "model.layers.38.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
524
+ "model.layers.38.mlp.gate_proj.weight_scale": "model-00003-of-00005.safetensors",
525
+ "model.layers.38.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
526
+ "model.layers.38.mlp.up_proj.weight_scale": "model-00003-of-00005.safetensors",
527
+ "model.layers.38.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
528
+ "model.layers.38.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
529
+ "model.layers.38.self_attn.k_proj.weight_scale": "model-00003-of-00005.safetensors",
530
+ "model.layers.38.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
531
+ "model.layers.38.self_attn.o_proj.weight_scale": "model-00003-of-00005.safetensors",
532
+ "model.layers.38.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
533
+ "model.layers.38.self_attn.q_proj.weight_scale": "model-00003-of-00005.safetensors",
534
+ "model.layers.38.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
535
+ "model.layers.38.self_attn.v_proj.weight_scale": "model-00003-of-00005.safetensors",
536
+ "model.layers.39.input_layernorm.weight": "model-00003-of-00005.safetensors",
537
+ "model.layers.39.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
538
+ "model.layers.39.mlp.down_proj.weight_scale": "model-00003-of-00005.safetensors",
539
+ "model.layers.39.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
540
+ "model.layers.39.mlp.gate_proj.weight_scale": "model-00003-of-00005.safetensors",
541
+ "model.layers.39.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
542
+ "model.layers.39.mlp.up_proj.weight_scale": "model-00003-of-00005.safetensors",
543
+ "model.layers.39.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
544
+ "model.layers.39.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
545
+ "model.layers.39.self_attn.k_proj.weight_scale": "model-00003-of-00005.safetensors",
546
+ "model.layers.39.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
547
+ "model.layers.39.self_attn.o_proj.weight_scale": "model-00003-of-00005.safetensors",
548
+ "model.layers.39.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
549
+ "model.layers.39.self_attn.q_proj.weight_scale": "model-00003-of-00005.safetensors",
550
+ "model.layers.39.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
551
+ "model.layers.39.self_attn.v_proj.weight_scale": "model-00003-of-00005.safetensors",
552
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00005.safetensors",
553
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
554
+ "model.layers.4.mlp.down_proj.weight_scale": "model-00001-of-00005.safetensors",
555
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
556
+ "model.layers.4.mlp.gate_proj.weight_scale": "model-00001-of-00005.safetensors",
557
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
558
+ "model.layers.4.mlp.up_proj.weight_scale": "model-00001-of-00005.safetensors",
559
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
560
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
561
+ "model.layers.4.self_attn.k_proj.weight_scale": "model-00001-of-00005.safetensors",
562
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
563
+ "model.layers.4.self_attn.o_proj.weight_scale": "model-00001-of-00005.safetensors",
564
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
565
+ "model.layers.4.self_attn.q_proj.weight_scale": "model-00001-of-00005.safetensors",
566
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
567
+ "model.layers.4.self_attn.v_proj.weight_scale": "model-00001-of-00005.safetensors",
568
+ "model.layers.40.input_layernorm.weight": "model-00003-of-00005.safetensors",
569
+ "model.layers.40.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
570
+ "model.layers.40.mlp.down_proj.weight_scale": "model-00003-of-00005.safetensors",
571
+ "model.layers.40.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
572
+ "model.layers.40.mlp.gate_proj.weight_scale": "model-00003-of-00005.safetensors",
573
+ "model.layers.40.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
574
+ "model.layers.40.mlp.up_proj.weight_scale": "model-00003-of-00005.safetensors",
575
+ "model.layers.40.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
576
+ "model.layers.40.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
577
+ "model.layers.40.self_attn.k_proj.weight_scale": "model-00003-of-00005.safetensors",
578
+ "model.layers.40.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
579
+ "model.layers.40.self_attn.o_proj.weight_scale": "model-00003-of-00005.safetensors",
580
+ "model.layers.40.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
581
+ "model.layers.40.self_attn.q_proj.weight_scale": "model-00003-of-00005.safetensors",
582
+ "model.layers.40.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
583
+ "model.layers.40.self_attn.v_proj.weight_scale": "model-00003-of-00005.safetensors",
584
+ "model.layers.41.input_layernorm.weight": "model-00003-of-00005.safetensors",
585
+ "model.layers.41.mlp.down_proj.weight": "model-00003-of-00005.safetensors",
586
+ "model.layers.41.mlp.down_proj.weight_scale": "model-00003-of-00005.safetensors",
587
+ "model.layers.41.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
588
+ "model.layers.41.mlp.gate_proj.weight_scale": "model-00003-of-00005.safetensors",
589
+ "model.layers.41.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
590
+ "model.layers.41.mlp.up_proj.weight_scale": "model-00003-of-00005.safetensors",
591
+ "model.layers.41.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
592
+ "model.layers.41.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
593
+ "model.layers.41.self_attn.k_proj.weight_scale": "model-00003-of-00005.safetensors",
594
+ "model.layers.41.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
595
+ "model.layers.41.self_attn.o_proj.weight_scale": "model-00003-of-00005.safetensors",
596
+ "model.layers.41.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
597
+ "model.layers.41.self_attn.q_proj.weight_scale": "model-00003-of-00005.safetensors",
598
+ "model.layers.41.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
599
+ "model.layers.41.self_attn.v_proj.weight_scale": "model-00003-of-00005.safetensors",
600
+ "model.layers.42.input_layernorm.weight": "model-00004-of-00005.safetensors",
601
+ "model.layers.42.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
602
+ "model.layers.42.mlp.down_proj.weight_scale": "model-00004-of-00005.safetensors",
603
+ "model.layers.42.mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
604
+ "model.layers.42.mlp.gate_proj.weight_scale": "model-00003-of-00005.safetensors",
605
+ "model.layers.42.mlp.up_proj.weight": "model-00003-of-00005.safetensors",
606
+ "model.layers.42.mlp.up_proj.weight_scale": "model-00003-of-00005.safetensors",
607
+ "model.layers.42.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
608
+ "model.layers.42.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
609
+ "model.layers.42.self_attn.k_proj.weight_scale": "model-00003-of-00005.safetensors",
610
+ "model.layers.42.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
611
+ "model.layers.42.self_attn.o_proj.weight_scale": "model-00003-of-00005.safetensors",
612
+ "model.layers.42.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
613
+ "model.layers.42.self_attn.q_proj.weight_scale": "model-00003-of-00005.safetensors",
614
+ "model.layers.42.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
615
+ "model.layers.42.self_attn.v_proj.weight_scale": "model-00003-of-00005.safetensors",
616
+ "model.layers.43.input_layernorm.weight": "model-00004-of-00005.safetensors",
617
+ "model.layers.43.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
618
+ "model.layers.43.mlp.down_proj.weight_scale": "model-00004-of-00005.safetensors",
619
+ "model.layers.43.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
620
+ "model.layers.43.mlp.gate_proj.weight_scale": "model-00004-of-00005.safetensors",
621
+ "model.layers.43.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
622
+ "model.layers.43.mlp.up_proj.weight_scale": "model-00004-of-00005.safetensors",
623
+ "model.layers.43.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
624
+ "model.layers.43.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
625
+ "model.layers.43.self_attn.k_proj.weight_scale": "model-00004-of-00005.safetensors",
626
+ "model.layers.43.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
627
+ "model.layers.43.self_attn.o_proj.weight_scale": "model-00004-of-00005.safetensors",
628
+ "model.layers.43.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
629
+ "model.layers.43.self_attn.q_proj.weight_scale": "model-00004-of-00005.safetensors",
630
+ "model.layers.43.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
631
+ "model.layers.43.self_attn.v_proj.weight_scale": "model-00004-of-00005.safetensors",
632
+ "model.layers.44.input_layernorm.weight": "model-00004-of-00005.safetensors",
633
+ "model.layers.44.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
634
+ "model.layers.44.mlp.down_proj.weight_scale": "model-00004-of-00005.safetensors",
635
+ "model.layers.44.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
636
+ "model.layers.44.mlp.gate_proj.weight_scale": "model-00004-of-00005.safetensors",
637
+ "model.layers.44.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
638
+ "model.layers.44.mlp.up_proj.weight_scale": "model-00004-of-00005.safetensors",
639
+ "model.layers.44.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
640
+ "model.layers.44.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
641
+ "model.layers.44.self_attn.k_proj.weight_scale": "model-00004-of-00005.safetensors",
642
+ "model.layers.44.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
643
+ "model.layers.44.self_attn.o_proj.weight_scale": "model-00004-of-00005.safetensors",
644
+ "model.layers.44.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
645
+ "model.layers.44.self_attn.q_proj.weight_scale": "model-00004-of-00005.safetensors",
646
+ "model.layers.44.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
647
+ "model.layers.44.self_attn.v_proj.weight_scale": "model-00004-of-00005.safetensors",
648
+ "model.layers.45.input_layernorm.weight": "model-00004-of-00005.safetensors",
649
+ "model.layers.45.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
650
+ "model.layers.45.mlp.down_proj.weight_scale": "model-00004-of-00005.safetensors",
651
+ "model.layers.45.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
652
+ "model.layers.45.mlp.gate_proj.weight_scale": "model-00004-of-00005.safetensors",
653
+ "model.layers.45.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
654
+ "model.layers.45.mlp.up_proj.weight_scale": "model-00004-of-00005.safetensors",
655
+ "model.layers.45.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
656
+ "model.layers.45.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
657
+ "model.layers.45.self_attn.k_proj.weight_scale": "model-00004-of-00005.safetensors",
658
+ "model.layers.45.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
659
+ "model.layers.45.self_attn.o_proj.weight_scale": "model-00004-of-00005.safetensors",
660
+ "model.layers.45.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
661
+ "model.layers.45.self_attn.q_proj.weight_scale": "model-00004-of-00005.safetensors",
662
+ "model.layers.45.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
663
+ "model.layers.45.self_attn.v_proj.weight_scale": "model-00004-of-00005.safetensors",
664
+ "model.layers.46.input_layernorm.weight": "model-00004-of-00005.safetensors",
665
+ "model.layers.46.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
666
+ "model.layers.46.mlp.down_proj.weight_scale": "model-00004-of-00005.safetensors",
667
+ "model.layers.46.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
668
+ "model.layers.46.mlp.gate_proj.weight_scale": "model-00004-of-00005.safetensors",
669
+ "model.layers.46.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
670
+ "model.layers.46.mlp.up_proj.weight_scale": "model-00004-of-00005.safetensors",
671
+ "model.layers.46.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
672
+ "model.layers.46.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
673
+ "model.layers.46.self_attn.k_proj.weight_scale": "model-00004-of-00005.safetensors",
674
+ "model.layers.46.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
675
+ "model.layers.46.self_attn.o_proj.weight_scale": "model-00004-of-00005.safetensors",
676
+ "model.layers.46.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
677
+ "model.layers.46.self_attn.q_proj.weight_scale": "model-00004-of-00005.safetensors",
678
+ "model.layers.46.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
679
+ "model.layers.46.self_attn.v_proj.weight_scale": "model-00004-of-00005.safetensors",
680
+ "model.layers.47.input_layernorm.weight": "model-00004-of-00005.safetensors",
681
+ "model.layers.47.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
682
+ "model.layers.47.mlp.down_proj.weight_scale": "model-00004-of-00005.safetensors",
683
+ "model.layers.47.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
684
+ "model.layers.47.mlp.gate_proj.weight_scale": "model-00004-of-00005.safetensors",
685
+ "model.layers.47.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
686
+ "model.layers.47.mlp.up_proj.weight_scale": "model-00004-of-00005.safetensors",
687
+ "model.layers.47.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
688
+ "model.layers.47.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
689
+ "model.layers.47.self_attn.k_proj.weight_scale": "model-00004-of-00005.safetensors",
690
+ "model.layers.47.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
691
+ "model.layers.47.self_attn.o_proj.weight_scale": "model-00004-of-00005.safetensors",
692
+ "model.layers.47.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
693
+ "model.layers.47.self_attn.q_proj.weight_scale": "model-00004-of-00005.safetensors",
694
+ "model.layers.47.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
695
+ "model.layers.47.self_attn.v_proj.weight_scale": "model-00004-of-00005.safetensors",
696
+ "model.layers.48.input_layernorm.weight": "model-00004-of-00005.safetensors",
697
+ "model.layers.48.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
698
+ "model.layers.48.mlp.down_proj.weight_scale": "model-00004-of-00005.safetensors",
699
+ "model.layers.48.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
700
+ "model.layers.48.mlp.gate_proj.weight_scale": "model-00004-of-00005.safetensors",
701
+ "model.layers.48.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
702
+ "model.layers.48.mlp.up_proj.weight_scale": "model-00004-of-00005.safetensors",
703
+ "model.layers.48.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
704
+ "model.layers.48.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
705
+ "model.layers.48.self_attn.k_proj.weight_scale": "model-00004-of-00005.safetensors",
706
+ "model.layers.48.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
707
+ "model.layers.48.self_attn.o_proj.weight_scale": "model-00004-of-00005.safetensors",
708
+ "model.layers.48.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
709
+ "model.layers.48.self_attn.q_proj.weight_scale": "model-00004-of-00005.safetensors",
710
+ "model.layers.48.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
711
+ "model.layers.48.self_attn.v_proj.weight_scale": "model-00004-of-00005.safetensors",
712
+ "model.layers.49.input_layernorm.weight": "model-00004-of-00005.safetensors",
713
+ "model.layers.49.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
714
+ "model.layers.49.mlp.down_proj.weight_scale": "model-00004-of-00005.safetensors",
715
+ "model.layers.49.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
716
+ "model.layers.49.mlp.gate_proj.weight_scale": "model-00004-of-00005.safetensors",
717
+ "model.layers.49.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
718
+ "model.layers.49.mlp.up_proj.weight_scale": "model-00004-of-00005.safetensors",
719
+ "model.layers.49.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
720
+ "model.layers.49.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
721
+ "model.layers.49.self_attn.k_proj.weight_scale": "model-00004-of-00005.safetensors",
722
+ "model.layers.49.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
723
+ "model.layers.49.self_attn.o_proj.weight_scale": "model-00004-of-00005.safetensors",
724
+ "model.layers.49.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
725
+ "model.layers.49.self_attn.q_proj.weight_scale": "model-00004-of-00005.safetensors",
726
+ "model.layers.49.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
727
+ "model.layers.49.self_attn.v_proj.weight_scale": "model-00004-of-00005.safetensors",
728
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00005.safetensors",
729
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
730
+ "model.layers.5.mlp.down_proj.weight_scale": "model-00001-of-00005.safetensors",
731
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
732
+ "model.layers.5.mlp.gate_proj.weight_scale": "model-00001-of-00005.safetensors",
733
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
734
+ "model.layers.5.mlp.up_proj.weight_scale": "model-00001-of-00005.safetensors",
735
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
736
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
737
+ "model.layers.5.self_attn.k_proj.weight_scale": "model-00001-of-00005.safetensors",
738
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
739
+ "model.layers.5.self_attn.o_proj.weight_scale": "model-00001-of-00005.safetensors",
740
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
741
+ "model.layers.5.self_attn.q_proj.weight_scale": "model-00001-of-00005.safetensors",
742
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
743
+ "model.layers.5.self_attn.v_proj.weight_scale": "model-00001-of-00005.safetensors",
744
+ "model.layers.50.input_layernorm.weight": "model-00004-of-00005.safetensors",
745
+ "model.layers.50.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
746
+ "model.layers.50.mlp.down_proj.weight_scale": "model-00004-of-00005.safetensors",
747
+ "model.layers.50.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
748
+ "model.layers.50.mlp.gate_proj.weight_scale": "model-00004-of-00005.safetensors",
749
+ "model.layers.50.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
750
+ "model.layers.50.mlp.up_proj.weight_scale": "model-00004-of-00005.safetensors",
751
+ "model.layers.50.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
752
+ "model.layers.50.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
753
+ "model.layers.50.self_attn.k_proj.weight_scale": "model-00004-of-00005.safetensors",
754
+ "model.layers.50.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
755
+ "model.layers.50.self_attn.o_proj.weight_scale": "model-00004-of-00005.safetensors",
756
+ "model.layers.50.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
757
+ "model.layers.50.self_attn.q_proj.weight_scale": "model-00004-of-00005.safetensors",
758
+ "model.layers.50.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
759
+ "model.layers.50.self_attn.v_proj.weight_scale": "model-00004-of-00005.safetensors",
760
+ "model.layers.51.input_layernorm.weight": "model-00004-of-00005.safetensors",
761
+ "model.layers.51.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
762
+ "model.layers.51.mlp.down_proj.weight_scale": "model-00004-of-00005.safetensors",
763
+ "model.layers.51.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
764
+ "model.layers.51.mlp.gate_proj.weight_scale": "model-00004-of-00005.safetensors",
765
+ "model.layers.51.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
766
+ "model.layers.51.mlp.up_proj.weight_scale": "model-00004-of-00005.safetensors",
767
+ "model.layers.51.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
768
+ "model.layers.51.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
769
+ "model.layers.51.self_attn.k_proj.weight_scale": "model-00004-of-00005.safetensors",
770
+ "model.layers.51.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
771
+ "model.layers.51.self_attn.o_proj.weight_scale": "model-00004-of-00005.safetensors",
772
+ "model.layers.51.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
773
+ "model.layers.51.self_attn.q_proj.weight_scale": "model-00004-of-00005.safetensors",
774
+ "model.layers.51.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
775
+ "model.layers.51.self_attn.v_proj.weight_scale": "model-00004-of-00005.safetensors",
776
+ "model.layers.52.input_layernorm.weight": "model-00004-of-00005.safetensors",
777
+ "model.layers.52.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
778
+ "model.layers.52.mlp.down_proj.weight_scale": "model-00004-of-00005.safetensors",
779
+ "model.layers.52.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
780
+ "model.layers.52.mlp.gate_proj.weight_scale": "model-00004-of-00005.safetensors",
781
+ "model.layers.52.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
782
+ "model.layers.52.mlp.up_proj.weight_scale": "model-00004-of-00005.safetensors",
783
+ "model.layers.52.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
784
+ "model.layers.52.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
785
+ "model.layers.52.self_attn.k_proj.weight_scale": "model-00004-of-00005.safetensors",
786
+ "model.layers.52.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
787
+ "model.layers.52.self_attn.o_proj.weight_scale": "model-00004-of-00005.safetensors",
788
+ "model.layers.52.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
789
+ "model.layers.52.self_attn.q_proj.weight_scale": "model-00004-of-00005.safetensors",
790
+ "model.layers.52.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
791
+ "model.layers.52.self_attn.v_proj.weight_scale": "model-00004-of-00005.safetensors",
792
+ "model.layers.53.input_layernorm.weight": "model-00004-of-00005.safetensors",
793
+ "model.layers.53.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
794
+ "model.layers.53.mlp.down_proj.weight_scale": "model-00004-of-00005.safetensors",
795
+ "model.layers.53.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
796
+ "model.layers.53.mlp.gate_proj.weight_scale": "model-00004-of-00005.safetensors",
797
+ "model.layers.53.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
798
+ "model.layers.53.mlp.up_proj.weight_scale": "model-00004-of-00005.safetensors",
799
+ "model.layers.53.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
800
+ "model.layers.53.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
801
+ "model.layers.53.self_attn.k_proj.weight_scale": "model-00004-of-00005.safetensors",
802
+ "model.layers.53.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
803
+ "model.layers.53.self_attn.o_proj.weight_scale": "model-00004-of-00005.safetensors",
804
+ "model.layers.53.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
805
+ "model.layers.53.self_attn.q_proj.weight_scale": "model-00004-of-00005.safetensors",
806
+ "model.layers.53.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
807
+ "model.layers.53.self_attn.v_proj.weight_scale": "model-00004-of-00005.safetensors",
808
+ "model.layers.54.input_layernorm.weight": "model-00004-of-00005.safetensors",
809
+ "model.layers.54.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
810
+ "model.layers.54.mlp.down_proj.weight_scale": "model-00004-of-00005.safetensors",
811
+ "model.layers.54.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
812
+ "model.layers.54.mlp.gate_proj.weight_scale": "model-00004-of-00005.safetensors",
813
+ "model.layers.54.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
814
+ "model.layers.54.mlp.up_proj.weight_scale": "model-00004-of-00005.safetensors",
815
+ "model.layers.54.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
816
+ "model.layers.54.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
817
+ "model.layers.54.self_attn.k_proj.weight_scale": "model-00004-of-00005.safetensors",
818
+ "model.layers.54.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
819
+ "model.layers.54.self_attn.o_proj.weight_scale": "model-00004-of-00005.safetensors",
820
+ "model.layers.54.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
821
+ "model.layers.54.self_attn.q_proj.weight_scale": "model-00004-of-00005.safetensors",
822
+ "model.layers.54.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
823
+ "model.layers.54.self_attn.v_proj.weight_scale": "model-00004-of-00005.safetensors",
824
+ "model.layers.55.input_layernorm.weight": "model-00004-of-00005.safetensors",
825
+ "model.layers.55.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
826
+ "model.layers.55.mlp.down_proj.weight_scale": "model-00004-of-00005.safetensors",
827
+ "model.layers.55.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
828
+ "model.layers.55.mlp.gate_proj.weight_scale": "model-00004-of-00005.safetensors",
829
+ "model.layers.55.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
830
+ "model.layers.55.mlp.up_proj.weight_scale": "model-00004-of-00005.safetensors",
831
+ "model.layers.55.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
832
+ "model.layers.55.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
833
+ "model.layers.55.self_attn.k_proj.weight_scale": "model-00004-of-00005.safetensors",
834
+ "model.layers.55.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
835
+ "model.layers.55.self_attn.o_proj.weight_scale": "model-00004-of-00005.safetensors",
836
+ "model.layers.55.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
837
+ "model.layers.55.self_attn.q_proj.weight_scale": "model-00004-of-00005.safetensors",
838
+ "model.layers.55.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
839
+ "model.layers.55.self_attn.v_proj.weight_scale": "model-00004-of-00005.safetensors",
840
+ "model.layers.56.input_layernorm.weight": "model-00004-of-00005.safetensors",
841
+ "model.layers.56.mlp.down_proj.weight": "model-00004-of-00005.safetensors",
842
+ "model.layers.56.mlp.down_proj.weight_scale": "model-00004-of-00005.safetensors",
843
+ "model.layers.56.mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
844
+ "model.layers.56.mlp.gate_proj.weight_scale": "model-00004-of-00005.safetensors",
845
+ "model.layers.56.mlp.up_proj.weight": "model-00004-of-00005.safetensors",
846
+ "model.layers.56.mlp.up_proj.weight_scale": "model-00004-of-00005.safetensors",
847
+ "model.layers.56.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
848
+ "model.layers.56.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
849
+ "model.layers.56.self_attn.k_proj.weight_scale": "model-00004-of-00005.safetensors",
850
+ "model.layers.56.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
851
+ "model.layers.56.self_attn.o_proj.weight_scale": "model-00004-of-00005.safetensors",
852
+ "model.layers.56.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
853
+ "model.layers.56.self_attn.q_proj.weight_scale": "model-00004-of-00005.safetensors",
854
+ "model.layers.56.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
855
+ "model.layers.56.self_attn.v_proj.weight_scale": "model-00004-of-00005.safetensors",
856
+ "model.layers.57.input_layernorm.weight": "model-00005-of-00005.safetensors",
857
+ "model.layers.57.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
858
+ "model.layers.57.mlp.down_proj.weight_scale": "model-00005-of-00005.safetensors",
859
+ "model.layers.57.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
860
+ "model.layers.57.mlp.gate_proj.weight_scale": "model-00005-of-00005.safetensors",
861
+ "model.layers.57.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
862
+ "model.layers.57.mlp.up_proj.weight_scale": "model-00005-of-00005.safetensors",
863
+ "model.layers.57.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
864
+ "model.layers.57.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
865
+ "model.layers.57.self_attn.k_proj.weight_scale": "model-00004-of-00005.safetensors",
866
+ "model.layers.57.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
867
+ "model.layers.57.self_attn.o_proj.weight_scale": "model-00004-of-00005.safetensors",
868
+ "model.layers.57.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
869
+ "model.layers.57.self_attn.q_proj.weight_scale": "model-00004-of-00005.safetensors",
870
+ "model.layers.57.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
871
+ "model.layers.57.self_attn.v_proj.weight_scale": "model-00004-of-00005.safetensors",
872
+ "model.layers.58.input_layernorm.weight": "model-00005-of-00005.safetensors",
873
+ "model.layers.58.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
874
+ "model.layers.58.mlp.down_proj.weight_scale": "model-00005-of-00005.safetensors",
875
+ "model.layers.58.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
876
+ "model.layers.58.mlp.gate_proj.weight_scale": "model-00005-of-00005.safetensors",
877
+ "model.layers.58.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
878
+ "model.layers.58.mlp.up_proj.weight_scale": "model-00005-of-00005.safetensors",
879
+ "model.layers.58.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
880
+ "model.layers.58.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
881
+ "model.layers.58.self_attn.k_proj.weight_scale": "model-00005-of-00005.safetensors",
882
+ "model.layers.58.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
883
+ "model.layers.58.self_attn.o_proj.weight_scale": "model-00005-of-00005.safetensors",
884
+ "model.layers.58.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
885
+ "model.layers.58.self_attn.q_proj.weight_scale": "model-00005-of-00005.safetensors",
886
+ "model.layers.58.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
887
+ "model.layers.58.self_attn.v_proj.weight_scale": "model-00005-of-00005.safetensors",
888
+ "model.layers.59.input_layernorm.weight": "model-00005-of-00005.safetensors",
889
+ "model.layers.59.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
890
+ "model.layers.59.mlp.down_proj.weight_scale": "model-00005-of-00005.safetensors",
891
+ "model.layers.59.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
892
+ "model.layers.59.mlp.gate_proj.weight_scale": "model-00005-of-00005.safetensors",
893
+ "model.layers.59.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
894
+ "model.layers.59.mlp.up_proj.weight_scale": "model-00005-of-00005.safetensors",
895
+ "model.layers.59.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
896
+ "model.layers.59.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
897
+ "model.layers.59.self_attn.k_proj.weight_scale": "model-00005-of-00005.safetensors",
898
+ "model.layers.59.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
899
+ "model.layers.59.self_attn.o_proj.weight_scale": "model-00005-of-00005.safetensors",
900
+ "model.layers.59.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
901
+ "model.layers.59.self_attn.q_proj.weight_scale": "model-00005-of-00005.safetensors",
902
+ "model.layers.59.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
903
+ "model.layers.59.self_attn.v_proj.weight_scale": "model-00005-of-00005.safetensors",
904
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00005.safetensors",
905
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
906
+ "model.layers.6.mlp.down_proj.weight_scale": "model-00001-of-00005.safetensors",
907
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
908
+ "model.layers.6.mlp.gate_proj.weight_scale": "model-00001-of-00005.safetensors",
909
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
910
+ "model.layers.6.mlp.up_proj.weight_scale": "model-00001-of-00005.safetensors",
911
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
912
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
913
+ "model.layers.6.self_attn.k_proj.weight_scale": "model-00001-of-00005.safetensors",
914
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
915
+ "model.layers.6.self_attn.o_proj.weight_scale": "model-00001-of-00005.safetensors",
916
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
917
+ "model.layers.6.self_attn.q_proj.weight_scale": "model-00001-of-00005.safetensors",
918
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
919
+ "model.layers.6.self_attn.v_proj.weight_scale": "model-00001-of-00005.safetensors",
920
+ "model.layers.60.input_layernorm.weight": "model-00005-of-00005.safetensors",
921
+ "model.layers.60.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
922
+ "model.layers.60.mlp.down_proj.weight_scale": "model-00005-of-00005.safetensors",
923
+ "model.layers.60.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
924
+ "model.layers.60.mlp.gate_proj.weight_scale": "model-00005-of-00005.safetensors",
925
+ "model.layers.60.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
926
+ "model.layers.60.mlp.up_proj.weight_scale": "model-00005-of-00005.safetensors",
927
+ "model.layers.60.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
928
+ "model.layers.60.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
929
+ "model.layers.60.self_attn.k_proj.weight_scale": "model-00005-of-00005.safetensors",
930
+ "model.layers.60.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
931
+ "model.layers.60.self_attn.o_proj.weight_scale": "model-00005-of-00005.safetensors",
932
+ "model.layers.60.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
933
+ "model.layers.60.self_attn.q_proj.weight_scale": "model-00005-of-00005.safetensors",
934
+ "model.layers.60.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
935
+ "model.layers.60.self_attn.v_proj.weight_scale": "model-00005-of-00005.safetensors",
936
+ "model.layers.61.input_layernorm.weight": "model-00005-of-00005.safetensors",
937
+ "model.layers.61.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
938
+ "model.layers.61.mlp.down_proj.weight_scale": "model-00005-of-00005.safetensors",
939
+ "model.layers.61.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
940
+ "model.layers.61.mlp.gate_proj.weight_scale": "model-00005-of-00005.safetensors",
941
+ "model.layers.61.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
942
+ "model.layers.61.mlp.up_proj.weight_scale": "model-00005-of-00005.safetensors",
943
+ "model.layers.61.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
944
+ "model.layers.61.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
945
+ "model.layers.61.self_attn.k_proj.weight_scale": "model-00005-of-00005.safetensors",
946
+ "model.layers.61.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
947
+ "model.layers.61.self_attn.o_proj.weight_scale": "model-00005-of-00005.safetensors",
948
+ "model.layers.61.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
949
+ "model.layers.61.self_attn.q_proj.weight_scale": "model-00005-of-00005.safetensors",
950
+ "model.layers.61.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
951
+ "model.layers.61.self_attn.v_proj.weight_scale": "model-00005-of-00005.safetensors",
952
+ "model.layers.62.input_layernorm.weight": "model-00005-of-00005.safetensors",
953
+ "model.layers.62.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
954
+ "model.layers.62.mlp.down_proj.weight_scale": "model-00005-of-00005.safetensors",
955
+ "model.layers.62.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
956
+ "model.layers.62.mlp.gate_proj.weight_scale": "model-00005-of-00005.safetensors",
957
+ "model.layers.62.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
958
+ "model.layers.62.mlp.up_proj.weight_scale": "model-00005-of-00005.safetensors",
959
+ "model.layers.62.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
960
+ "model.layers.62.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
961
+ "model.layers.62.self_attn.k_proj.weight_scale": "model-00005-of-00005.safetensors",
962
+ "model.layers.62.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
963
+ "model.layers.62.self_attn.o_proj.weight_scale": "model-00005-of-00005.safetensors",
964
+ "model.layers.62.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
965
+ "model.layers.62.self_attn.q_proj.weight_scale": "model-00005-of-00005.safetensors",
966
+ "model.layers.62.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
967
+ "model.layers.62.self_attn.v_proj.weight_scale": "model-00005-of-00005.safetensors",
968
+ "model.layers.63.input_layernorm.weight": "model-00005-of-00005.safetensors",
969
+ "model.layers.63.mlp.down_proj.weight": "model-00005-of-00005.safetensors",
970
+ "model.layers.63.mlp.down_proj.weight_scale": "model-00005-of-00005.safetensors",
971
+ "model.layers.63.mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
972
+ "model.layers.63.mlp.gate_proj.weight_scale": "model-00005-of-00005.safetensors",
973
+ "model.layers.63.mlp.up_proj.weight": "model-00005-of-00005.safetensors",
974
+ "model.layers.63.mlp.up_proj.weight_scale": "model-00005-of-00005.safetensors",
975
+ "model.layers.63.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
976
+ "model.layers.63.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
977
+ "model.layers.63.self_attn.k_proj.weight_scale": "model-00005-of-00005.safetensors",
978
+ "model.layers.63.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
979
+ "model.layers.63.self_attn.o_proj.weight_scale": "model-00005-of-00005.safetensors",
980
+ "model.layers.63.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
981
+ "model.layers.63.self_attn.q_proj.weight_scale": "model-00005-of-00005.safetensors",
982
+ "model.layers.63.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
983
+ "model.layers.63.self_attn.v_proj.weight_scale": "model-00005-of-00005.safetensors",
984
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00005.safetensors",
985
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
986
+ "model.layers.7.mlp.down_proj.weight_scale": "model-00001-of-00005.safetensors",
987
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
988
+ "model.layers.7.mlp.gate_proj.weight_scale": "model-00001-of-00005.safetensors",
989
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
990
+ "model.layers.7.mlp.up_proj.weight_scale": "model-00001-of-00005.safetensors",
991
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
992
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
993
+ "model.layers.7.self_attn.k_proj.weight_scale": "model-00001-of-00005.safetensors",
994
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
995
+ "model.layers.7.self_attn.o_proj.weight_scale": "model-00001-of-00005.safetensors",
996
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
997
+ "model.layers.7.self_attn.q_proj.weight_scale": "model-00001-of-00005.safetensors",
998
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
999
+ "model.layers.7.self_attn.v_proj.weight_scale": "model-00001-of-00005.safetensors",
1000
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00005.safetensors",
1001
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
1002
+ "model.layers.8.mlp.down_proj.weight_scale": "model-00001-of-00005.safetensors",
1003
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
1004
+ "model.layers.8.mlp.gate_proj.weight_scale": "model-00001-of-00005.safetensors",
1005
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
1006
+ "model.layers.8.mlp.up_proj.weight_scale": "model-00001-of-00005.safetensors",
1007
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
1008
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
1009
+ "model.layers.8.self_attn.k_proj.weight_scale": "model-00001-of-00005.safetensors",
1010
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
1011
+ "model.layers.8.self_attn.o_proj.weight_scale": "model-00001-of-00005.safetensors",
1012
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
1013
+ "model.layers.8.self_attn.q_proj.weight_scale": "model-00001-of-00005.safetensors",
1014
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
1015
+ "model.layers.8.self_attn.v_proj.weight_scale": "model-00001-of-00005.safetensors",
1016
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00005.safetensors",
1017
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00005.safetensors",
1018
+ "model.layers.9.mlp.down_proj.weight_scale": "model-00001-of-00005.safetensors",
1019
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
1020
+ "model.layers.9.mlp.gate_proj.weight_scale": "model-00001-of-00005.safetensors",
1021
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00005.safetensors",
1022
+ "model.layers.9.mlp.up_proj.weight_scale": "model-00001-of-00005.safetensors",
1023
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
1024
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
1025
+ "model.layers.9.self_attn.k_proj.weight_scale": "model-00001-of-00005.safetensors",
1026
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
1027
+ "model.layers.9.self_attn.o_proj.weight_scale": "model-00001-of-00005.safetensors",
1028
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
1029
+ "model.layers.9.self_attn.q_proj.weight_scale": "model-00001-of-00005.safetensors",
1030
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
1031
+ "model.layers.9.self_attn.v_proj.weight_scale": "model-00001-of-00005.safetensors",
1032
+ "model.norm.weight": "model-00005-of-00005.safetensors"
1033
+ }
1034
+ }
modeling_solar.py ADDED
@@ -0,0 +1,1745 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """PyTorch Solar model."""
21
+ import math
22
+ from typing import List, Optional, Tuple, Union
23
+
24
+ import torch
25
+ import torch.nn.functional as F
26
+ import torch.utils.checkpoint
27
+ from torch import nn
28
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
29
+
30
+ from transformers.activations import ACT2FN
31
+ from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
32
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
33
+ from transformers.modeling_outputs import (
34
+ BaseModelOutputWithPast,
35
+ CausalLMOutputWithPast,
36
+ QuestionAnsweringModelOutput,
37
+ SequenceClassifierOutputWithPast,
38
+ TokenClassifierOutput,
39
+ )
40
+ from transformers.modeling_utils import PreTrainedModel
41
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
42
+ from transformers.utils import (
43
+ add_start_docstrings,
44
+ add_start_docstrings_to_model_forward,
45
+ is_flash_attn_2_available,
46
+ is_flash_attn_greater_or_equal_2_10,
47
+ logging,
48
+ replace_return_docstrings,
49
+ )
50
+ from .configuration_solar import SolarConfig
51
+
52
+
53
+ if is_flash_attn_2_available():
54
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
55
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
56
+ import inspect
57
+
58
+ _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
59
+
60
+ logger = logging.get_logger(__name__)
61
+
62
+ _CONFIG_FOR_DOC = "SolarConfig"
63
+
64
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
65
+ def _get_unpad_data(attention_mask):
66
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
67
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
68
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
69
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
70
+ return (
71
+ indices,
72
+ cu_seqlens,
73
+ max_seqlen_in_batch,
74
+ )
75
+
76
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm
77
+ class SolarRMSNorm(nn.Module):
78
+ def __init__(self, hidden_size, eps=1e-6):
79
+ """
80
+ SolarRMSNorm is equivalent to T5LayerNorm
81
+ """
82
+ super().__init__()
83
+ self.weight = nn.Parameter(torch.ones(hidden_size))
84
+ self.variance_epsilon = eps
85
+
86
+ def forward(self, hidden_states):
87
+ input_dtype = hidden_states.dtype
88
+ hidden_states = hidden_states.to(torch.float32)
89
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
90
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
91
+ return self.weight * hidden_states.to(input_dtype)
92
+
93
+
94
+ ALL_LAYERNORM_LAYERS.append(SolarRMSNorm)
95
+
96
+
97
+ class SolarRotaryEmbedding(nn.Module):
98
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
99
+ super().__init__()
100
+ self.scaling_factor = scaling_factor
101
+ self.dim = dim
102
+ self.max_position_embeddings = max_position_embeddings
103
+ self.base = base
104
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
105
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
106
+ # For BC we register cos and sin cached
107
+ self.max_seq_len_cached = max_position_embeddings
108
+
109
+ @torch.no_grad()
110
+ def forward(self, x, position_ids):
111
+ # x: [bs, num_attention_heads, seq_len, head_size]
112
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
113
+ position_ids_expanded = position_ids[:, None, :].float()
114
+ # Force float32 since bfloat16 loses precision on long contexts
115
+ # See https://github.com/huggingface/transformers/pull/29285
116
+ device_type = x.device.type
117
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
118
+ with torch.autocast(device_type=device_type, enabled=False):
119
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
120
+ emb = torch.cat((freqs, freqs), dim=-1)
121
+ cos = emb.cos()
122
+ sin = emb.sin()
123
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
124
+
125
+
126
+ class SolarLinearScalingRotaryEmbedding(SolarRotaryEmbedding):
127
+ """SolarRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
128
+
129
+ def forward(self, x, position_ids):
130
+ # difference to the original RoPE: a scaling factor is aplied to the position ids
131
+ position_ids = position_ids.float() / self.scaling_factor
132
+ cos, sin = super().forward(x, position_ids)
133
+ return cos, sin
134
+
135
+
136
+ class SolarDynamicNTKScalingRotaryEmbedding(SolarRotaryEmbedding):
137
+ """SolarRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
138
+
139
+ def forward(self, x, position_ids):
140
+ # difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
141
+ seq_len = torch.max(position_ids) + 1
142
+ if seq_len > self.max_position_embeddings:
143
+ base = self.base * (
144
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
145
+ ) ** (self.dim / (self.dim - 2))
146
+ inv_freq = 1.0 / (
147
+ base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim)
148
+ )
149
+ self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation
150
+
151
+ cos, sin = super().forward(x, position_ids)
152
+ return cos, sin
153
+
154
+
155
+ def rotate_half(x):
156
+ """Rotates half the hidden dims of the input."""
157
+ x1 = x[..., : x.shape[-1] // 2]
158
+ x2 = x[..., x.shape[-1] // 2 :]
159
+ return torch.cat((-x2, x1), dim=-1)
160
+
161
+
162
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
163
+ """Applies Rotary Position Embedding to the query and key tensors.
164
+
165
+ Args:
166
+ q (`torch.Tensor`): The query tensor.
167
+ k (`torch.Tensor`): The key tensor.
168
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
169
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
170
+ position_ids (`torch.Tensor`, *optional*):
171
+ Deprecated and unused.
172
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
173
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
174
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
175
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
176
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
177
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
178
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
179
+ Returns:
180
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
181
+ """
182
+ cos = cos.unsqueeze(unsqueeze_dim)
183
+ sin = sin.unsqueeze(unsqueeze_dim)
184
+ q_embed = (q * cos) + (rotate_half(q) * sin)
185
+ k_embed = (k * cos) + (rotate_half(k) * sin)
186
+ return q_embed, k_embed
187
+
188
+
189
+ class SolarMLP(nn.Module):
190
+ def __init__(self, config):
191
+ super().__init__()
192
+ self.config = config
193
+ self.hidden_size = config.hidden_size
194
+ self.intermediate_size = config.intermediate_size
195
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
196
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
197
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
198
+ self.act_fn = ACT2FN[config.hidden_act]
199
+
200
+ def forward(self, x):
201
+ if self.config.pretraining_tp > 1:
202
+ slice = self.intermediate_size // self.config.pretraining_tp
203
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
204
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
205
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
206
+
207
+ gate_proj = torch.cat(
208
+ [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
209
+ )
210
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
211
+
212
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
213
+ down_proj = [
214
+ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
215
+ ]
216
+ down_proj = sum(down_proj)
217
+ else:
218
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
219
+
220
+ return down_proj
221
+
222
+
223
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
224
+ """
225
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
226
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
227
+ """
228
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
229
+ if n_rep == 1:
230
+ return hidden_states
231
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
232
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
233
+
234
+
235
+ class SolarAttention(nn.Module):
236
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
237
+
238
+ def __init__(self, config: SolarConfig, layer_idx: Optional[int] = None):
239
+ super().__init__()
240
+ self.config = config
241
+ self.layer_idx = layer_idx
242
+ if layer_idx is None:
243
+ logger.warning_once(
244
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
245
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
246
+ "when creating this class."
247
+ )
248
+
249
+ self.attention_dropout = config.attention_dropout
250
+ self.hidden_size = config.hidden_size
251
+ self.num_heads = config.num_attention_heads
252
+ self.head_dim = self.hidden_size // self.num_heads
253
+ self.num_key_value_heads = config.num_key_value_heads
254
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
255
+ self.max_position_embeddings = config.max_position_embeddings
256
+ self.rope_theta = config.rope_theta
257
+ self.is_causal = True
258
+
259
+ if (self.head_dim * self.num_heads) != self.hidden_size:
260
+ raise ValueError(
261
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
262
+ f" and `num_heads`: {self.num_heads})."
263
+ )
264
+
265
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
266
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
267
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
268
+ self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
269
+ self._init_rope()
270
+
271
+ def _init_rope(self):
272
+ if self.config.rope_scaling is None:
273
+ self.rotary_emb = SolarRotaryEmbedding(
274
+ self.head_dim,
275
+ max_position_embeddings=self.max_position_embeddings,
276
+ base=self.rope_theta,
277
+ )
278
+ else:
279
+ scaling_type = self.config.rope_scaling["type"]
280
+ scaling_factor = self.config.rope_scaling["factor"]
281
+ if scaling_type == "linear":
282
+ self.rotary_emb = SolarLinearScalingRotaryEmbedding(
283
+ self.head_dim,
284
+ max_position_embeddings=self.max_position_embeddings,
285
+ scaling_factor=scaling_factor,
286
+ base=self.rope_theta,
287
+ )
288
+ elif scaling_type == "dynamic":
289
+ self.rotary_emb = SolarDynamicNTKScalingRotaryEmbedding(
290
+ self.head_dim,
291
+ max_position_embeddings=self.max_position_embeddings,
292
+ scaling_factor=scaling_factor,
293
+ base=self.rope_theta,
294
+ )
295
+ else:
296
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
297
+
298
+ def forward(
299
+ self,
300
+ hidden_states: torch.Tensor,
301
+ attention_mask: Optional[torch.Tensor] = None,
302
+ position_ids: Optional[torch.LongTensor] = None,
303
+ past_key_value: Optional[Cache] = None,
304
+ output_attentions: bool = False,
305
+ use_cache: bool = False,
306
+ cache_position: Optional[torch.LongTensor] = None,
307
+ **kwargs,
308
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
309
+ bsz, q_len, _ = hidden_states.size()
310
+
311
+ if self.config.pretraining_tp > 1:
312
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
313
+ query_slices = self.q_proj.weight.split(
314
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
315
+ )
316
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
317
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
318
+
319
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
320
+ query_states = torch.cat(query_states, dim=-1)
321
+
322
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
323
+ key_states = torch.cat(key_states, dim=-1)
324
+
325
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
326
+ value_states = torch.cat(value_states, dim=-1)
327
+
328
+ else:
329
+ query_states = self.q_proj(hidden_states)
330
+ key_states = self.k_proj(hidden_states)
331
+ value_states = self.v_proj(hidden_states)
332
+
333
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
334
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
335
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
336
+
337
+ cos, sin = self.rotary_emb(value_states, position_ids)
338
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
339
+
340
+ if past_key_value is not None:
341
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
342
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
343
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
344
+
345
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
346
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
347
+
348
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
349
+
350
+ if attention_mask is not None: # no matter the length, we just slice it
351
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
352
+ attn_weights = attn_weights + causal_mask
353
+
354
+ # upcast attention to fp32
355
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
356
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
357
+ attn_output = torch.matmul(attn_weights, value_states)
358
+
359
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
360
+ raise ValueError(
361
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
362
+ f" {attn_output.size()}"
363
+ )
364
+
365
+ attn_output = attn_output.transpose(1, 2).contiguous()
366
+
367
+ attn_output = attn_output.reshape(bsz, q_len, -1)
368
+
369
+ if self.config.pretraining_tp > 1:
370
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
371
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
372
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
373
+ else:
374
+ attn_output = self.o_proj(attn_output)
375
+
376
+ if not output_attentions:
377
+ attn_weights = None
378
+
379
+ return attn_output, attn_weights, past_key_value
380
+
381
+ # Copied from transformers.models.mistral.modeling_mistal.MistralFlashAttention2
382
+ class SolarFlashAttention2(SolarAttention):
383
+ """
384
+ Solar flash attention module. This module inherits from `SolarAttention` as the weights of the module stays
385
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
386
+ flash attention and deal with padding tokens in case the input contains any of them.
387
+ """
388
+
389
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
390
+ def __init__(self, *args, **kwargs):
391
+ super().__init__(*args, **kwargs)
392
+
393
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
394
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
395
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
396
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
397
+
398
+ def forward(
399
+ self,
400
+ hidden_states: torch.Tensor,
401
+ attention_mask: Optional[torch.Tensor] = None,
402
+ position_ids: Optional[torch.LongTensor] = None,
403
+ past_key_value: Optional[Cache] = None,
404
+ output_attentions: bool = False,
405
+ use_cache: bool = False,
406
+ cache_position: Optional[torch.LongTensor] = None,
407
+ ):
408
+ if isinstance(past_key_value, StaticCache):
409
+ raise ValueError(
410
+ "`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
411
+ "make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
412
+ )
413
+
414
+ output_attentions = False
415
+
416
+ bsz, q_len, _ = hidden_states.size()
417
+
418
+ query_states = self.q_proj(hidden_states)
419
+ key_states = self.k_proj(hidden_states)
420
+ value_states = self.v_proj(hidden_states)
421
+
422
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
423
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
424
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
425
+
426
+ kv_seq_len = key_states.shape[-2]
427
+ if past_key_value is not None:
428
+ kv_seq_len += cache_position[0]
429
+
430
+ cos, sin = self.rotary_emb(value_states, position_ids)
431
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
432
+
433
+ use_sliding_windows = (
434
+ _flash_supports_window_size
435
+ and getattr(self.config, "sliding_window", None) is not None
436
+ and kv_seq_len > self.config.sliding_window
437
+ )
438
+
439
+ if not _flash_supports_window_size:
440
+ logger.warning_once(
441
+ "The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
442
+ " make sure to upgrade flash-attn library."
443
+ )
444
+
445
+ if past_key_value is not None:
446
+ # Activate slicing cache only if the config has a value `sliding_windows` attribute
447
+ cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
448
+ if (
449
+ getattr(self.config, "sliding_window", None) is not None
450
+ and kv_seq_len > self.config.sliding_window
451
+ and cache_has_contents
452
+ ):
453
+ slicing_tokens = 1 - self.config.sliding_window
454
+
455
+ past_key = past_key_value[self.layer_idx][0]
456
+ past_value = past_key_value[self.layer_idx][1]
457
+
458
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
459
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
460
+
461
+ if past_key.shape[-2] != self.config.sliding_window - 1:
462
+ raise ValueError(
463
+ f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
464
+ f" {past_key.shape}"
465
+ )
466
+
467
+ if attention_mask is not None:
468
+ attention_mask = attention_mask[:, slicing_tokens:]
469
+ attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
470
+
471
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
472
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
473
+
474
+ # repeat k/v heads if n_kv_heads < n_heads
475
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
476
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
477
+ dropout_rate = 0.0 if not self.training else self.attention_dropout
478
+
479
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
480
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
481
+ # cast them back in float16 just to be sure everything works as expected.
482
+ input_dtype = query_states.dtype
483
+ if input_dtype == torch.float32:
484
+ if torch.is_autocast_enabled():
485
+ target_dtype = torch.get_autocast_gpu_dtype()
486
+ # Handle the case where the model is quantized
487
+ elif hasattr(self.config, "_pre_quantization_dtype"):
488
+ target_dtype = self.config._pre_quantization_dtype
489
+ else:
490
+ target_dtype = self.q_proj.weight.dtype
491
+
492
+ logger.warning_once(
493
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
494
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
495
+ f" {target_dtype}."
496
+ )
497
+
498
+ query_states = query_states.to(target_dtype)
499
+ key_states = key_states.to(target_dtype)
500
+ value_states = value_states.to(target_dtype)
501
+
502
+ # Reashape to the expected shape for Flash Attention
503
+ query_states = query_states.transpose(1, 2)
504
+ key_states = key_states.transpose(1, 2)
505
+ value_states = value_states.transpose(1, 2)
506
+
507
+ attn_output = self._flash_attention_forward(
508
+ query_states,
509
+ key_states,
510
+ value_states,
511
+ attention_mask,
512
+ q_len,
513
+ dropout=dropout_rate,
514
+ use_sliding_windows=use_sliding_windows,
515
+ )
516
+
517
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
518
+ attn_output = self.o_proj(attn_output)
519
+
520
+ if not output_attentions:
521
+ attn_weights = None
522
+
523
+ return attn_output, attn_weights, past_key_value
524
+
525
+ def _flash_attention_forward(
526
+ self,
527
+ query_states,
528
+ key_states,
529
+ value_states,
530
+ attention_mask,
531
+ query_length,
532
+ dropout=0.0,
533
+ softmax_scale=None,
534
+ use_sliding_windows=False,
535
+ ):
536
+ """
537
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
538
+ first unpad the input, then computes the attention scores and pad the final attention scores.
539
+
540
+ Args:
541
+ query_states (`torch.Tensor`):
542
+ Input query states to be passed to Flash Attention API
543
+ key_states (`torch.Tensor`):
544
+ Input key states to be passed to Flash Attention API
545
+ value_states (`torch.Tensor`):
546
+ Input value states to be passed to Flash Attention API
547
+ attention_mask (`torch.Tensor`):
548
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
549
+ position of padding tokens and 1 for the position of non-padding tokens.
550
+ dropout (`float`):
551
+ Attention dropout
552
+ softmax_scale (`float`, *optional*):
553
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
554
+ use_sliding_windows (`bool`, *optional*):
555
+ Whether to activate sliding window attention.
556
+ """
557
+ if not self._flash_attn_uses_top_left_mask:
558
+ causal = self.is_causal
559
+ else:
560
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
561
+ causal = self.is_causal and query_length != 1
562
+
563
+ # Contains at least one padding token in the sequence
564
+ if attention_mask is not None:
565
+ batch_size = query_states.shape[0]
566
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
567
+ query_states, key_states, value_states, attention_mask, query_length
568
+ )
569
+
570
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
571
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
572
+
573
+ if not use_sliding_windows:
574
+ attn_output_unpad = flash_attn_varlen_func(
575
+ query_states,
576
+ key_states,
577
+ value_states,
578
+ cu_seqlens_q=cu_seqlens_q,
579
+ cu_seqlens_k=cu_seqlens_k,
580
+ max_seqlen_q=max_seqlen_in_batch_q,
581
+ max_seqlen_k=max_seqlen_in_batch_k,
582
+ dropout_p=dropout,
583
+ softmax_scale=softmax_scale,
584
+ causal=causal,
585
+ )
586
+ else:
587
+ attn_output_unpad = flash_attn_varlen_func(
588
+ query_states,
589
+ key_states,
590
+ value_states,
591
+ cu_seqlens_q=cu_seqlens_q,
592
+ cu_seqlens_k=cu_seqlens_k,
593
+ max_seqlen_q=max_seqlen_in_batch_q,
594
+ max_seqlen_k=max_seqlen_in_batch_k,
595
+ dropout_p=dropout,
596
+ softmax_scale=softmax_scale,
597
+ causal=causal,
598
+ window_size=(self.config.sliding_window, self.config.sliding_window),
599
+ )
600
+
601
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
602
+ else:
603
+ if not use_sliding_windows:
604
+ attn_output = flash_attn_func(
605
+ query_states,
606
+ key_states,
607
+ value_states,
608
+ dropout,
609
+ softmax_scale=softmax_scale,
610
+ causal=causal,
611
+ )
612
+ else:
613
+ attn_output = flash_attn_func(
614
+ query_states,
615
+ key_states,
616
+ value_states,
617
+ dropout,
618
+ softmax_scale=softmax_scale,
619
+ causal=causal,
620
+ window_size=(self.config.sliding_window, self.config.sliding_window),
621
+ )
622
+
623
+ return attn_output
624
+
625
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
626
+ batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
627
+
628
+ # On the first iteration we need to properly re-create the padding mask
629
+ # by slicing it on the proper place
630
+ if kv_seq_len != attention_mask.shape[-1]:
631
+ attention_mask_num_tokens = attention_mask.shape[-1]
632
+ attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
633
+
634
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
635
+
636
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
637
+ value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
638
+
639
+ if query_length == kv_seq_len:
640
+ query_layer = index_first_axis(
641
+ query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
642
+ )
643
+ cu_seqlens_q = cu_seqlens_k
644
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
645
+ indices_q = indices_k
646
+ elif query_length == 1:
647
+ max_seqlen_in_batch_q = 1
648
+ cu_seqlens_q = torch.arange(
649
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
650
+ ) # There is a memcpy here, that is very bad.
651
+ indices_q = cu_seqlens_q[:-1]
652
+ query_layer = query_layer.squeeze(1)
653
+ else:
654
+ # The -q_len: slice assumes left padding.
655
+ attention_mask = attention_mask[:, -query_length:]
656
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
657
+
658
+ return (
659
+ query_layer,
660
+ key_layer,
661
+ value_layer,
662
+ indices_q,
663
+ (cu_seqlens_q, cu_seqlens_k),
664
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
665
+ )
666
+
667
+
668
+ class SolarSdpaAttention(SolarAttention):
669
+ """
670
+ Solar attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
671
+ `SolarAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
672
+ SDPA API.
673
+ """
674
+
675
+ # Adapted from SolarAttention.forward
676
+ def forward(
677
+ self,
678
+ hidden_states: torch.Tensor,
679
+ attention_mask: Optional[torch.Tensor] = None,
680
+ position_ids: Optional[torch.LongTensor] = None,
681
+ past_key_value: Optional[Cache] = None,
682
+ output_attentions: bool = False,
683
+ use_cache: bool = False,
684
+ cache_position: Optional[torch.LongTensor] = None,
685
+ **kwargs,
686
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
687
+ if output_attentions:
688
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
689
+ logger.warning_once(
690
+ "SolarModel is using SolarSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
691
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
692
+ )
693
+ return super().forward(
694
+ hidden_states=hidden_states,
695
+ attention_mask=attention_mask,
696
+ position_ids=position_ids,
697
+ past_key_value=past_key_value,
698
+ output_attentions=output_attentions,
699
+ use_cache=use_cache,
700
+ cache_position=cache_position,
701
+ )
702
+
703
+ bsz, q_len, _ = hidden_states.size()
704
+
705
+ query_states = self.q_proj(hidden_states)
706
+ key_states = self.k_proj(hidden_states)
707
+ value_states = self.v_proj(hidden_states)
708
+
709
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
710
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
711
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
712
+
713
+ cos, sin = self.rotary_emb(value_states, position_ids)
714
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
715
+
716
+ if past_key_value is not None:
717
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
718
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
719
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
720
+
721
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
722
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
723
+
724
+ causal_mask = attention_mask
725
+ if attention_mask is not None:
726
+ causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
727
+
728
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
729
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
730
+ if query_states.device.type == "cuda" and causal_mask is not None:
731
+ query_states = query_states.contiguous()
732
+ key_states = key_states.contiguous()
733
+ value_states = value_states.contiguous()
734
+
735
+ # We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
736
+ # in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
737
+ is_causal = True if causal_mask is None and q_len > 1 else False
738
+
739
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
740
+ query_states,
741
+ key_states,
742
+ value_states,
743
+ attn_mask=causal_mask,
744
+ dropout_p=self.attention_dropout if self.training else 0.0,
745
+ is_causal=is_causal,
746
+ )
747
+
748
+ attn_output = attn_output.transpose(1, 2).contiguous()
749
+ attn_output = attn_output.view(bsz, q_len, -1)
750
+
751
+ attn_output = self.o_proj(attn_output)
752
+
753
+ return attn_output, None, past_key_value
754
+
755
+
756
+ SOLAR_ATTENTION_CLASSES = {
757
+ "eager": SolarAttention,
758
+ "flash_attention_2": SolarFlashAttention2,
759
+ "sdpa": SolarSdpaAttention,
760
+ }
761
+
762
+
763
+ class SolarDecoderLayer(nn.Module):
764
+ def __init__(self, config: SolarConfig, layer_idx: int):
765
+ super().__init__()
766
+ self.hidden_size = config.hidden_size
767
+
768
+ self.self_attn = SOLAR_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
769
+
770
+ self.mlp = SolarMLP(config)
771
+ self.input_layernorm = SolarRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
772
+ self.post_attention_layernorm = SolarRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
773
+
774
+ def forward(
775
+ self,
776
+ hidden_states: torch.Tensor,
777
+ attention_mask: Optional[torch.Tensor] = None,
778
+ position_ids: Optional[torch.LongTensor] = None,
779
+ past_key_value: Optional[Cache] = None,
780
+ output_attentions: Optional[bool] = False,
781
+ use_cache: Optional[bool] = False,
782
+ cache_position: Optional[torch.LongTensor] = None,
783
+ **kwargs,
784
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
785
+ """
786
+ Args:
787
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
788
+ attention_mask (`torch.FloatTensor`, *optional*):
789
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
790
+ query_sequence_length, key_sequence_length)` if default attention is used.
791
+ output_attentions (`bool`, *optional*):
792
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
793
+ returned tensors for more detail.
794
+ use_cache (`bool`, *optional*):
795
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
796
+ (see `past_key_values`).
797
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
798
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
799
+ Indices depicting the position of the input sequence tokens in the sequence
800
+ kwargs (`dict`, *optional*):
801
+ Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
802
+ into the model
803
+ """
804
+ residual = hidden_states
805
+
806
+ hidden_states = self.input_layernorm(hidden_states)
807
+
808
+ # Self Attention
809
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
810
+ hidden_states=hidden_states,
811
+ attention_mask=attention_mask,
812
+ position_ids=position_ids,
813
+ past_key_value=past_key_value,
814
+ output_attentions=output_attentions,
815
+ use_cache=use_cache,
816
+ cache_position=cache_position,
817
+ )
818
+ hidden_states = residual + hidden_states
819
+
820
+ # Fully Connected
821
+ residual = hidden_states
822
+ hidden_states = self.post_attention_layernorm(hidden_states)
823
+ hidden_states = self.mlp(hidden_states)
824
+ hidden_states = residual + hidden_states
825
+
826
+ outputs = (hidden_states,)
827
+
828
+ if output_attentions:
829
+ outputs += (self_attn_weights,)
830
+
831
+ if use_cache:
832
+ outputs += (present_key_value,)
833
+
834
+ return outputs
835
+
836
+
837
+ SOLAR_START_DOCSTRING = r"""
838
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
839
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
840
+ etc.)
841
+
842
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
843
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
844
+ and behavior.
845
+
846
+ Parameters:
847
+ config ([`SolarConfig`]):
848
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
849
+ load the weights associated with the model, only the configuration. Check out the
850
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
851
+ """
852
+
853
+
854
+ @add_start_docstrings(
855
+ "The bare Solar Model outputting raw hidden-states without any specific head on top.",
856
+ SOLAR_START_DOCSTRING,
857
+ )
858
+ class SolarPreTrainedModel(PreTrainedModel):
859
+ config_class = SolarConfig
860
+ base_model_prefix = "model"
861
+ supports_gradient_checkpointing = True
862
+ _no_split_modules = ["SolarDecoderLayer"]
863
+ _skip_keys_device_placement = ["past_key_values"]
864
+ _supports_flash_attn_2 = True
865
+ _supports_sdpa = True
866
+ _supports_cache_class = True
867
+ _supports_quantized_cache = True
868
+ _supports_static_cache = True
869
+
870
+ def _init_weights(self, module):
871
+ std = self.config.initializer_range
872
+ if isinstance(module, nn.Linear):
873
+ module.weight.data.normal_(mean=0.0, std=std)
874
+ if module.bias is not None:
875
+ module.bias.data.zero_()
876
+ elif isinstance(module, nn.Embedding):
877
+ module.weight.data.normal_(mean=0.0, std=std)
878
+ if module.padding_idx is not None:
879
+ module.weight.data[module.padding_idx].zero_()
880
+
881
+
882
+ SOLAR_INPUTS_DOCSTRING = r"""
883
+ Args:
884
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
885
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
886
+ it.
887
+
888
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
889
+ [`PreTrainedTokenizer.__call__`] for details.
890
+
891
+ [What are input IDs?](../glossary#input-ids)
892
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
893
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
894
+
895
+ - 1 for tokens that are **not masked**,
896
+ - 0 for tokens that are **masked**.
897
+
898
+ [What are attention masks?](../glossary#attention-mask)
899
+
900
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
901
+ [`PreTrainedTokenizer.__call__`] for details.
902
+
903
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
904
+ `past_key_values`).
905
+
906
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
907
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
908
+ information on the default strategy.
909
+
910
+ - 1 indicates the head is **not masked**,
911
+ - 0 indicates the head is **masked**.
912
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
913
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
914
+ config.n_positions - 1]`.
915
+
916
+ [What are position IDs?](../glossary#position-ids)
917
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
918
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
919
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
920
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
921
+
922
+ Two formats are allowed:
923
+ - a [`~cache_utils.Cache`] instance;
924
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
925
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
926
+ cache format.
927
+
928
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
929
+ legacy cache format will be returned.
930
+
931
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
932
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
933
+ of shape `(batch_size, sequence_length)`.
934
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
935
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
936
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
937
+ model's internal embedding lookup matrix.
938
+ use_cache (`bool`, *optional*):
939
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
940
+ `past_key_values`).
941
+ output_attentions (`bool`, *optional*):
942
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
943
+ tensors for more detail.
944
+ output_hidden_states (`bool`, *optional*):
945
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
946
+ more detail.
947
+ return_dict (`bool`, *optional*):
948
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
949
+ cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
950
+ Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
951
+ this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
952
+ the complete sequence length.
953
+ """
954
+
955
+
956
+ @add_start_docstrings(
957
+ "The bare Solar Model outputting raw hidden-states without any specific head on top.",
958
+ SOLAR_START_DOCSTRING,
959
+ )
960
+ class SolarModel(SolarPreTrainedModel):
961
+ """
962
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`SolarDecoderLayer`]
963
+
964
+ Args:
965
+ config: SolarConfig
966
+ """
967
+
968
+ def __init__(self, config: SolarConfig):
969
+ super().__init__(config)
970
+ self.padding_idx = config.pad_token_id
971
+ self.vocab_size = config.vocab_size
972
+
973
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
974
+ self.layers = nn.ModuleList(
975
+ [SolarDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
976
+ )
977
+ self._attn_implementation = config._attn_implementation
978
+ self.norm = SolarRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
979
+
980
+ self.gradient_checkpointing = False
981
+ # Initialize weights and apply final processing
982
+ self.post_init()
983
+
984
+ def get_input_embeddings(self):
985
+ return self.embed_tokens
986
+
987
+ def set_input_embeddings(self, value):
988
+ self.embed_tokens = value
989
+
990
+ @add_start_docstrings_to_model_forward(SOLAR_INPUTS_DOCSTRING)
991
+ def forward(
992
+ self,
993
+ input_ids: torch.LongTensor = None,
994
+ attention_mask: Optional[torch.Tensor] = None,
995
+ position_ids: Optional[torch.LongTensor] = None,
996
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
997
+ inputs_embeds: Optional[torch.FloatTensor] = None,
998
+ use_cache: Optional[bool] = None,
999
+ output_attentions: Optional[bool] = None,
1000
+ output_hidden_states: Optional[bool] = None,
1001
+ return_dict: Optional[bool] = None,
1002
+ cache_position: Optional[torch.LongTensor] = None,
1003
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1004
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1005
+ output_hidden_states = (
1006
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1007
+ )
1008
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1009
+
1010
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1011
+
1012
+ # retrieve input_ids and inputs_embeds
1013
+ if (input_ids is None) ^ (inputs_embeds is not None):
1014
+ raise ValueError(
1015
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
1016
+ )
1017
+
1018
+ if self.gradient_checkpointing and self.training and use_cache:
1019
+ logger.warning_once(
1020
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1021
+ )
1022
+ use_cache = False
1023
+
1024
+ if inputs_embeds is None:
1025
+ inputs_embeds = self.embed_tokens(input_ids)
1026
+
1027
+ return_legacy_cache = False
1028
+ if use_cache and not isinstance(past_key_values, Cache):
1029
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1030
+ return_legacy_cache = True
1031
+ logger.warning_once(
1032
+ "We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
1033
+ "Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
1034
+ )
1035
+
1036
+ if cache_position is None:
1037
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
1038
+ cache_position = torch.arange(
1039
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
1040
+ )
1041
+
1042
+ if position_ids is None:
1043
+ position_ids = cache_position.unsqueeze(0)
1044
+
1045
+ causal_mask = self._update_causal_mask(
1046
+ attention_mask, inputs_embeds, cache_position, past_key_values, use_cache, output_attentions
1047
+ )
1048
+
1049
+ hidden_states = inputs_embeds
1050
+
1051
+ # decoder layers
1052
+ all_hidden_states = () if output_hidden_states else None
1053
+ all_self_attns = () if output_attentions else None
1054
+ next_decoder_cache = None
1055
+
1056
+ bskcn_1 = None
1057
+ bskcn_2 = None
1058
+ bskcn_tv = self.config.bskcn_tv[0] if self.training else self.config.bskcn_tv[1]
1059
+ for layer_idx, decoder_layer in enumerate(self.layers):
1060
+ if layer_idx in self.config.bskcn_1:
1061
+ bskcn_1 = hidden_states
1062
+ if layer_idx in self.config.bskcn_2:
1063
+ bskcn_2 = hidden_states
1064
+ if layer_idx in self.config.bskcn_3:
1065
+ hidden_states = (bskcn_1*bskcn_tv).to(hidden_states.device) + hidden_states*(1-bskcn_tv)
1066
+ if layer_idx in self.config.bskcn_4:
1067
+ hidden_states = (bskcn_2*bskcn_tv).to(hidden_states.device) + hidden_states*(1-bskcn_tv)
1068
+
1069
+ if output_hidden_states:
1070
+ all_hidden_states += (hidden_states,)
1071
+
1072
+ if self.gradient_checkpointing and self.training:
1073
+ layer_outputs = self._gradient_checkpointing_func(
1074
+ decoder_layer.__call__,
1075
+ hidden_states,
1076
+ causal_mask,
1077
+ position_ids,
1078
+ past_key_values,
1079
+ output_attentions,
1080
+ use_cache,
1081
+ cache_position,
1082
+ )
1083
+ else:
1084
+ layer_outputs = decoder_layer(
1085
+ hidden_states,
1086
+ attention_mask=causal_mask,
1087
+ position_ids=position_ids,
1088
+ past_key_value=past_key_values,
1089
+ output_attentions=output_attentions,
1090
+ use_cache=use_cache,
1091
+ cache_position=cache_position,
1092
+ )
1093
+
1094
+ hidden_states = layer_outputs[0]
1095
+
1096
+ if use_cache:
1097
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1098
+
1099
+ if output_attentions:
1100
+ all_self_attns += (layer_outputs[1],)
1101
+
1102
+ hidden_states = self.norm(hidden_states)
1103
+
1104
+ # add hidden states from the last decoder layer
1105
+ if output_hidden_states:
1106
+ all_hidden_states += (hidden_states,)
1107
+
1108
+ next_cache = next_decoder_cache if use_cache else None
1109
+ if return_legacy_cache:
1110
+ next_cache = next_cache.to_legacy_cache()
1111
+
1112
+ if not return_dict:
1113
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1114
+ return BaseModelOutputWithPast(
1115
+ last_hidden_state=hidden_states,
1116
+ past_key_values=next_cache,
1117
+ hidden_states=all_hidden_states,
1118
+ attentions=all_self_attns,
1119
+ )
1120
+
1121
+ def _update_causal_mask(
1122
+ self,
1123
+ attention_mask: torch.Tensor,
1124
+ input_tensor: torch.Tensor,
1125
+ cache_position: torch.Tensor,
1126
+ past_key_values: Cache,
1127
+ use_cache: bool,
1128
+ output_attentions: bool,
1129
+ ):
1130
+ # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
1131
+ # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
1132
+ # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
1133
+ # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
1134
+
1135
+ if self._attn_implementation == "flash_attention_2":
1136
+ if attention_mask is not None and use_cache:
1137
+ is_padding_right = attention_mask[:, -1].sum().item() != input_tensor.size()[0]
1138
+ if is_padding_right:
1139
+ raise ValueError(
1140
+ "You are attempting to perform batched generation with padding_side='right'"
1141
+ " this may lead to unexpected behaviour for Flash Attention version of Solar. Make sure to "
1142
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
1143
+ )
1144
+ if attention_mask is not None and 0.0 in attention_mask:
1145
+ return attention_mask
1146
+ return None
1147
+
1148
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
1149
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
1150
+ # to infer the attention mask.
1151
+
1152
+ # cache_position must be valid here no matter which cache we use
1153
+ past_seen_tokens = cache_position[0] if past_key_values is not None else 0
1154
+ using_static_cache = isinstance(past_key_values, StaticCache)
1155
+ using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)
1156
+
1157
+ if (
1158
+ self.config._attn_implementation == "sdpa"
1159
+ and not (using_static_cache or using_sliding_window_cache)
1160
+ and not output_attentions
1161
+ ):
1162
+ if AttentionMaskConverter._ignore_causal_mask_sdpa(
1163
+ attention_mask,
1164
+ inputs_embeds=input_tensor,
1165
+ past_key_values_length=past_seen_tokens,
1166
+ sliding_window=self.config.sliding_window,
1167
+ is_training=self.training,
1168
+ ):
1169
+ return None
1170
+
1171
+ dtype, device = input_tensor.dtype, input_tensor.device
1172
+ min_dtype = torch.finfo(dtype).min
1173
+ sequence_length = input_tensor.shape[1]
1174
+ # SlidingWindowCache
1175
+ if using_sliding_window_cache:
1176
+ target_length = max(sequence_length, self.config.sliding_window)
1177
+ # StaticCache
1178
+ elif using_static_cache:
1179
+ target_length = past_key_values.get_max_length()
1180
+ # DynamicCache or no cache
1181
+ else:
1182
+ target_length = (
1183
+ attention_mask.shape[-1]
1184
+ if isinstance(attention_mask, torch.Tensor)
1185
+ else past_seen_tokens + sequence_length + 1
1186
+ )
1187
+
1188
+ if attention_mask is not None and attention_mask.dim() == 4:
1189
+ # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
1190
+ if attention_mask.max() != 0:
1191
+ raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
1192
+ causal_mask = attention_mask
1193
+ else:
1194
+ causal_mask = torch.full(
1195
+ (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
1196
+ )
1197
+ exclude_mask = torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
1198
+ if self.config.sliding_window is not None:
1199
+ if not using_sliding_window_cache or sequence_length > self.config.sliding_window:
1200
+ exclude_mask |= torch.arange(target_length, device=device) <= (
1201
+ cache_position.reshape(-1, 1) - self.config.sliding_window
1202
+ )
1203
+ causal_mask *= exclude_mask
1204
+ causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
1205
+ if attention_mask is not None:
1206
+ causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
1207
+ if attention_mask.dim() == 2:
1208
+ mask_length = attention_mask.shape[-1]
1209
+ padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
1210
+ padding_mask = padding_mask == 0
1211
+ causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
1212
+ padding_mask, min_dtype
1213
+ )
1214
+
1215
+ if (
1216
+ self.config._attn_implementation == "sdpa"
1217
+ and attention_mask is not None
1218
+ and attention_mask.device.type == "cuda"
1219
+ and not output_attentions
1220
+ ):
1221
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
1222
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
1223
+ # Details: https://github.com/pytorch/pytorch/issues/110213
1224
+ causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
1225
+
1226
+ return causal_mask
1227
+
1228
+ # Copied from transformers.models.mistral.modeling_mistal.SolarCasualLM
1229
+ class SolarForCausalLM(SolarPreTrainedModel):
1230
+ _tied_weights_keys = ["lm_head.weight"]
1231
+
1232
+ def __init__(self, config):
1233
+ super().__init__(config)
1234
+ self.model = SolarModel(config)
1235
+ self.vocab_size = config.vocab_size
1236
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1237
+
1238
+ # Initialize weights and apply final processing
1239
+ self.post_init()
1240
+
1241
+ def get_input_embeddings(self):
1242
+ return self.model.embed_tokens
1243
+
1244
+ def set_input_embeddings(self, value):
1245
+ self.model.embed_tokens = value
1246
+
1247
+ def get_output_embeddings(self):
1248
+ return self.lm_head
1249
+
1250
+ def set_output_embeddings(self, new_embeddings):
1251
+ self.lm_head = new_embeddings
1252
+
1253
+ def set_decoder(self, decoder):
1254
+ self.model = decoder
1255
+
1256
+ def get_decoder(self):
1257
+ return self.model
1258
+
1259
+ @add_start_docstrings_to_model_forward(SOLAR_INPUTS_DOCSTRING)
1260
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1261
+ def forward(
1262
+ self,
1263
+ input_ids: torch.LongTensor = None,
1264
+ attention_mask: Optional[torch.Tensor] = None,
1265
+ position_ids: Optional[torch.LongTensor] = None,
1266
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1267
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1268
+ labels: Optional[torch.LongTensor] = None,
1269
+ use_cache: Optional[bool] = None,
1270
+ output_attentions: Optional[bool] = None,
1271
+ output_hidden_states: Optional[bool] = None,
1272
+ return_dict: Optional[bool] = None,
1273
+ cache_position: Optional[torch.LongTensor] = None,
1274
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1275
+ r"""
1276
+ Args:
1277
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1278
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1279
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1280
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1281
+
1282
+ Returns:
1283
+
1284
+ Example:
1285
+
1286
+ ```python
1287
+ >>> from transformers import AutoTokenizer, SolarForCausalLM
1288
+
1289
+ >>> model = SolarForCausalLM.from_pretrained("upstage/Solar-pro-1.0")
1290
+ >>> tokenizer = AutoTokenizer.from_pretrained("upstage/Solar-pro-1.0")
1291
+
1292
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1293
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1294
+
1295
+ >>> # Generate
1296
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1297
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1298
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1299
+ ```"""
1300
+
1301
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1302
+ output_hidden_states = (
1303
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1304
+ )
1305
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1306
+
1307
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1308
+ outputs = self.model(
1309
+ input_ids=input_ids,
1310
+ attention_mask=attention_mask,
1311
+ position_ids=position_ids,
1312
+ past_key_values=past_key_values,
1313
+ inputs_embeds=inputs_embeds,
1314
+ use_cache=use_cache,
1315
+ output_attentions=output_attentions,
1316
+ output_hidden_states=output_hidden_states,
1317
+ return_dict=return_dict,
1318
+ cache_position=cache_position,
1319
+ )
1320
+
1321
+ hidden_states = outputs[0]
1322
+ logits = self.lm_head(hidden_states)
1323
+ logits = logits.float()
1324
+
1325
+ loss = None
1326
+ if labels is not None:
1327
+ # Shift so that tokens < n predict n
1328
+ shift_logits = logits[..., :-1, :].contiguous()
1329
+ shift_labels = labels[..., 1:].contiguous()
1330
+ # Flatten the tokens
1331
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1332
+ shift_labels = shift_labels.view(-1)
1333
+ # Ensure tensors are on the same device
1334
+ shift_labels = shift_labels.to(shift_logits.device)
1335
+ loss_fct = CrossEntropyLoss()
1336
+ loss = loss_fct(shift_logits, shift_labels)
1337
+
1338
+ if not return_dict:
1339
+ output = (logits,) + outputs[1:]
1340
+ return (loss,) + output if loss is not None else output
1341
+
1342
+ return CausalLMOutputWithPast(
1343
+ loss=loss,
1344
+ logits=logits,
1345
+ past_key_values=outputs.past_key_values,
1346
+ hidden_states=outputs.hidden_states,
1347
+ attentions=outputs.attentions,
1348
+ )
1349
+
1350
+ def prepare_inputs_for_generation(
1351
+ self,
1352
+ input_ids,
1353
+ past_key_values=None,
1354
+ attention_mask=None,
1355
+ inputs_embeds=None,
1356
+ cache_position=None,
1357
+ use_cache=True,
1358
+ **kwargs,
1359
+ ):
1360
+ past_length = 0
1361
+ # Omit tokens covered by past_key_values
1362
+ if past_key_values is not None:
1363
+ # Past key values are always initialized with a `Cache` object -> no need for if-else anymore
1364
+ past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
1365
+ max_cache_length = (
1366
+ torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
1367
+ if past_key_values.get_max_length() is not None
1368
+ else None
1369
+ )
1370
+ cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
1371
+
1372
+ # Keep only the unprocessed tokens:
1373
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1374
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1375
+ # input)
1376
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1377
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1378
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1379
+ # input_ids based on the past_length.
1380
+ elif past_length < input_ids.shape[1]:
1381
+ input_ids = input_ids[:, past_length:]
1382
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1383
+
1384
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1385
+ if (
1386
+ max_cache_length is not None
1387
+ and attention_mask is not None
1388
+ and cache_length + input_ids.shape[1] > max_cache_length
1389
+ ):
1390
+ attention_mask = attention_mask[:, -max_cache_length:]
1391
+
1392
+ position_ids = kwargs.get("position_ids", None)
1393
+ if attention_mask is not None and position_ids is None:
1394
+ # create position_ids on the fly for batch generation
1395
+ position_ids = attention_mask.long().cumsum(-1) - 1
1396
+ position_ids.masked_fill_(attention_mask == 0, 1)
1397
+ if past_key_values:
1398
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1399
+
1400
+ # crop the attention_mask to sliding window size during decode phase if using SlidingWindowCache
1401
+ if (
1402
+ past_length > 0
1403
+ and attention_mask is not None
1404
+ and isinstance(past_key_values, SlidingWindowCache)
1405
+ and attention_mask.shape[1] > past_key_values.max_cache_len
1406
+ ):
1407
+ attention_mask = attention_mask[:, -past_key_values.max_cache_len :]
1408
+
1409
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1410
+ if inputs_embeds is not None and past_length == 0:
1411
+ model_inputs = {"inputs_embeds": inputs_embeds}
1412
+ else:
1413
+ model_inputs = {"input_ids": input_ids.contiguous()}
1414
+
1415
+ input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
1416
+ if cache_position is None:
1417
+ cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
1418
+ elif use_cache:
1419
+ cache_position = cache_position[-input_length:]
1420
+
1421
+ model_inputs.update(
1422
+ {
1423
+ "position_ids": position_ids,
1424
+ "cache_position": cache_position,
1425
+ "past_key_values": past_key_values,
1426
+ "use_cache": use_cache,
1427
+ "attention_mask": attention_mask,
1428
+ }
1429
+ )
1430
+ return model_inputs
1431
+
1432
+ @staticmethod
1433
+ def _reorder_cache(past_key_values, beam_idx):
1434
+ reordered_past = ()
1435
+ for layer_past in past_key_values:
1436
+ reordered_past += (
1437
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1438
+ )
1439
+ return reordered_past
1440
+
1441
+
1442
+ @add_start_docstrings(
1443
+ """
1444
+ The Solar Model transformer with a sequence classification head on top (linear layer).
1445
+
1446
+ [`SolarForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1447
+ (e.g. GPT-2) do.
1448
+
1449
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1450
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1451
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1452
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1453
+ each row of the batch).
1454
+ """,
1455
+ SOLAR_START_DOCSTRING,
1456
+ )
1457
+ class SolarForSequenceClassification(SolarPreTrainedModel):
1458
+ def __init__(self, config):
1459
+ super().__init__(config)
1460
+ self.num_labels = config.num_labels
1461
+ self.model = SolarModel(config)
1462
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1463
+
1464
+ # Initialize weights and apply final processing
1465
+ self.post_init()
1466
+
1467
+ def get_input_embeddings(self):
1468
+ return self.model.embed_tokens
1469
+
1470
+ def set_input_embeddings(self, value):
1471
+ self.model.embed_tokens = value
1472
+
1473
+ @add_start_docstrings_to_model_forward(SOLAR_INPUTS_DOCSTRING)
1474
+ def forward(
1475
+ self,
1476
+ input_ids: torch.LongTensor = None,
1477
+ attention_mask: Optional[torch.Tensor] = None,
1478
+ position_ids: Optional[torch.LongTensor] = None,
1479
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1480
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1481
+ labels: Optional[torch.LongTensor] = None,
1482
+ use_cache: Optional[bool] = None,
1483
+ output_attentions: Optional[bool] = None,
1484
+ output_hidden_states: Optional[bool] = None,
1485
+ return_dict: Optional[bool] = None,
1486
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1487
+ r"""
1488
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1489
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1490
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1491
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1492
+ """
1493
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1494
+
1495
+ transformer_outputs = self.model(
1496
+ input_ids,
1497
+ attention_mask=attention_mask,
1498
+ position_ids=position_ids,
1499
+ past_key_values=past_key_values,
1500
+ inputs_embeds=inputs_embeds,
1501
+ use_cache=use_cache,
1502
+ output_attentions=output_attentions,
1503
+ output_hidden_states=output_hidden_states,
1504
+ return_dict=return_dict,
1505
+ )
1506
+ hidden_states = transformer_outputs[0]
1507
+ logits = self.score(hidden_states)
1508
+
1509
+ if input_ids is not None:
1510
+ batch_size = input_ids.shape[0]
1511
+ else:
1512
+ batch_size = inputs_embeds.shape[0]
1513
+
1514
+ if self.config.pad_token_id is None and batch_size != 1:
1515
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1516
+ if self.config.pad_token_id is None:
1517
+ sequence_lengths = -1
1518
+ else:
1519
+ if input_ids is not None:
1520
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1521
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1522
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1523
+ sequence_lengths = sequence_lengths.to(logits.device)
1524
+ else:
1525
+ sequence_lengths = -1
1526
+
1527
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1528
+
1529
+ loss = None
1530
+ if labels is not None:
1531
+ labels = labels.to(logits.device)
1532
+ if self.config.problem_type is None:
1533
+ if self.num_labels == 1:
1534
+ self.config.problem_type = "regression"
1535
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1536
+ self.config.problem_type = "single_label_classification"
1537
+ else:
1538
+ self.config.problem_type = "multi_label_classification"
1539
+
1540
+ if self.config.problem_type == "regression":
1541
+ loss_fct = MSELoss()
1542
+ if self.num_labels == 1:
1543
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1544
+ else:
1545
+ loss = loss_fct(pooled_logits, labels)
1546
+ elif self.config.problem_type == "single_label_classification":
1547
+ loss_fct = CrossEntropyLoss()
1548
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1549
+ elif self.config.problem_type == "multi_label_classification":
1550
+ loss_fct = BCEWithLogitsLoss()
1551
+ loss = loss_fct(pooled_logits, labels)
1552
+ if not return_dict:
1553
+ output = (pooled_logits,) + transformer_outputs[1:]
1554
+ return ((loss,) + output) if loss is not None else output
1555
+
1556
+ return SequenceClassifierOutputWithPast(
1557
+ loss=loss,
1558
+ logits=pooled_logits,
1559
+ past_key_values=transformer_outputs.past_key_values,
1560
+ hidden_states=transformer_outputs.hidden_states,
1561
+ attentions=transformer_outputs.attentions,
1562
+ )
1563
+
1564
+
1565
+ @add_start_docstrings(
1566
+ """
1567
+ The Solar Model transformer with a span classification head on top for extractive question-answering tasks like
1568
+ SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
1569
+ """,
1570
+ SOLAR_START_DOCSTRING,
1571
+ )
1572
+ class SolarForQuestionAnswering(SolarPreTrainedModel):
1573
+ base_model_prefix = "transformer"
1574
+
1575
+ # Copied from transformers.models.bloom.modeling_bloom.BloomForQuestionAnswering.__init__ with Bloom->Solar
1576
+ def __init__(self, config):
1577
+ super().__init__(config)
1578
+ self.transformer = SolarModel(config)
1579
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
1580
+
1581
+ # Initialize weights and apply final processing
1582
+ self.post_init()
1583
+
1584
+ def get_input_embeddings(self):
1585
+ return self.transformer.embed_tokens
1586
+
1587
+ def set_input_embeddings(self, value):
1588
+ self.transformer.embed_tokens = value
1589
+
1590
+ @add_start_docstrings_to_model_forward(SOLAR_INPUTS_DOCSTRING)
1591
+ def forward(
1592
+ self,
1593
+ input_ids: Optional[torch.LongTensor] = None,
1594
+ attention_mask: Optional[torch.FloatTensor] = None,
1595
+ position_ids: Optional[torch.LongTensor] = None,
1596
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1597
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1598
+ start_positions: Optional[torch.LongTensor] = None,
1599
+ end_positions: Optional[torch.LongTensor] = None,
1600
+ output_attentions: Optional[bool] = None,
1601
+ output_hidden_states: Optional[bool] = None,
1602
+ return_dict: Optional[bool] = None,
1603
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1604
+ r"""
1605
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1606
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1607
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1608
+ are not taken into account for computing the loss.
1609
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1610
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1611
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1612
+ are not taken into account for computing the loss.
1613
+ """
1614
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1615
+
1616
+ outputs = self.transformer(
1617
+ input_ids,
1618
+ attention_mask=attention_mask,
1619
+ position_ids=position_ids,
1620
+ past_key_values=past_key_values,
1621
+ inputs_embeds=inputs_embeds,
1622
+ output_attentions=output_attentions,
1623
+ output_hidden_states=output_hidden_states,
1624
+ return_dict=return_dict,
1625
+ )
1626
+
1627
+ sequence_output = outputs[0]
1628
+
1629
+ logits = self.qa_outputs(sequence_output)
1630
+ start_logits, end_logits = logits.split(1, dim=-1)
1631
+ start_logits = start_logits.squeeze(-1).contiguous()
1632
+ end_logits = end_logits.squeeze(-1).contiguous()
1633
+
1634
+ total_loss = None
1635
+ if start_positions is not None and end_positions is not None:
1636
+ # If we are on multi-GPU, split add a dimension
1637
+ if len(start_positions.size()) > 1:
1638
+ start_positions = start_positions.squeeze(-1).to(start_logits.device)
1639
+ if len(end_positions.size()) > 1:
1640
+ end_positions = end_positions.squeeze(-1).to(end_logits.device)
1641
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1642
+ ignored_index = start_logits.size(1)
1643
+ start_positions = start_positions.clamp(0, ignored_index)
1644
+ end_positions = end_positions.clamp(0, ignored_index)
1645
+
1646
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1647
+ start_loss = loss_fct(start_logits, start_positions)
1648
+ end_loss = loss_fct(end_logits, end_positions)
1649
+ total_loss = (start_loss + end_loss) / 2
1650
+
1651
+ if not return_dict:
1652
+ output = (start_logits, end_logits) + outputs[2:]
1653
+ return ((total_loss,) + output) if total_loss is not None else output
1654
+
1655
+ return QuestionAnsweringModelOutput(
1656
+ loss=total_loss,
1657
+ start_logits=start_logits,
1658
+ end_logits=end_logits,
1659
+ hidden_states=outputs.hidden_states,
1660
+ attentions=outputs.attentions,
1661
+ )
1662
+
1663
+
1664
+ @add_start_docstrings(
1665
+ """
1666
+ The Solar Model transformer with a token classification head on top (a linear layer on top of the hidden-states
1667
+ output) e.g. for Named-Entity-Recognition (NER) tasks.
1668
+ """,
1669
+ SOLAR_START_DOCSTRING,
1670
+ )
1671
+ class SolarForTokenClassification(SolarPreTrainedModel):
1672
+ def __init__(self, config):
1673
+ super().__init__(config)
1674
+ self.num_labels = config.num_labels
1675
+ self.model = SolarModel(config)
1676
+ if getattr(config, "classifier_dropout", None) is not None:
1677
+ classifier_dropout = config.classifier_dropout
1678
+ elif getattr(config, "hidden_dropout", None) is not None:
1679
+ classifier_dropout = config.hidden_dropout
1680
+ else:
1681
+ classifier_dropout = 0.1
1682
+ self.dropout = nn.Dropout(classifier_dropout)
1683
+ self.score = nn.Linear(config.hidden_size, config.num_labels)
1684
+
1685
+ # Initialize weights and apply final processing
1686
+ self.post_init()
1687
+
1688
+ def get_input_embeddings(self):
1689
+ return self.model.embed_tokens
1690
+
1691
+ def set_input_embeddings(self, value):
1692
+ self.model.embed_tokens = value
1693
+
1694
+ @add_start_docstrings_to_model_forward(SOLAR_INPUTS_DOCSTRING)
1695
+ def forward(
1696
+ self,
1697
+ input_ids: Optional[torch.LongTensor] = None,
1698
+ attention_mask: Optional[torch.Tensor] = None,
1699
+ position_ids: Optional[torch.LongTensor] = None,
1700
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1701
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1702
+ labels: Optional[torch.LongTensor] = None,
1703
+ use_cache: Optional[bool] = None,
1704
+ output_attentions: Optional[bool] = None,
1705
+ output_hidden_states: Optional[bool] = None,
1706
+ return_dict: Optional[bool] = None,
1707
+ ) -> Union[Tuple, TokenClassifierOutput]:
1708
+ r"""
1709
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1710
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1711
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1712
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1713
+ """
1714
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1715
+
1716
+ outputs = self.model(
1717
+ input_ids,
1718
+ attention_mask=attention_mask,
1719
+ position_ids=position_ids,
1720
+ past_key_values=past_key_values,
1721
+ inputs_embeds=inputs_embeds,
1722
+ use_cache=use_cache,
1723
+ output_attentions=output_attentions,
1724
+ output_hidden_states=output_hidden_states,
1725
+ return_dict=return_dict,
1726
+ )
1727
+ sequence_output = outputs[0]
1728
+ sequence_output = self.dropout(sequence_output)
1729
+ logits = self.score(sequence_output)
1730
+
1731
+ loss = None
1732
+ if labels is not None:
1733
+ loss_fct = CrossEntropyLoss()
1734
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1735
+
1736
+ if not return_dict:
1737
+ output = (logits,) + outputs[2:]
1738
+ return ((loss,) + output) if loss is not None else output
1739
+
1740
+ return TokenClassifierOutput(
1741
+ loss=loss,
1742
+ logits=logits,
1743
+ hidden_states=outputs.hidden_states,
1744
+ attentions=outputs.attentions,
1745
+ )
recipe.yaml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ DEFAULT_stage:
2
+ DEFAULT_modifiers:
3
+ SmoothQuantModifier: {smoothing_strength: 0.85}
4
+ GPTQModifier:
5
+ targets: Linear
6
+ ignore: [lm_head]
7
+ scheme: W8A8
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|im_end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|im_end|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e79e5412a9810832e8183fb69a7fef269d8558215223b5e1bd07480e711119b7
3
+ size 499744
tokenizer_config.json ADDED
@@ -0,0 +1,1067 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<|startoftext|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "<|endoftext|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "32000": {
31
+ "content": "<|end|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|assistant|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "<|placeholder1|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<|placeholder2|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<|placeholder3|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "32005": {
71
+ "content": "<|placeholder4|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "32006": {
79
+ "content": "<|system|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "32007": {
87
+ "content": "<|im_end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "32008": {
95
+ "content": "<|placeholder5|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "32009": {
103
+ "content": "<|placeholder6|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": true,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "32010": {
111
+ "content": "<|im_start|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "32011": {
119
+ "content": "<|placeholder7|>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": true,
123
+ "single_word": false,
124
+ "special": true
125
+ },
126
+ "32012": {
127
+ "content": "<|placeholder8|>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": true,
131
+ "single_word": false,
132
+ "special": true
133
+ },
134
+ "32013": {
135
+ "content": "<|placeholder9|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": true,
139
+ "single_word": false,
140
+ "special": true
141
+ },
142
+ "32014": {
143
+ "content": "<|placeholder10|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": true,
147
+ "single_word": false,
148
+ "special": true
149
+ },
150
+ "32015": {
151
+ "content": "<|placeholder11|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": true,
155
+ "single_word": false,
156
+ "special": true
157
+ },
158
+ "32016": {
159
+ "content": "<|placeholder12|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": true,
163
+ "single_word": false,
164
+ "special": true
165
+ },
166
+ "32017": {
167
+ "content": "<|placeholder13|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": true,
171
+ "single_word": false,
172
+ "special": true
173
+ },
174
+ "32018": {
175
+ "content": "<|placeholder14|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": true,
179
+ "single_word": false,
180
+ "special": true
181
+ },
182
+ "32019": {
183
+ "content": "<|placeholder15|>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": true,
187
+ "single_word": false,
188
+ "special": true
189
+ },
190
+ "32020": {
191
+ "content": "<|placeholder16|>",
192
+ "lstrip": false,
193
+ "normalized": false,
194
+ "rstrip": true,
195
+ "single_word": false,
196
+ "special": true
197
+ },
198
+ "32021": {
199
+ "content": "<|placeholder17|>",
200
+ "lstrip": false,
201
+ "normalized": false,
202
+ "rstrip": true,
203
+ "single_word": false,
204
+ "special": true
205
+ },
206
+ "32022": {
207
+ "content": "<|placeholder18|>",
208
+ "lstrip": false,
209
+ "normalized": false,
210
+ "rstrip": true,
211
+ "single_word": false,
212
+ "special": true
213
+ },
214
+ "32023": {
215
+ "content": "<|placeholder19|>",
216
+ "lstrip": false,
217
+ "normalized": false,
218
+ "rstrip": true,
219
+ "single_word": false,
220
+ "special": true
221
+ },
222
+ "32024": {
223
+ "content": "<|placeholder20|>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": true,
227
+ "single_word": false,
228
+ "special": true
229
+ },
230
+ "32025": {
231
+ "content": "<|placeholder21|>",
232
+ "lstrip": false,
233
+ "normalized": false,
234
+ "rstrip": true,
235
+ "single_word": false,
236
+ "special": true
237
+ },
238
+ "32026": {
239
+ "content": "<|placeholder22|>",
240
+ "lstrip": false,
241
+ "normalized": false,
242
+ "rstrip": true,
243
+ "single_word": false,
244
+ "special": true
245
+ },
246
+ "32027": {
247
+ "content": "<|placeholder23|>",
248
+ "lstrip": false,
249
+ "normalized": false,
250
+ "rstrip": true,
251
+ "single_word": false,
252
+ "special": true
253
+ },
254
+ "32028": {
255
+ "content": "<|placeholder24|>",
256
+ "lstrip": false,
257
+ "normalized": false,
258
+ "rstrip": true,
259
+ "single_word": false,
260
+ "special": true
261
+ },
262
+ "32029": {
263
+ "content": "<|placeholder25|>",
264
+ "lstrip": false,
265
+ "normalized": false,
266
+ "rstrip": true,
267
+ "single_word": false,
268
+ "special": true
269
+ },
270
+ "32030": {
271
+ "content": "<|placeholder26|>",
272
+ "lstrip": false,
273
+ "normalized": false,
274
+ "rstrip": true,
275
+ "single_word": false,
276
+ "special": true
277
+ },
278
+ "32031": {
279
+ "content": "<|placeholder27|>",
280
+ "lstrip": false,
281
+ "normalized": false,
282
+ "rstrip": true,
283
+ "single_word": false,
284
+ "special": true
285
+ },
286
+ "32032": {
287
+ "content": "<|placeholder28|>",
288
+ "lstrip": false,
289
+ "normalized": false,
290
+ "rstrip": true,
291
+ "single_word": false,
292
+ "special": true
293
+ },
294
+ "32033": {
295
+ "content": "<|placeholder29|>",
296
+ "lstrip": false,
297
+ "normalized": false,
298
+ "rstrip": true,
299
+ "single_word": false,
300
+ "special": true
301
+ },
302
+ "32034": {
303
+ "content": "<|placeholder30|>",
304
+ "lstrip": false,
305
+ "normalized": false,
306
+ "rstrip": true,
307
+ "single_word": false,
308
+ "special": true
309
+ },
310
+ "32035": {
311
+ "content": "<|placeholder31|>",
312
+ "lstrip": false,
313
+ "normalized": false,
314
+ "rstrip": true,
315
+ "single_word": false,
316
+ "special": true
317
+ },
318
+ "32036": {
319
+ "content": "<|placeholder32|>",
320
+ "lstrip": false,
321
+ "normalized": false,
322
+ "rstrip": true,
323
+ "single_word": false,
324
+ "special": true
325
+ },
326
+ "32037": {
327
+ "content": "<|placeholder33|>",
328
+ "lstrip": false,
329
+ "normalized": false,
330
+ "rstrip": true,
331
+ "single_word": false,
332
+ "special": true
333
+ },
334
+ "32038": {
335
+ "content": "<|placeholder34|>",
336
+ "lstrip": false,
337
+ "normalized": false,
338
+ "rstrip": true,
339
+ "single_word": false,
340
+ "special": true
341
+ },
342
+ "32039": {
343
+ "content": "<|placeholder35|>",
344
+ "lstrip": false,
345
+ "normalized": false,
346
+ "rstrip": true,
347
+ "single_word": false,
348
+ "special": true
349
+ },
350
+ "32040": {
351
+ "content": "<|placeholder36|>",
352
+ "lstrip": false,
353
+ "normalized": false,
354
+ "rstrip": true,
355
+ "single_word": false,
356
+ "special": true
357
+ },
358
+ "32041": {
359
+ "content": "<|placeholder37|>",
360
+ "lstrip": false,
361
+ "normalized": false,
362
+ "rstrip": true,
363
+ "single_word": false,
364
+ "special": true
365
+ },
366
+ "32042": {
367
+ "content": "<|placeholder38|>",
368
+ "lstrip": false,
369
+ "normalized": false,
370
+ "rstrip": true,
371
+ "single_word": false,
372
+ "special": true
373
+ },
374
+ "32043": {
375
+ "content": "<|placeholder39|>",
376
+ "lstrip": false,
377
+ "normalized": false,
378
+ "rstrip": true,
379
+ "single_word": false,
380
+ "special": true
381
+ },
382
+ "32044": {
383
+ "content": "<|placeholder40|>",
384
+ "lstrip": false,
385
+ "normalized": false,
386
+ "rstrip": true,
387
+ "single_word": false,
388
+ "special": true
389
+ },
390
+ "32045": {
391
+ "content": "<|placeholder41|>",
392
+ "lstrip": false,
393
+ "normalized": false,
394
+ "rstrip": true,
395
+ "single_word": false,
396
+ "special": true
397
+ },
398
+ "32046": {
399
+ "content": "<|placeholder42|>",
400
+ "lstrip": false,
401
+ "normalized": false,
402
+ "rstrip": true,
403
+ "single_word": false,
404
+ "special": true
405
+ },
406
+ "32047": {
407
+ "content": "<|placeholder43|>",
408
+ "lstrip": false,
409
+ "normalized": false,
410
+ "rstrip": true,
411
+ "single_word": false,
412
+ "special": true
413
+ },
414
+ "32048": {
415
+ "content": "<|placeholder44|>",
416
+ "lstrip": false,
417
+ "normalized": false,
418
+ "rstrip": true,
419
+ "single_word": false,
420
+ "special": true
421
+ },
422
+ "32049": {
423
+ "content": "<|placeholder45|>",
424
+ "lstrip": false,
425
+ "normalized": false,
426
+ "rstrip": true,
427
+ "single_word": false,
428
+ "special": true
429
+ },
430
+ "32050": {
431
+ "content": "<|placeholder46|>",
432
+ "lstrip": false,
433
+ "normalized": false,
434
+ "rstrip": true,
435
+ "single_word": false,
436
+ "special": true
437
+ },
438
+ "32051": {
439
+ "content": "<|placeholder47|>",
440
+ "lstrip": false,
441
+ "normalized": false,
442
+ "rstrip": true,
443
+ "single_word": false,
444
+ "special": true
445
+ },
446
+ "32052": {
447
+ "content": "<|placeholder48|>",
448
+ "lstrip": false,
449
+ "normalized": false,
450
+ "rstrip": true,
451
+ "single_word": false,
452
+ "special": true
453
+ },
454
+ "32053": {
455
+ "content": "<|placeholder49|>",
456
+ "lstrip": false,
457
+ "normalized": false,
458
+ "rstrip": true,
459
+ "single_word": false,
460
+ "special": true
461
+ },
462
+ "32054": {
463
+ "content": "<|placeholder50|>",
464
+ "lstrip": false,
465
+ "normalized": false,
466
+ "rstrip": true,
467
+ "single_word": false,
468
+ "special": true
469
+ },
470
+ "32055": {
471
+ "content": "<|placeholder51|>",
472
+ "lstrip": false,
473
+ "normalized": false,
474
+ "rstrip": true,
475
+ "single_word": false,
476
+ "special": true
477
+ },
478
+ "32056": {
479
+ "content": "<|placeholder52|>",
480
+ "lstrip": false,
481
+ "normalized": false,
482
+ "rstrip": true,
483
+ "single_word": false,
484
+ "special": true
485
+ },
486
+ "32057": {
487
+ "content": "<|placeholder53|>",
488
+ "lstrip": false,
489
+ "normalized": false,
490
+ "rstrip": true,
491
+ "single_word": false,
492
+ "special": true
493
+ },
494
+ "32058": {
495
+ "content": "<|placeholder54|>",
496
+ "lstrip": false,
497
+ "normalized": false,
498
+ "rstrip": true,
499
+ "single_word": false,
500
+ "special": true
501
+ },
502
+ "32059": {
503
+ "content": "<|placeholder55|>",
504
+ "lstrip": false,
505
+ "normalized": false,
506
+ "rstrip": true,
507
+ "single_word": false,
508
+ "special": true
509
+ },
510
+ "32060": {
511
+ "content": "<|placeholder56|>",
512
+ "lstrip": false,
513
+ "normalized": false,
514
+ "rstrip": true,
515
+ "single_word": false,
516
+ "special": true
517
+ },
518
+ "32061": {
519
+ "content": "<|placeholder57|>",
520
+ "lstrip": false,
521
+ "normalized": false,
522
+ "rstrip": true,
523
+ "single_word": false,
524
+ "special": true
525
+ },
526
+ "32062": {
527
+ "content": "<|placeholder58|>",
528
+ "lstrip": false,
529
+ "normalized": false,
530
+ "rstrip": true,
531
+ "single_word": false,
532
+ "special": true
533
+ },
534
+ "32063": {
535
+ "content": "<|placeholder59|>",
536
+ "lstrip": false,
537
+ "normalized": false,
538
+ "rstrip": true,
539
+ "single_word": false,
540
+ "special": true
541
+ },
542
+ "32064": {
543
+ "content": "<|placeholder60|>",
544
+ "lstrip": false,
545
+ "normalized": false,
546
+ "rstrip": true,
547
+ "single_word": false,
548
+ "special": true
549
+ },
550
+ "32065": {
551
+ "content": "<|placeholder61|>",
552
+ "lstrip": false,
553
+ "normalized": false,
554
+ "rstrip": true,
555
+ "single_word": false,
556
+ "special": true
557
+ },
558
+ "32066": {
559
+ "content": "<|placeholder62|>",
560
+ "lstrip": false,
561
+ "normalized": false,
562
+ "rstrip": true,
563
+ "single_word": false,
564
+ "special": true
565
+ },
566
+ "32067": {
567
+ "content": "<|placeholder63|>",
568
+ "lstrip": false,
569
+ "normalized": false,
570
+ "rstrip": true,
571
+ "single_word": false,
572
+ "special": true
573
+ },
574
+ "32068": {
575
+ "content": "<|placeholder64|>",
576
+ "lstrip": false,
577
+ "normalized": false,
578
+ "rstrip": true,
579
+ "single_word": false,
580
+ "special": true
581
+ },
582
+ "32069": {
583
+ "content": "<|placeholder65|>",
584
+ "lstrip": false,
585
+ "normalized": false,
586
+ "rstrip": true,
587
+ "single_word": false,
588
+ "special": true
589
+ },
590
+ "32070": {
591
+ "content": "<|placeholder66|>",
592
+ "lstrip": false,
593
+ "normalized": false,
594
+ "rstrip": true,
595
+ "single_word": false,
596
+ "special": true
597
+ },
598
+ "32071": {
599
+ "content": "<|placeholder67|>",
600
+ "lstrip": false,
601
+ "normalized": false,
602
+ "rstrip": true,
603
+ "single_word": false,
604
+ "special": true
605
+ },
606
+ "32072": {
607
+ "content": "<|placeholder68|>",
608
+ "lstrip": false,
609
+ "normalized": false,
610
+ "rstrip": true,
611
+ "single_word": false,
612
+ "special": true
613
+ },
614
+ "32073": {
615
+ "content": "<|placeholder69|>",
616
+ "lstrip": false,
617
+ "normalized": false,
618
+ "rstrip": true,
619
+ "single_word": false,
620
+ "special": true
621
+ },
622
+ "32074": {
623
+ "content": "<|placeholder70|>",
624
+ "lstrip": false,
625
+ "normalized": false,
626
+ "rstrip": true,
627
+ "single_word": false,
628
+ "special": true
629
+ },
630
+ "32075": {
631
+ "content": "<|placeholder71|>",
632
+ "lstrip": false,
633
+ "normalized": false,
634
+ "rstrip": true,
635
+ "single_word": false,
636
+ "special": true
637
+ },
638
+ "32076": {
639
+ "content": "<|placeholder72|>",
640
+ "lstrip": false,
641
+ "normalized": false,
642
+ "rstrip": true,
643
+ "single_word": false,
644
+ "special": true
645
+ },
646
+ "32077": {
647
+ "content": "<|placeholder73|>",
648
+ "lstrip": false,
649
+ "normalized": false,
650
+ "rstrip": true,
651
+ "single_word": false,
652
+ "special": true
653
+ },
654
+ "32078": {
655
+ "content": "<|placeholder74|>",
656
+ "lstrip": false,
657
+ "normalized": false,
658
+ "rstrip": true,
659
+ "single_word": false,
660
+ "special": true
661
+ },
662
+ "32079": {
663
+ "content": "<|placeholder75|>",
664
+ "lstrip": false,
665
+ "normalized": false,
666
+ "rstrip": true,
667
+ "single_word": false,
668
+ "special": true
669
+ },
670
+ "32080": {
671
+ "content": "<|placeholder76|>",
672
+ "lstrip": false,
673
+ "normalized": false,
674
+ "rstrip": true,
675
+ "single_word": false,
676
+ "special": true
677
+ },
678
+ "32081": {
679
+ "content": "<|placeholder77|>",
680
+ "lstrip": false,
681
+ "normalized": false,
682
+ "rstrip": true,
683
+ "single_word": false,
684
+ "special": true
685
+ },
686
+ "32082": {
687
+ "content": "<|placeholder78|>",
688
+ "lstrip": false,
689
+ "normalized": false,
690
+ "rstrip": true,
691
+ "single_word": false,
692
+ "special": true
693
+ },
694
+ "32083": {
695
+ "content": "<|placeholder79|>",
696
+ "lstrip": false,
697
+ "normalized": false,
698
+ "rstrip": true,
699
+ "single_word": false,
700
+ "special": true
701
+ },
702
+ "32084": {
703
+ "content": "<|placeholder80|>",
704
+ "lstrip": false,
705
+ "normalized": false,
706
+ "rstrip": true,
707
+ "single_word": false,
708
+ "special": true
709
+ },
710
+ "32085": {
711
+ "content": "<|placeholder81|>",
712
+ "lstrip": false,
713
+ "normalized": false,
714
+ "rstrip": true,
715
+ "single_word": false,
716
+ "special": true
717
+ },
718
+ "32086": {
719
+ "content": "<|placeholder82|>",
720
+ "lstrip": false,
721
+ "normalized": false,
722
+ "rstrip": true,
723
+ "single_word": false,
724
+ "special": true
725
+ },
726
+ "32087": {
727
+ "content": "<|placeholder83|>",
728
+ "lstrip": false,
729
+ "normalized": false,
730
+ "rstrip": true,
731
+ "single_word": false,
732
+ "special": true
733
+ },
734
+ "32088": {
735
+ "content": "<|placeholder84|>",
736
+ "lstrip": false,
737
+ "normalized": false,
738
+ "rstrip": true,
739
+ "single_word": false,
740
+ "special": true
741
+ },
742
+ "32089": {
743
+ "content": "<|placeholder85|>",
744
+ "lstrip": false,
745
+ "normalized": false,
746
+ "rstrip": true,
747
+ "single_word": false,
748
+ "special": true
749
+ },
750
+ "32090": {
751
+ "content": "<|placeholder86|>",
752
+ "lstrip": false,
753
+ "normalized": false,
754
+ "rstrip": true,
755
+ "single_word": false,
756
+ "special": true
757
+ },
758
+ "32091": {
759
+ "content": "<|placeholder87|>",
760
+ "lstrip": false,
761
+ "normalized": false,
762
+ "rstrip": true,
763
+ "single_word": false,
764
+ "special": true
765
+ },
766
+ "32092": {
767
+ "content": "<|placeholder88|>",
768
+ "lstrip": false,
769
+ "normalized": false,
770
+ "rstrip": true,
771
+ "single_word": false,
772
+ "special": true
773
+ },
774
+ "32093": {
775
+ "content": "<|placeholder89|>",
776
+ "lstrip": false,
777
+ "normalized": false,
778
+ "rstrip": true,
779
+ "single_word": false,
780
+ "special": true
781
+ },
782
+ "32094": {
783
+ "content": "<|placeholder90|>",
784
+ "lstrip": false,
785
+ "normalized": false,
786
+ "rstrip": true,
787
+ "single_word": false,
788
+ "special": true
789
+ },
790
+ "32095": {
791
+ "content": "<|placeholder91|>",
792
+ "lstrip": false,
793
+ "normalized": false,
794
+ "rstrip": true,
795
+ "single_word": false,
796
+ "special": true
797
+ },
798
+ "32096": {
799
+ "content": "<|placeholder92|>",
800
+ "lstrip": false,
801
+ "normalized": false,
802
+ "rstrip": true,
803
+ "single_word": false,
804
+ "special": true
805
+ },
806
+ "32097": {
807
+ "content": "<|placeholder93|>",
808
+ "lstrip": false,
809
+ "normalized": false,
810
+ "rstrip": true,
811
+ "single_word": false,
812
+ "special": true
813
+ },
814
+ "32098": {
815
+ "content": "<|placeholder94|>",
816
+ "lstrip": false,
817
+ "normalized": false,
818
+ "rstrip": true,
819
+ "single_word": false,
820
+ "special": true
821
+ },
822
+ "32099": {
823
+ "content": "<|placeholder95|>",
824
+ "lstrip": false,
825
+ "normalized": false,
826
+ "rstrip": true,
827
+ "single_word": false,
828
+ "special": true
829
+ },
830
+ "32100": {
831
+ "content": "<|placeholder96|>",
832
+ "lstrip": false,
833
+ "normalized": false,
834
+ "rstrip": true,
835
+ "single_word": false,
836
+ "special": true
837
+ },
838
+ "32101": {
839
+ "content": "<|placeholder97|>",
840
+ "lstrip": false,
841
+ "normalized": false,
842
+ "rstrip": true,
843
+ "single_word": false,
844
+ "special": true
845
+ },
846
+ "32102": {
847
+ "content": "<|placeholder98|>",
848
+ "lstrip": false,
849
+ "normalized": false,
850
+ "rstrip": true,
851
+ "single_word": false,
852
+ "special": true
853
+ },
854
+ "32103": {
855
+ "content": "<|placeholder99|>",
856
+ "lstrip": false,
857
+ "normalized": false,
858
+ "rstrip": true,
859
+ "single_word": false,
860
+ "special": true
861
+ },
862
+ "32104": {
863
+ "content": "<|placeholder100|>",
864
+ "lstrip": false,
865
+ "normalized": false,
866
+ "rstrip": true,
867
+ "single_word": false,
868
+ "special": true
869
+ },
870
+ "32105": {
871
+ "content": "<|placeholder101|>",
872
+ "lstrip": false,
873
+ "normalized": false,
874
+ "rstrip": true,
875
+ "single_word": false,
876
+ "special": true
877
+ },
878
+ "32106": {
879
+ "content": "<|placeholder102|>",
880
+ "lstrip": false,
881
+ "normalized": false,
882
+ "rstrip": true,
883
+ "single_word": false,
884
+ "special": true
885
+ },
886
+ "32107": {
887
+ "content": "<|placeholder103|>",
888
+ "lstrip": false,
889
+ "normalized": false,
890
+ "rstrip": true,
891
+ "single_word": false,
892
+ "special": true
893
+ },
894
+ "32108": {
895
+ "content": "<|placeholder104|>",
896
+ "lstrip": false,
897
+ "normalized": false,
898
+ "rstrip": true,
899
+ "single_word": false,
900
+ "special": true
901
+ },
902
+ "32109": {
903
+ "content": "<|placeholder105|>",
904
+ "lstrip": false,
905
+ "normalized": false,
906
+ "rstrip": true,
907
+ "single_word": false,
908
+ "special": true
909
+ },
910
+ "32110": {
911
+ "content": "<|placeholder106|>",
912
+ "lstrip": false,
913
+ "normalized": false,
914
+ "rstrip": true,
915
+ "single_word": false,
916
+ "special": true
917
+ },
918
+ "32111": {
919
+ "content": "<|placeholder107|>",
920
+ "lstrip": false,
921
+ "normalized": false,
922
+ "rstrip": true,
923
+ "single_word": false,
924
+ "special": true
925
+ },
926
+ "32112": {
927
+ "content": "<|placeholder108|>",
928
+ "lstrip": false,
929
+ "normalized": false,
930
+ "rstrip": true,
931
+ "single_word": false,
932
+ "special": true
933
+ },
934
+ "32113": {
935
+ "content": "<|placeholder109|>",
936
+ "lstrip": false,
937
+ "normalized": false,
938
+ "rstrip": true,
939
+ "single_word": false,
940
+ "special": true
941
+ },
942
+ "32114": {
943
+ "content": "<|placeholder110|>",
944
+ "lstrip": false,
945
+ "normalized": false,
946
+ "rstrip": true,
947
+ "single_word": false,
948
+ "special": true
949
+ },
950
+ "32115": {
951
+ "content": "<|placeholder111|>",
952
+ "lstrip": false,
953
+ "normalized": false,
954
+ "rstrip": true,
955
+ "single_word": false,
956
+ "special": true
957
+ },
958
+ "32116": {
959
+ "content": "<|placeholder112|>",
960
+ "lstrip": false,
961
+ "normalized": false,
962
+ "rstrip": true,
963
+ "single_word": false,
964
+ "special": true
965
+ },
966
+ "32117": {
967
+ "content": "<|placeholder113|>",
968
+ "lstrip": false,
969
+ "normalized": false,
970
+ "rstrip": true,
971
+ "single_word": false,
972
+ "special": true
973
+ },
974
+ "32118": {
975
+ "content": "<|placeholder114|>",
976
+ "lstrip": false,
977
+ "normalized": false,
978
+ "rstrip": true,
979
+ "single_word": false,
980
+ "special": true
981
+ },
982
+ "32119": {
983
+ "content": "<|placeholder115|>",
984
+ "lstrip": false,
985
+ "normalized": false,
986
+ "rstrip": true,
987
+ "single_word": false,
988
+ "special": true
989
+ },
990
+ "32120": {
991
+ "content": "<|placeholder116|>",
992
+ "lstrip": false,
993
+ "normalized": false,
994
+ "rstrip": true,
995
+ "single_word": false,
996
+ "special": true
997
+ },
998
+ "32121": {
999
+ "content": "<|placeholder117|>",
1000
+ "lstrip": false,
1001
+ "normalized": false,
1002
+ "rstrip": true,
1003
+ "single_word": false,
1004
+ "special": true
1005
+ },
1006
+ "32122": {
1007
+ "content": "<|placeholder118|>",
1008
+ "lstrip": false,
1009
+ "normalized": false,
1010
+ "rstrip": true,
1011
+ "single_word": false,
1012
+ "special": true
1013
+ },
1014
+ "32123": {
1015
+ "content": "<|placeholder119|>",
1016
+ "lstrip": false,
1017
+ "normalized": false,
1018
+ "rstrip": true,
1019
+ "single_word": false,
1020
+ "special": true
1021
+ },
1022
+ "32124": {
1023
+ "content": "<|placeholder120|>",
1024
+ "lstrip": false,
1025
+ "normalized": false,
1026
+ "rstrip": true,
1027
+ "single_word": false,
1028
+ "special": true
1029
+ },
1030
+ "32125": {
1031
+ "content": "<|placeholder121|>",
1032
+ "lstrip": false,
1033
+ "normalized": false,
1034
+ "rstrip": true,
1035
+ "single_word": false,
1036
+ "special": true
1037
+ },
1038
+ "32126": {
1039
+ "content": "<|placeholder122|>",
1040
+ "lstrip": false,
1041
+ "normalized": false,
1042
+ "rstrip": true,
1043
+ "single_word": false,
1044
+ "special": true
1045
+ },
1046
+ "32127": {
1047
+ "content": "<|placeholder123|>",
1048
+ "lstrip": false,
1049
+ "normalized": false,
1050
+ "rstrip": true,
1051
+ "single_word": false,
1052
+ "special": true
1053
+ }
1054
+ },
1055
+ "bos_token": "<|startoftext|>",
1056
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
1057
+ "clean_up_tokenization_spaces": false,
1058
+ "eos_token": "<|im_end|>",
1059
+ "legacy": true,
1060
+ "model_max_length": 4096,
1061
+ "pad_token": "<|im_end|>",
1062
+ "padding_side": "left",
1063
+ "sp_model_kwargs": {},
1064
+ "tokenizer_class": "LlamaTokenizer",
1065
+ "unk_token": "<unk>",
1066
+ "use_default_system_prompt": false
1067
+ }
transformers-4.45.1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5cdd856f8e7e4a0ee564c21b0714611eafb5b8283125c910959c10eb696e4f5
3
+ size 123505
vllm_solar.py ADDED
@@ -0,0 +1,552 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Adapted from
3
+ # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
4
+ # Copyright 2023 The vLLM team.
5
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
6
+ #
7
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
8
+ # and OPT implementations in this library. It has been modified from its
9
+ # original forms to accommodate minor architectural differences compared
10
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
11
+ #
12
+ # Licensed under the Apache License, Version 2.0 (the "License");
13
+ # you may not use this file except in compliance with the License.
14
+ # You may obtain a copy of the License at
15
+ #
16
+ # http://www.apache.org/licenses/LICENSE-2.0
17
+ #
18
+ # Unless required by applicable law or agreed to in writing, software
19
+ # distributed under the License is distributed on an "AS IS" BASIS,
20
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
21
+ # See the License for the specific language governing permissions and
22
+ # limitations under the License.
23
+ """Inference-only Solar model compatible with HuggingFace weights."""
24
+ from typing import Any, Dict, Iterable, List, Optional, Tuple, Union
25
+
26
+ import torch
27
+ from torch import nn
28
+
29
+ from vllm.attention import Attention, AttentionMetadata
30
+ from vllm.config import CacheConfig, LoRAConfig
31
+ from vllm.distributed import (get_pp_group, get_tensor_model_parallel_rank,
32
+ get_tensor_model_parallel_world_size)
33
+ from vllm.model_executor.layers.activation import SiluAndMul
34
+ from vllm.model_executor.layers.layernorm import RMSNorm
35
+ from vllm.model_executor.layers.linear import (MergedColumnParallelLinear,
36
+ QKVParallelLinear,
37
+ RowParallelLinear)
38
+ from vllm.model_executor.layers.logits_processor import LogitsProcessor
39
+ from vllm.model_executor.layers.quantization.base_config import (
40
+ QuantizationConfig)
41
+ from vllm.model_executor.layers.quantization.compressed_tensors.utils import (
42
+ get_compressed_tensors_cache_scale)
43
+ from vllm.model_executor.layers.rotary_embedding import get_rope
44
+ from vllm.model_executor.layers.sampler import Sampler
45
+ from vllm.model_executor.layers.vocab_parallel_embedding import (
46
+ DEFAULT_VOCAB_PADDING_SIZE, ParallelLMHead, VocabParallelEmbedding)
47
+ from vllm.model_executor.model_loader.weight_utils import (
48
+ default_weight_loader, kv_cache_scales_loader, maybe_remap_kv_scale_name)
49
+ from vllm.model_executor.sampling_metadata import SamplingMetadata
50
+ from vllm.sequence import IntermediateTensors, SamplerOutput
51
+ from vllm.utils import is_hip
52
+
53
+ from vllm.model_executor.models.interfaces import SupportsLoRA
54
+ from vllm.model_executor.models.utils import PPMissingLayer, is_pp_missing_parameter, make_layers
55
+
56
+ class SolarMLP(nn.Module):
57
+
58
+ def __init__(
59
+ self,
60
+ hidden_size: int,
61
+ intermediate_size: int,
62
+ hidden_act: str,
63
+ quant_config: Optional[QuantizationConfig] = None,
64
+ bias: bool = False,
65
+ prefix: str = "",
66
+ ) -> None:
67
+ super().__init__()
68
+ self.gate_up_proj = MergedColumnParallelLinear(
69
+ input_size=hidden_size,
70
+ output_sizes=[intermediate_size] * 2,
71
+ bias=bias,
72
+ quant_config=quant_config,
73
+ prefix=f"{prefix}.gate_up_proj")
74
+ self.down_proj = RowParallelLinear(input_size=intermediate_size,
75
+ output_size=hidden_size,
76
+ bias=bias,
77
+ quant_config=quant_config,
78
+ prefix=f"{prefix}.down_proj")
79
+ if hidden_act != "silu":
80
+ raise ValueError(f"Unsupported activation: {hidden_act}. "
81
+ "Only silu is supported for now.")
82
+ self.act_fn = SiluAndMul()
83
+
84
+ def forward(self, x):
85
+ gate_up, _ = self.gate_up_proj(x)
86
+ x = self.act_fn(gate_up)
87
+ x, _ = self.down_proj(x)
88
+ return x
89
+
90
+
91
+ class SolarAttention(nn.Module):
92
+
93
+ def __init__(
94
+ self,
95
+ config,
96
+ hidden_size: int,
97
+ num_heads: int,
98
+ num_kv_heads: int,
99
+ rope_theta: float = 10000,
100
+ rope_scaling: Optional[Dict[str, Any]] = None,
101
+ max_position_embeddings: int = 8192,
102
+ quant_config: Optional[QuantizationConfig] = None,
103
+ bias: bool = False,
104
+ cache_config: Optional[CacheConfig] = None,
105
+ prefix: str = "",
106
+ ) -> None:
107
+ super().__init__()
108
+ self.hidden_size = hidden_size
109
+ tp_size = get_tensor_model_parallel_world_size()
110
+ self.total_num_heads = num_heads
111
+ assert self.total_num_heads % tp_size == 0
112
+ self.num_heads = self.total_num_heads // tp_size
113
+ self.total_num_kv_heads = num_kv_heads
114
+ if self.total_num_kv_heads >= tp_size:
115
+ # Number of KV heads is greater than TP size, so we partition
116
+ # the KV heads across multiple tensor parallel GPUs.
117
+ assert self.total_num_kv_heads % tp_size == 0
118
+ else:
119
+ # Number of KV heads is less than TP size, so we replicate
120
+ # the KV heads across multiple tensor parallel GPUs.
121
+ assert tp_size % self.total_num_kv_heads == 0
122
+ self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
123
+ # MistralConfig has an optional head_dim introduced by Mistral-Nemo
124
+ self.head_dim = getattr(config, "head_dim",
125
+ self.hidden_size // self.total_num_heads)
126
+ self.q_size = self.num_heads * self.head_dim
127
+ self.kv_size = self.num_kv_heads * self.head_dim
128
+ self.scaling = self.head_dim**-0.5
129
+ self.rope_theta = rope_theta
130
+ self.max_position_embeddings = max_position_embeddings
131
+
132
+ self.qkv_proj = QKVParallelLinear(
133
+ hidden_size=hidden_size,
134
+ head_size=self.head_dim,
135
+ total_num_heads=self.total_num_heads,
136
+ total_num_kv_heads=self.total_num_kv_heads,
137
+ bias=bias,
138
+ quant_config=quant_config,
139
+ prefix=f"{prefix}.qkv_proj",
140
+ )
141
+ self.o_proj = RowParallelLinear(
142
+ input_size=self.total_num_heads * self.head_dim,
143
+ output_size=hidden_size,
144
+ bias=bias,
145
+ quant_config=quant_config,
146
+ prefix=f"{prefix}.o_proj",
147
+ )
148
+
149
+ self.rotary_emb = get_rope(
150
+ self.head_dim,
151
+ rotary_dim=self.head_dim,
152
+ max_position=max_position_embeddings,
153
+ base=rope_theta,
154
+ rope_scaling=rope_scaling,
155
+ )
156
+ self.attn = Attention(self.num_heads,
157
+ self.head_dim,
158
+ self.scaling,
159
+ num_kv_heads=self.num_kv_heads,
160
+ cache_config=cache_config,
161
+ quant_config=quant_config)
162
+
163
+ def forward(
164
+ self,
165
+ positions: torch.Tensor,
166
+ hidden_states: torch.Tensor,
167
+ kv_cache: torch.Tensor,
168
+ attn_metadata: AttentionMetadata,
169
+ ) -> torch.Tensor:
170
+ qkv, _ = self.qkv_proj(hidden_states)
171
+ q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
172
+ q, k = self.rotary_emb(positions, q, k)
173
+ attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
174
+ output, _ = self.o_proj(attn_output)
175
+ return output
176
+
177
+
178
+ class SolarDecoderLayer(nn.Module):
179
+
180
+ def __init__(
181
+ self,
182
+ config,
183
+ cache_config: Optional[CacheConfig] = None,
184
+ quant_config: Optional[QuantizationConfig] = None,
185
+ prefix: str = "",
186
+ ) -> None:
187
+ super().__init__()
188
+ self.hidden_size = config.hidden_size
189
+ rope_theta = getattr(config, "rope_theta", 10000)
190
+ rope_scaling = getattr(config, "rope_scaling", None)
191
+ if rope_scaling is not None and getattr(
192
+ config, "original_max_position_embeddings", None):
193
+ rope_scaling["original_max_position_embeddings"] = (
194
+ config.original_max_position_embeddings)
195
+ max_position_embeddings = getattr(config, "max_position_embeddings",
196
+ 8192)
197
+ # Support abacusai/Smaug-72B-v0.1 with attention_bias
198
+ # Support internlm/internlm-7b with bias
199
+ attention_bias = getattr(config, "attention_bias", False) or getattr(
200
+ config, "bias", False)
201
+ self.self_attn = SolarAttention(
202
+ config=config,
203
+ hidden_size=self.hidden_size,
204
+ num_heads=config.num_attention_heads,
205
+ num_kv_heads=getattr(config, "num_key_value_heads",
206
+ config.num_attention_heads),
207
+ rope_theta=rope_theta,
208
+ rope_scaling=rope_scaling,
209
+ max_position_embeddings=max_position_embeddings,
210
+ quant_config=quant_config,
211
+ bias=attention_bias,
212
+ cache_config=cache_config,
213
+ prefix=f"{prefix}.self_attn",
214
+ )
215
+ self.mlp = SolarMLP(
216
+ hidden_size=self.hidden_size,
217
+ intermediate_size=config.intermediate_size,
218
+ hidden_act=config.hidden_act,
219
+ quant_config=quant_config,
220
+ bias=getattr(config, "mlp_bias", False),
221
+ prefix=f"{prefix}.mlp",
222
+ )
223
+ self.input_layernorm = RMSNorm(config.hidden_size,
224
+ eps=config.rms_norm_eps)
225
+ self.post_attention_layernorm = RMSNorm(config.hidden_size,
226
+ eps=config.rms_norm_eps)
227
+
228
+ def forward(
229
+ self,
230
+ positions: torch.Tensor,
231
+ hidden_states: torch.Tensor,
232
+ kv_cache: torch.Tensor,
233
+ attn_metadata: AttentionMetadata,
234
+ residual: Optional[torch.Tensor],
235
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
236
+ # Self Attention
237
+ if residual is None:
238
+ residual = hidden_states
239
+ hidden_states = self.input_layernorm(hidden_states)
240
+ else:
241
+ hidden_states, residual = self.input_layernorm(
242
+ hidden_states, residual)
243
+ hidden_states = self.self_attn(
244
+ positions=positions,
245
+ hidden_states=hidden_states,
246
+ kv_cache=kv_cache,
247
+ attn_metadata=attn_metadata,
248
+ )
249
+
250
+ # Fully Connected
251
+ hidden_states, residual = self.post_attention_layernorm(
252
+ hidden_states, residual)
253
+ hidden_states = self.mlp(hidden_states)
254
+ return hidden_states, residual
255
+
256
+
257
+ class SolarModel(nn.Module):
258
+
259
+ def __init__(
260
+ self,
261
+ config,
262
+ cache_config: Optional[CacheConfig] = None,
263
+ quant_config: Optional[QuantizationConfig] = None,
264
+ lora_config: Optional[LoRAConfig] = None,
265
+ prefix: str = "",
266
+ ) -> None:
267
+ super().__init__()
268
+ self.config = config
269
+ self.padding_idx = config.pad_token_id
270
+ lora_vocab = (lora_config.lora_extra_vocab_size *
271
+ (lora_config.max_loras or 1)) if lora_config else 0
272
+ self.vocab_size = config.vocab_size + lora_vocab
273
+ self.org_vocab_size = config.vocab_size
274
+ if get_pp_group().is_first_rank or (config.tie_word_embeddings
275
+ and get_pp_group().is_last_rank):
276
+ self.embed_tokens = VocabParallelEmbedding(
277
+ self.vocab_size,
278
+ config.hidden_size,
279
+ org_num_embeddings=config.vocab_size,
280
+ )
281
+ else:
282
+ self.embed_tokens = PPMissingLayer()
283
+ self.start_layer, self.end_layer, self.layers = make_layers(
284
+ config.num_hidden_layers,
285
+ lambda prefix: SolarDecoderLayer(config=config,
286
+ cache_config=cache_config,
287
+ quant_config=quant_config,
288
+ prefix=prefix),
289
+ prefix=f"{prefix}.layers")
290
+ if get_pp_group().is_last_rank:
291
+ self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
292
+ else:
293
+ self.norm = PPMissingLayer()
294
+
295
+ def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
296
+ return self.embed_tokens(input_ids)
297
+
298
+ def forward(
299
+ self,
300
+ input_ids: Optional[torch.Tensor],
301
+ positions: torch.Tensor,
302
+ kv_caches: List[torch.Tensor],
303
+ attn_metadata: AttentionMetadata,
304
+ intermediate_tensors: Optional[IntermediateTensors],
305
+ inputs_embeds: Optional[torch.Tensor] = None,
306
+ ) -> Union[torch.Tensor, IntermediateTensors]:
307
+ if get_pp_group().is_first_rank:
308
+ if inputs_embeds is not None:
309
+ hidden_states = inputs_embeds
310
+ else:
311
+ hidden_states = self.get_input_embeddings(input_ids)
312
+ residual = None
313
+ else:
314
+ assert intermediate_tensors is not None
315
+ hidden_states = intermediate_tensors["hidden_states"]
316
+ residual = intermediate_tensors["residual"]
317
+
318
+ bskcn_h_1 = None
319
+ bskcn_h_2 = None
320
+ bskcn_r_1 = None
321
+ bskcn_r_2 = None
322
+ bskcn_tv = self.config.bskcn_tv[0] if self.training else self.config.bskcn_tv[1]
323
+
324
+ for i in range(self.start_layer, self.end_layer):
325
+ if i in self.config.bskcn_1:
326
+ bskcn_h_1 = hidden_states.clone()
327
+ bskcn_r_1 = residual.clone()
328
+ if i in self.config.bskcn_2:
329
+ bskcn_h_2 = hidden_states.clone()
330
+ bskcn_r_2 = residual.clone()
331
+ if i in self.config.bskcn_3:
332
+ hidden_states = bskcn_h_1*bskcn_tv + hidden_states*(1-bskcn_tv)
333
+ residual = bskcn_r_1*bskcn_tv + residual*(1-bskcn_tv)
334
+ if i in self.config.bskcn_4:
335
+ hidden_states = bskcn_h_2*bskcn_tv + hidden_states*(1-bskcn_tv)
336
+ residual = bskcn_r_2*bskcn_tv + residual*(1-bskcn_tv)
337
+ layer = self.layers[i]
338
+ hidden_states, residual = layer(
339
+ positions,
340
+ hidden_states,
341
+ kv_caches[i - self.start_layer],
342
+ attn_metadata,
343
+ residual,
344
+ )
345
+
346
+ if not get_pp_group().is_last_rank:
347
+ return IntermediateTensors({
348
+ "hidden_states": hidden_states,
349
+ "residual": residual
350
+ })
351
+
352
+ hidden_states, _ = self.norm(hidden_states, residual)
353
+ return hidden_states
354
+
355
+
356
+ class SolarForCausalLM(nn.Module, SupportsLoRA):
357
+ packed_modules_mapping = {
358
+ "qkv_proj": [
359
+ "q_proj",
360
+ "k_proj",
361
+ "v_proj",
362
+ ],
363
+ "gate_up_proj": [
364
+ "gate_proj",
365
+ "up_proj",
366
+ ],
367
+ }
368
+
369
+ # LoRA specific attributes
370
+ supported_lora_modules = [
371
+ "qkv_proj", "o_proj", "gate_up_proj", "down_proj", "embed_tokens",
372
+ "lm_head"
373
+ ]
374
+ embedding_modules = {
375
+ "embed_tokens": "input_embeddings",
376
+ "lm_head": "output_embeddings",
377
+ }
378
+ embedding_padding_modules = ["lm_head"]
379
+ bitsandbytes_stacked_params_mapping = {
380
+ # shard_name, weight_name, index
381
+ "q_proj": ("qkv_proj", 0),
382
+ "k_proj": ("qkv_proj", 1),
383
+ "v_proj": ("qkv_proj", 2),
384
+ "gate_proj": ("gate_up_proj", 0),
385
+ "up_proj": ("gate_up_proj", 1),
386
+ }
387
+
388
+ def __init__(
389
+ self,
390
+ config,
391
+ cache_config: Optional[CacheConfig] = None,
392
+ quant_config: Optional[QuantizationConfig] = None,
393
+ lora_config: Optional[LoRAConfig] = None,
394
+ ) -> None:
395
+ super().__init__()
396
+
397
+ self.config = config
398
+ self.lora_config = lora_config
399
+
400
+ self.model = SolarModel(config,
401
+ cache_config,
402
+ quant_config,
403
+ lora_config=lora_config,
404
+ prefix="model")
405
+ if get_pp_group().is_last_rank:
406
+ self.unpadded_vocab_size = config.vocab_size
407
+ if lora_config:
408
+ self.unpadded_vocab_size += lora_config.lora_extra_vocab_size
409
+ self.lm_head = ParallelLMHead(
410
+ self.unpadded_vocab_size,
411
+ config.hidden_size,
412
+ org_num_embeddings=config.vocab_size,
413
+ padding_size=DEFAULT_VOCAB_PADDING_SIZE
414
+ # We need bigger padding if using lora for kernel
415
+ # compatibility
416
+ if not lora_config else lora_config.lora_vocab_padding_size,
417
+ quant_config=quant_config,
418
+ )
419
+ if config.tie_word_embeddings:
420
+ self.lm_head.weight = self.model.embed_tokens.weight
421
+
422
+ logit_scale = getattr(config, "logit_scale", 1.0)
423
+ self.logits_processor = LogitsProcessor(self.unpadded_vocab_size,
424
+ config.vocab_size,
425
+ logit_scale)
426
+ self.sampler = Sampler()
427
+ else:
428
+ self.lm_head = PPMissingLayer()
429
+
430
+ def forward(
431
+ self,
432
+ input_ids: torch.Tensor,
433
+ positions: torch.Tensor,
434
+ kv_caches: List[torch.Tensor],
435
+ attn_metadata: AttentionMetadata,
436
+ intermediate_tensors: Optional[IntermediateTensors] = None,
437
+ ) -> Union[torch.Tensor, IntermediateTensors]:
438
+ model_output = self.model(input_ids, positions, kv_caches,
439
+ attn_metadata, intermediate_tensors)
440
+ return model_output
441
+
442
+ def compute_logits(self, hidden_states: torch.Tensor,
443
+ sampling_metadata: SamplingMetadata) -> torch.Tensor:
444
+ logits = self.logits_processor(self.lm_head, hidden_states,
445
+ sampling_metadata)
446
+ return logits
447
+
448
+ def sample(
449
+ self,
450
+ logits: torch.Tensor,
451
+ sampling_metadata: SamplingMetadata,
452
+ ) -> Optional[SamplerOutput]:
453
+ next_tokens = self.sampler(logits, sampling_metadata)
454
+ return next_tokens
455
+
456
+ def make_empty_intermediate_tensors(
457
+ self, batch_size: int, dtype: torch.dtype,
458
+ device: torch.device) -> IntermediateTensors:
459
+ return IntermediateTensors({
460
+ "hidden_states":
461
+ torch.zeros((batch_size, self.config.hidden_size),
462
+ dtype=dtype,
463
+ device=device),
464
+ "residual":
465
+ torch.zeros((batch_size, self.config.hidden_size),
466
+ dtype=dtype,
467
+ device=device),
468
+ })
469
+
470
+ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
471
+ stacked_params_mapping = [
472
+ # (param_name, shard_name, shard_id)
473
+ (".qkv_proj", ".q_proj", "q"),
474
+ (".qkv_proj", ".k_proj", "k"),
475
+ (".qkv_proj", ".v_proj", "v"),
476
+ (".gate_up_proj", ".gate_proj", 0),
477
+ (".gate_up_proj", ".up_proj", 1),
478
+ ]
479
+ params_dict = dict(self.named_parameters())
480
+ for name, loaded_weight in weights:
481
+ if "rotary_emb.inv_freq" in name:
482
+ continue
483
+ if ("rotary_emb.cos_cached" in name
484
+ or "rotary_emb.sin_cached" in name):
485
+ # Models trained using ColossalAI may include these tensors in
486
+ # the checkpoint. Skip them.
487
+ continue
488
+ if scale_name := get_compressed_tensors_cache_scale(name):
489
+ # Loading kv cache scales for compressed-tensors quantization
490
+ param = params_dict[scale_name]
491
+ weight_loader = getattr(param, "weight_loader",
492
+ default_weight_loader)
493
+ loaded_weight = loaded_weight[0]
494
+ weight_loader(param, loaded_weight)
495
+ continue
496
+ for (param_name, weight_name, shard_id) in stacked_params_mapping:
497
+ if weight_name not in name:
498
+ continue
499
+ name = name.replace(weight_name, param_name)
500
+ # Skip loading extra bias for GPTQ models.
501
+ if name.endswith(".bias") and name not in params_dict:
502
+ continue
503
+
504
+ if is_pp_missing_parameter(name, self):
505
+ continue
506
+
507
+ param = params_dict[name]
508
+ weight_loader = param.weight_loader
509
+ weight_loader(param, loaded_weight, shard_id)
510
+
511
+ break
512
+ else:
513
+ # Skip loading extra bias for GPTQ models.
514
+ if name.endswith(".bias") and name not in params_dict:
515
+ continue
516
+ # Remapping the name of FP8 kv-scale.
517
+ name = maybe_remap_kv_scale_name(name, params_dict)
518
+ if name is None:
519
+ continue
520
+
521
+ if is_pp_missing_parameter(name, self):
522
+ continue
523
+
524
+ param = params_dict[name]
525
+ weight_loader = getattr(param, "weight_loader",
526
+ default_weight_loader)
527
+ weight_loader(param, loaded_weight)
528
+
529
+ # If this function is called, it should always initialize KV cache scale
530
+ # factors (or else raise an exception). Thus, handled exceptions should
531
+ # make sure to leave KV cache scale factors in a known good (dummy) state
532
+ def load_kv_cache_scales(self, quantization_param_path: str) -> None:
533
+ tp_size = get_tensor_model_parallel_world_size()
534
+ tp_rank = get_tensor_model_parallel_rank()
535
+ for layer_idx, scaling_factor in kv_cache_scales_loader(
536
+ quantization_param_path, tp_rank, tp_size,
537
+ self.config.num_hidden_layers,
538
+ self.config.__class__.model_type):
539
+ if not isinstance(self.model.layers[layer_idx], nn.Identity):
540
+ layer_self_attn = self.model.layers[layer_idx].self_attn
541
+
542
+ if is_hip():
543
+ # The scaling factor convention we are assuming is
544
+ # quantized_value * scaling_factor ~= true_value
545
+ # which is consistent with the practice of setting
546
+ # scaling_factor = tensor_amax / FPtype_max
547
+ scaling_factor *= 2
548
+ if hasattr(layer_self_attn, "kv_scale"):
549
+ layer_self_attn.attn._kv_scale = scaling_factor
550
+ else:
551
+ raise RuntimeError("Self attention has no KV cache scaling "
552
+ "factor attribute!")