Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 286.95 +/- 19.31
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8aa08660e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8aa0866170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8aa0866200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8aa0866290>", "_build": "<function ActorCriticPolicy._build at 0x7f8aa0866320>", "forward": "<function ActorCriticPolicy.forward at 0x7f8aa08663b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8aa0866440>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8aa08664d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8aa0866560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8aa08665f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8aa0866680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8aa08b8210>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651745167.2732997, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANo+i73DwTS6y/50uvBzkLU9vQy6gtKQOQAAAAAAAIA/MyoQvXv2grqKuVK3kZowslrCk7qe1XU2AACAPwAAgD8zJpK8H2aXu17Ftzxca0899TbTPGBsjLsAAIA/AACAP4AYgD1x7WS5Y5ENNPUq267RhDw6pfq9swAAgD8AAIA/mqXiO0h/lbrSgwM20TfIMGbT37qBdB+1AACAPwAAgD+aYQs71t2UPmdtQr1O0oa+jiogvf39FTwAAAAAAAAAAGY+azvD9Se6Umd2trfj0rHLhYI7fyuVNQAAgD8AAIA/ba5QPhGVrD4r1oW+1Iyjvp/rqjw4vFw9AAAAAAAAAAAzKq88w49vvM1dJzyMSnM8Iu3TPZ2NRr0AAIA/AACAP2YCKrxIuY66f3egNgQHnzGHBAw7b3K5tQAAgD8AAIA/mngyvcNlJ7pICxU5Pt2vNJnUFjtV7Cy4AACAPwAAgD8VB5G+I5ZuP3+gr77fF9K+h5jDvvlepDwAAAAAAAAAAFOgBz7HRgg+xG2dvkm7QL7MOcS9eAivvQAAAAAAAAAAmg6gvdiZ6j79Dds8gpqfvj91a73tSl89AAAAAAAAAAATAAO+adcCvIy+kb1yDRg95uY4Pf61ITwAAIA/AAAAAM1qzT3+vZY/b+e6PiwkB7/csg8+GKL0PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVWhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxOv6BTsacUCUhpRSlIwBbJRNkAGMAXSUR0CfBBL3K0UodX2UKGgGaAloD0MIeZRKeMLLcUCUhpRSlGgVTQMBaBZHQJ8E7xH5Jsh1fZQoaAZoCWgPQwibcoV3uZhxQJSGlFKUaBVL+WgWR0CfBenEVFhHdX2UKGgGaAloD0MIf95UpIIlc0CUhpRSlGgVS+toFkdAnwYuU6gdwXV9lChoBmgJaA9DCBTtKqS8snFAlIaUUpRoFUv8aBZHQJ8GWukk8ih1fZQoaAZoCWgPQwgJNUOqqFJuQJSGlFKUaBVNDAFoFkdAnwjkxREWqXV9lChoBmgJaA9DCP/KSpOSK3JAlIaUUpRoFU0YAWgWR0CfCTLLIPsidX2UKGgGaAloD0MIUfcBSK0IckCUhpRSlGgVS/NoFkdAnwk7uDzy0HV9lChoBmgJaA9DCPRqgNLQlnJAlIaUUpRoFUvzaBZHQJ8Jg/6frbB1fZQoaAZoCWgPQwicwHRat3xyQJSGlFKUaBVNCAFoFkdAnwnUXcgyM3V9lChoBmgJaA9DCKyOHOlMBnNAlIaUUpRoFU0MAWgWR0CfCgdLg4wRdX2UKGgGaAloD0MIAtU/iGR3cUCUhpRSlGgVS+BoFkdAnwtwH/tICnV9lChoBmgJaA9DCJvJN9tc1XJAlIaUUpRoFUvpaBZHQJ8Lg8q4H5d1fZQoaAZoCWgPQwhbKJmc2ipvQJSGlFKUaBVNCQFoFkdAnwxUgOjIrHV9lChoBmgJaA9DCELr4cuETHFAlIaUUpRoFUv/aBZHQJ8Md3A2ycF1fZQoaAZoCWgPQwhuMxXikZ5uQJSGlFKUaBVNHAFoFkdAnw2z7/GVA3V9lChoBmgJaA9DCJ7vp8aLznBAlIaUUpRoFU08AWgWR0CfDjZ39rGjdX2UKGgGaAloD0MIsOO/QJDPckCUhpRSlGgVS/loFkdAnw6kHdGiH3V9lChoBmgJaA9DCAMmcOvuR21AlIaUUpRoFU0CAWgWR0CfDznM+u/2dX2UKGgGaAloD0MI7N/1mXOcckCUhpRSlGgVTSkBaBZHQJ8PV3LV4HJ1fZQoaAZoCWgPQwik/nqFBYRxQJSGlFKUaBVNIgFoFkdAnxB14xDb8HV9lChoBmgJaA9DCPZBlgUT/29AlIaUUpRoFUvraBZHQJ8SLFqBVdZ1fZQoaAZoCWgPQwi6LZELzmZwQJSGlFKUaBVL/GgWR0CfEi3lCCz1dX2UKGgGaAloD0MIDixHyEDmb0CUhpRSlGgVS/9oFkdAnxJDurp7kXV9lChoBmgJaA9DCNJzC13JH3NAlIaUUpRoFUv8aBZHQJ8SedoWYWt1fZQoaAZoCWgPQwi/SdOgaMxvQJSGlFKUaBVNEAFoFkdAnxKQ0fozN3V9lChoBmgJaA9DCI55HXHIrXJAlIaUUpRoFU0ZAWgWR0CfE9bhm5DrdX2UKGgGaAloD0MIGXEBaFQ8cECUhpRSlGgVS/1oFkdAnxRaCg9Ne3V9lChoBmgJaA9DCJ268lme3XFAlIaUUpRoFU0XAWgWR0CfFTEdNnGsdX2UKGgGaAloD0MI1qvI6MDkcUCUhpRSlGgVTQsBaBZHQJ8VqmIj4Yd1fZQoaAZoCWgPQwgXLNUFvEBMQJSGlFKUaBVLuWgWR0CfFaoBaLXMdX2UKGgGaAloD0MI0m2JXHDjcUCUhpRSlGgVTRkBaBZHQJ8WQL5RCQd1fZQoaAZoCWgPQwhEaW/whcRwQJSGlFKUaBVNEQFoFkdAnxcw2l2vCHV9lChoBmgJaA9DCGniHeCJ8XFAlIaUUpRoFU0eAWgWR0CfGCBnSOR1dX2UKGgGaAloD0MI/1w0ZPysckCUhpRSlGgVTRkBaBZHQJ8YWIwdsBR1fZQoaAZoCWgPQwgO12oPe21uQJSGlFKUaBVNKAFoFkdAnxlxX0XgtXV9lChoBmgJaA9DCM7ixcIQGXFAlIaUUpRoFU0NAWgWR0CfGc7T2FnJdX2UKGgGaAloD0MIkwA1tWwNcECUhpRSlGgVS+hoFkdAnxopW/8EV3V9lChoBmgJaA9DCIkLQKO0PnJAlIaUUpRoFUvxaBZHQJ8akSAYpDx1fZQoaAZoCWgPQwgOvFruDAtxQJSGlFKUaBVL92gWR0CfGwspobn6dX2UKGgGaAloD0MIQ8ajVMIEcUCUhpRSlGgVS/9oFkdAnxy2UfPom3V9lChoBmgJaA9DCPHUIw2uGnJAlIaUUpRoFUv0aBZHQJ8c2oQ4CIV1fZQoaAZoCWgPQwjoMjUJHoRyQJSGlFKUaBVNRwFoFkdAnx1fDpC8e3V9lChoBmgJaA9DCFfqWRCKHHNAlIaUUpRoFUvtaBZHQJ8d0W0qpcZ1fZQoaAZoCWgPQwiRDg9hfIlyQJSGlFKUaBVNUAFoFkdAnx3tDYywfXV9lChoBmgJaA9DCFfNc0Q+PXJAlIaUUpRoFUv8aBZHQJ8eS/Firkt1fZQoaAZoCWgPQwi/1qVGqL9wQJSGlFKUaBVNFgFoFkdAnx61Oj7AL3V9lChoBmgJaA9DCIem7PSDzXFAlIaUUpRoFU0IAWgWR0CfHy/C66J7dX2UKGgGaAloD0MILquwGWA0ckCUhpRSlGgVTQ4BaBZHQJ87eu+yquN1fZQoaAZoCWgPQwgewvhpXCRvQJSGlFKUaBVL/2gWR0CfPSDlHSWrdX2UKGgGaAloD0MI0/iFV5LwcECUhpRSlGgVTSIBaBZHQJ89Rq59Vm11fZQoaAZoCWgPQwiNtiqJLAtxQJSGlFKUaBVNOAFoFkdAnz3YN3GGVXV9lChoBmgJaA9DCI+n5QeuK25AlIaUUpRoFU0lAWgWR0CfP8nezlcRdX2UKGgGaAloD0MILGUZ4hgOcUCUhpRSlGgVTTABaBZHQJ8/yZWq95B1fZQoaAZoCWgPQwijkGRWr6ZyQJSGlFKUaBVL9WgWR0CfQJIYFaB7dX2UKGgGaAloD0MIJCcTt8o+cECUhpRSlGgVS/1oFkdAn0GRIOH313V9lChoBmgJaA9DCJ+sGK4O/k9AlIaUUpRoFUvJaBZHQJ9B3FPznRt1fZQoaAZoCWgPQwireCPzCOpwQJSGlFKUaBVNIwFoFkdAn0JSM98qnXV9lChoBmgJaA9DCEQV/gyvJnFAlIaUUpRoFU1kAWgWR0CfQvK6WgOCdX2UKGgGaAloD0MIayqLwu51cUCUhpRSlGgVTQMBaBZHQJ9DAWP91lp1fZQoaAZoCWgPQwgYXHNHPyVyQJSGlFKUaBVNIwFoFkdAn0PBx1gYxnV9lChoBmgJaA9DCIdSexGtzXBAlIaUUpRoFUvvaBZHQJ9EkQtjCpF1fZQoaAZoCWgPQwi/1qVGaCxuQJSGlFKUaBVNQAFoFkdAn0SuEVWS2nV9lChoBmgJaA9DCCYZOQu77HFAlIaUUpRoFU0mAWgWR0CfRL85jpcHdX2UKGgGaAloD0MIMjogCTtbcUCUhpRSlGgVTQgBaBZHQJ9HEyxiXpp1fZQoaAZoCWgPQwhnKO54k+hyQJSGlFKUaBVNFgFoFkdAn0fNYSxqwnV9lChoBmgJaA9DCNDukGIAC3FAlIaUUpRoFU0hAWgWR0CfSNK02LpBdX2UKGgGaAloD0MIK4nsgywGcECUhpRSlGgVS/VoFkdAn0kGpQ1rI3V9lChoBmgJaA9DCPNZngf33G1AlIaUUpRoFU0CAWgWR0CfSYclPacqdX2UKGgGaAloD0MIUMJM279DcUCUhpRSlGgVTREBaBZHQJ9L5kFwDNh1fZQoaAZoCWgPQwia7+AnTp9wQJSGlFKUaBVNKwFoFkdAn0v8YEW69XV9lChoBmgJaA9DCH41BwgmZXNAlIaUUpRoFU0BAWgWR0CfS/xVhkRSdX2UKGgGaAloD0MIglMfSN42UUCUhpRSlGgVS9poFkdAn00DKLbYb3V9lChoBmgJaA9DCNRJtrpcJHFAlIaUUpRoFU0TAWgWR0CfTU/GlyimdX2UKGgGaAloD0MIYVRSJ2BRc0CUhpRSlGgVTS8BaBZHQJ9NXEvTPSl1fZQoaAZoCWgPQwjDt7BufFxzQJSGlFKUaBVNGwFoFkdAn02jTjNpunV9lChoBmgJaA9DCGqEfqbezG5AlIaUUpRoFU0GAWgWR0CfTl5f+jubdX2UKGgGaAloD0MIX5oiwOnickCUhpRSlGgVTSwBaBZHQJ9O3wgDA8B1fZQoaAZoCWgPQwgAyt+9Y+ByQJSGlFKUaBVNOwFoFkdAn1BZUPxx1nV9lChoBmgJaA9DCLhX5q16CXJAlIaUUpRoFUv3aBZHQJ9Qa2kSElF1fZQoaAZoCWgPQwj8byU7NqBwQJSGlFKUaBVNAAFoFkdAn1Fiz1K5CnV9lChoBmgJaA9DCEqZ1NDGLXJAlIaUUpRoFUv4aBZHQJ9SGf5DZ151fZQoaAZoCWgPQwhWuOUjqfduQJSGlFKUaBVL+WgWR0CfUlQ5WBBidX2UKGgGaAloD0MIWp2cobhhS0CUhpRSlGgVS7poFkdAn1K0mMOwxHV9lChoBmgJaA9DCCsSE9RweHBAlIaUUpRoFUvtaBZHQJ9WcDZDiOx1fZQoaAZoCWgPQwh9lBEXwFRxQJSGlFKUaBVNGgFoFkdAn1aGQKa5PXV9lChoBmgJaA9DCCRIpdjRhW5AlIaUUpRoFUv3aBZHQJ9WiAlOXVt1fZQoaAZoCWgPQwjrHAOy1wpyQJSGlFKUaBVNKwFoFkdAn1cvUe+23XV9lChoBmgJaA9DCLsLlBRYTHFAlIaUUpRoFU0NAWgWR0CfV25hBqsVdX2UKGgGaAloD0MIFQMkmsASb0CUhpRSlGgVS+hoFkdAn1fLylN1yXV9lChoBmgJaA9DCC8012kk83FAlIaUUpRoFU0nAWgWR0CfWC9RaX8gdX2UKGgGaAloD0MInieeswUacECUhpRSlGgVTR8BaBZHQJ9ZZxgiNbV1fZQoaAZoCWgPQwjPEfkupUFxQJSGlFKUaBVL62gWR0CfWZK9f1HwdX2UKGgGaAloD0MInrZGBOM4YUCUhpRSlGgVTegDaBZHQJ9aApON5t51fZQoaAZoCWgPQwiiQQqeQoRtQJSGlFKUaBVNGgFoFkdAn1tnmFJxvXV9lChoBmgJaA9DCG/W4H1VAnBAlIaUUpRoFUv4aBZHQJ9cHhHbypd1fZQoaAZoCWgPQwj4bvPGCURxQJSGlFKUaBVNAAFoFkdAn1zKMBIWg3V9lChoBmgJaA9DCF9E2zH1F21AlIaUUpRoFU0lAWgWR0CfXNUBnzxxdX2UKGgGaAloD0MIVACMZ9AwbUCUhpRSlGgVTVkBaBZHQJ9ffSThYNl1fZQoaAZoCWgPQwgFU82s5TlyQJSGlFKUaBVL6mgWR0CfYGw2VE/jdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53d25b334018f9b98dfa62067690ccee12f2329727d868e166d6ac4d95198077
|
3 |
+
size 144060
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f8aa08660e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8aa0866170>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8aa0866200>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8aa0866290>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f8aa0866320>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f8aa08663b0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8aa0866440>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f8aa08664d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8aa0866560>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8aa08665f0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8aa0866680>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f8aa08b8210>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651745167.2732997,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANo+i73DwTS6y/50uvBzkLU9vQy6gtKQOQAAAAAAAIA/MyoQvXv2grqKuVK3kZowslrCk7qe1XU2AACAPwAAgD8zJpK8H2aXu17Ftzxca0899TbTPGBsjLsAAIA/AACAP4AYgD1x7WS5Y5ENNPUq267RhDw6pfq9swAAgD8AAIA/mqXiO0h/lbrSgwM20TfIMGbT37qBdB+1AACAPwAAgD+aYQs71t2UPmdtQr1O0oa+jiogvf39FTwAAAAAAAAAAGY+azvD9Se6Umd2trfj0rHLhYI7fyuVNQAAgD8AAIA/ba5QPhGVrD4r1oW+1Iyjvp/rqjw4vFw9AAAAAAAAAAAzKq88w49vvM1dJzyMSnM8Iu3TPZ2NRr0AAIA/AACAP2YCKrxIuY66f3egNgQHnzGHBAw7b3K5tQAAgD8AAIA/mngyvcNlJ7pICxU5Pt2vNJnUFjtV7Cy4AACAPwAAgD8VB5G+I5ZuP3+gr77fF9K+h5jDvvlepDwAAAAAAAAAAFOgBz7HRgg+xG2dvkm7QL7MOcS9eAivvQAAAAAAAAAAmg6gvdiZ6j79Dds8gpqfvj91a73tSl89AAAAAAAAAAATAAO+adcCvIy+kb1yDRg95uY4Pf61ITwAAIA/AAAAAM1qzT3+vZY/b+e6PiwkB7/csg8+GKL0PQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVWhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxOv6BTsacUCUhpRSlIwBbJRNkAGMAXSUR0CfBBL3K0UodX2UKGgGaAloD0MIeZRKeMLLcUCUhpRSlGgVTQMBaBZHQJ8E7xH5Jsh1fZQoaAZoCWgPQwibcoV3uZhxQJSGlFKUaBVL+WgWR0CfBenEVFhHdX2UKGgGaAloD0MIf95UpIIlc0CUhpRSlGgVS+toFkdAnwYuU6gdwXV9lChoBmgJaA9DCBTtKqS8snFAlIaUUpRoFUv8aBZHQJ8GWukk8ih1fZQoaAZoCWgPQwgJNUOqqFJuQJSGlFKUaBVNDAFoFkdAnwjkxREWqXV9lChoBmgJaA9DCP/KSpOSK3JAlIaUUpRoFU0YAWgWR0CfCTLLIPsidX2UKGgGaAloD0MIUfcBSK0IckCUhpRSlGgVS/NoFkdAnwk7uDzy0HV9lChoBmgJaA9DCPRqgNLQlnJAlIaUUpRoFUvzaBZHQJ8Jg/6frbB1fZQoaAZoCWgPQwicwHRat3xyQJSGlFKUaBVNCAFoFkdAnwnUXcgyM3V9lChoBmgJaA9DCKyOHOlMBnNAlIaUUpRoFU0MAWgWR0CfCgdLg4wRdX2UKGgGaAloD0MIAtU/iGR3cUCUhpRSlGgVS+BoFkdAnwtwH/tICnV9lChoBmgJaA9DCJvJN9tc1XJAlIaUUpRoFUvpaBZHQJ8Lg8q4H5d1fZQoaAZoCWgPQwhbKJmc2ipvQJSGlFKUaBVNCQFoFkdAnwxUgOjIrHV9lChoBmgJaA9DCELr4cuETHFAlIaUUpRoFUv/aBZHQJ8Md3A2ycF1fZQoaAZoCWgPQwhuMxXikZ5uQJSGlFKUaBVNHAFoFkdAnw2z7/GVA3V9lChoBmgJaA9DCJ7vp8aLznBAlIaUUpRoFU08AWgWR0CfDjZ39rGjdX2UKGgGaAloD0MIsOO/QJDPckCUhpRSlGgVS/loFkdAnw6kHdGiH3V9lChoBmgJaA9DCAMmcOvuR21AlIaUUpRoFU0CAWgWR0CfDznM+u/2dX2UKGgGaAloD0MI7N/1mXOcckCUhpRSlGgVTSkBaBZHQJ8PV3LV4HJ1fZQoaAZoCWgPQwik/nqFBYRxQJSGlFKUaBVNIgFoFkdAnxB14xDb8HV9lChoBmgJaA9DCPZBlgUT/29AlIaUUpRoFUvraBZHQJ8SLFqBVdZ1fZQoaAZoCWgPQwi6LZELzmZwQJSGlFKUaBVL/GgWR0CfEi3lCCz1dX2UKGgGaAloD0MIDixHyEDmb0CUhpRSlGgVS/9oFkdAnxJDurp7kXV9lChoBmgJaA9DCNJzC13JH3NAlIaUUpRoFUv8aBZHQJ8SedoWYWt1fZQoaAZoCWgPQwi/SdOgaMxvQJSGlFKUaBVNEAFoFkdAnxKQ0fozN3V9lChoBmgJaA9DCI55HXHIrXJAlIaUUpRoFU0ZAWgWR0CfE9bhm5DrdX2UKGgGaAloD0MIGXEBaFQ8cECUhpRSlGgVS/1oFkdAnxRaCg9Ne3V9lChoBmgJaA9DCJ268lme3XFAlIaUUpRoFU0XAWgWR0CfFTEdNnGsdX2UKGgGaAloD0MI1qvI6MDkcUCUhpRSlGgVTQsBaBZHQJ8VqmIj4Yd1fZQoaAZoCWgPQwgXLNUFvEBMQJSGlFKUaBVLuWgWR0CfFaoBaLXMdX2UKGgGaAloD0MI0m2JXHDjcUCUhpRSlGgVTRkBaBZHQJ8WQL5RCQd1fZQoaAZoCWgPQwhEaW/whcRwQJSGlFKUaBVNEQFoFkdAnxcw2l2vCHV9lChoBmgJaA9DCGniHeCJ8XFAlIaUUpRoFU0eAWgWR0CfGCBnSOR1dX2UKGgGaAloD0MI/1w0ZPysckCUhpRSlGgVTRkBaBZHQJ8YWIwdsBR1fZQoaAZoCWgPQwgO12oPe21uQJSGlFKUaBVNKAFoFkdAnxlxX0XgtXV9lChoBmgJaA9DCM7ixcIQGXFAlIaUUpRoFU0NAWgWR0CfGc7T2FnJdX2UKGgGaAloD0MIkwA1tWwNcECUhpRSlGgVS+hoFkdAnxopW/8EV3V9lChoBmgJaA9DCIkLQKO0PnJAlIaUUpRoFUvxaBZHQJ8akSAYpDx1fZQoaAZoCWgPQwgOvFruDAtxQJSGlFKUaBVL92gWR0CfGwspobn6dX2UKGgGaAloD0MIQ8ajVMIEcUCUhpRSlGgVS/9oFkdAnxy2UfPom3V9lChoBmgJaA9DCPHUIw2uGnJAlIaUUpRoFUv0aBZHQJ8c2oQ4CIV1fZQoaAZoCWgPQwjoMjUJHoRyQJSGlFKUaBVNRwFoFkdAnx1fDpC8e3V9lChoBmgJaA9DCFfqWRCKHHNAlIaUUpRoFUvtaBZHQJ8d0W0qpcZ1fZQoaAZoCWgPQwiRDg9hfIlyQJSGlFKUaBVNUAFoFkdAnx3tDYywfXV9lChoBmgJaA9DCFfNc0Q+PXJAlIaUUpRoFUv8aBZHQJ8eS/Firkt1fZQoaAZoCWgPQwi/1qVGqL9wQJSGlFKUaBVNFgFoFkdAnx61Oj7AL3V9lChoBmgJaA9DCIem7PSDzXFAlIaUUpRoFU0IAWgWR0CfHy/C66J7dX2UKGgGaAloD0MILquwGWA0ckCUhpRSlGgVTQ4BaBZHQJ87eu+yquN1fZQoaAZoCWgPQwgewvhpXCRvQJSGlFKUaBVL/2gWR0CfPSDlHSWrdX2UKGgGaAloD0MI0/iFV5LwcECUhpRSlGgVTSIBaBZHQJ89Rq59Vm11fZQoaAZoCWgPQwiNtiqJLAtxQJSGlFKUaBVNOAFoFkdAnz3YN3GGVXV9lChoBmgJaA9DCI+n5QeuK25AlIaUUpRoFU0lAWgWR0CfP8nezlcRdX2UKGgGaAloD0MILGUZ4hgOcUCUhpRSlGgVTTABaBZHQJ8/yZWq95B1fZQoaAZoCWgPQwijkGRWr6ZyQJSGlFKUaBVL9WgWR0CfQJIYFaB7dX2UKGgGaAloD0MIJCcTt8o+cECUhpRSlGgVS/1oFkdAn0GRIOH313V9lChoBmgJaA9DCJ+sGK4O/k9AlIaUUpRoFUvJaBZHQJ9B3FPznRt1fZQoaAZoCWgPQwireCPzCOpwQJSGlFKUaBVNIwFoFkdAn0JSM98qnXV9lChoBmgJaA9DCEQV/gyvJnFAlIaUUpRoFU1kAWgWR0CfQvK6WgOCdX2UKGgGaAloD0MIayqLwu51cUCUhpRSlGgVTQMBaBZHQJ9DAWP91lp1fZQoaAZoCWgPQwgYXHNHPyVyQJSGlFKUaBVNIwFoFkdAn0PBx1gYxnV9lChoBmgJaA9DCIdSexGtzXBAlIaUUpRoFUvvaBZHQJ9EkQtjCpF1fZQoaAZoCWgPQwi/1qVGaCxuQJSGlFKUaBVNQAFoFkdAn0SuEVWS2nV9lChoBmgJaA9DCCYZOQu77HFAlIaUUpRoFU0mAWgWR0CfRL85jpcHdX2UKGgGaAloD0MIMjogCTtbcUCUhpRSlGgVTQgBaBZHQJ9HEyxiXpp1fZQoaAZoCWgPQwhnKO54k+hyQJSGlFKUaBVNFgFoFkdAn0fNYSxqwnV9lChoBmgJaA9DCNDukGIAC3FAlIaUUpRoFU0hAWgWR0CfSNK02LpBdX2UKGgGaAloD0MIK4nsgywGcECUhpRSlGgVS/VoFkdAn0kGpQ1rI3V9lChoBmgJaA9DCPNZngf33G1AlIaUUpRoFU0CAWgWR0CfSYclPacqdX2UKGgGaAloD0MIUMJM279DcUCUhpRSlGgVTREBaBZHQJ9L5kFwDNh1fZQoaAZoCWgPQwia7+AnTp9wQJSGlFKUaBVNKwFoFkdAn0v8YEW69XV9lChoBmgJaA9DCH41BwgmZXNAlIaUUpRoFU0BAWgWR0CfS/xVhkRSdX2UKGgGaAloD0MIglMfSN42UUCUhpRSlGgVS9poFkdAn00DKLbYb3V9lChoBmgJaA9DCNRJtrpcJHFAlIaUUpRoFU0TAWgWR0CfTU/GlyimdX2UKGgGaAloD0MIYVRSJ2BRc0CUhpRSlGgVTS8BaBZHQJ9NXEvTPSl1fZQoaAZoCWgPQwjDt7BufFxzQJSGlFKUaBVNGwFoFkdAn02jTjNpunV9lChoBmgJaA9DCGqEfqbezG5AlIaUUpRoFU0GAWgWR0CfTl5f+jubdX2UKGgGaAloD0MIX5oiwOnickCUhpRSlGgVTSwBaBZHQJ9O3wgDA8B1fZQoaAZoCWgPQwgAyt+9Y+ByQJSGlFKUaBVNOwFoFkdAn1BZUPxx1nV9lChoBmgJaA9DCLhX5q16CXJAlIaUUpRoFUv3aBZHQJ9Qa2kSElF1fZQoaAZoCWgPQwj8byU7NqBwQJSGlFKUaBVNAAFoFkdAn1Fiz1K5CnV9lChoBmgJaA9DCEqZ1NDGLXJAlIaUUpRoFUv4aBZHQJ9SGf5DZ151fZQoaAZoCWgPQwhWuOUjqfduQJSGlFKUaBVL+WgWR0CfUlQ5WBBidX2UKGgGaAloD0MIWp2cobhhS0CUhpRSlGgVS7poFkdAn1K0mMOwxHV9lChoBmgJaA9DCCsSE9RweHBAlIaUUpRoFUvtaBZHQJ9WcDZDiOx1fZQoaAZoCWgPQwh9lBEXwFRxQJSGlFKUaBVNGgFoFkdAn1aGQKa5PXV9lChoBmgJaA9DCCRIpdjRhW5AlIaUUpRoFUv3aBZHQJ9WiAlOXVt1fZQoaAZoCWgPQwjrHAOy1wpyQJSGlFKUaBVNKwFoFkdAn1cvUe+23XV9lChoBmgJaA9DCLsLlBRYTHFAlIaUUpRoFU0NAWgWR0CfV25hBqsVdX2UKGgGaAloD0MIFQMkmsASb0CUhpRSlGgVS+hoFkdAn1fLylN1yXV9lChoBmgJaA9DCC8012kk83FAlIaUUpRoFU0nAWgWR0CfWC9RaX8gdX2UKGgGaAloD0MInieeswUacECUhpRSlGgVTR8BaBZHQJ9ZZxgiNbV1fZQoaAZoCWgPQwjPEfkupUFxQJSGlFKUaBVL62gWR0CfWZK9f1HwdX2UKGgGaAloD0MInrZGBOM4YUCUhpRSlGgVTegDaBZHQJ9aApON5t51fZQoaAZoCWgPQwiiQQqeQoRtQJSGlFKUaBVNGgFoFkdAn1tnmFJxvXV9lChoBmgJaA9DCG/W4H1VAnBAlIaUUpRoFUv4aBZHQJ9cHhHbypd1fZQoaAZoCWgPQwj4bvPGCURxQJSGlFKUaBVNAAFoFkdAn1zKMBIWg3V9lChoBmgJaA9DCF9E2zH1F21AlIaUUpRoFU0lAWgWR0CfXNUBnzxxdX2UKGgGaAloD0MIVACMZ9AwbUCUhpRSlGgVTVkBaBZHQJ9ffSThYNl1fZQoaAZoCWgPQwgFU82s5TlyQJSGlFKUaBVL6mgWR0CfYGw2VE/jdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 372,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8a618036ccfba1a0e95c291529cb8d7fdb1280a0c9d39cc49f4ea886703cb6e
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b53b64178255c3b9763bd5d8f35da75ee4686a8657957e53241df21c64d26aa8
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8d864d10db4e6d9564f5c7794ee2a7baa2f71e4b96c4b1c7a6329cb4b722759
|
3 |
+
size 196152
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 286.95220738122464, "std_reward": 19.305724947134284, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T10:26:59.860137"}
|