nomsgadded
commited on
Commit
•
9121709
1
Parent(s):
3c333df
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +8 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -57.79 +/- 10.04
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1a78a419d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1a78a41a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1a78a41af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1a78a41b80>", "_build": "<function ActorCriticPolicy._build at 0x7f1a78a41c10>", "forward": "<function ActorCriticPolicy.forward at 0x7f1a78a41ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1a78a41d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1a78a41dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1a78a41e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1a78a41ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1a78a41f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1a78a45040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1a78abdd80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1003520, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696305299136998456, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADOXD7xShoU6ojAgPF0gn7zBOvm5xklzvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFWjd/8VHnWMAWyUTegDjAF0lEdAmELag2606nV9lChoBkdASAT+kxh2GWgHTegDaAhHQJhEZaaCtih1fZQoaAZHQFkzLKmsNlRoB03oA2gIR0CYRfQDV6NVdX2UKGgGR8BOMXq7iADraAdL7WgIR0CYRlA6uGKydX2UKGgGR0Bh3ReiSJTEaAdN6ANoCEdAmEfczMzMzXV9lChoBkdAUaA6fapPymgHTegDaAhHQJhJa5MDfWN1fZQoaAZHQEbEdNFjNINoB0vXaAhHQJhJv1QIldF1fZQoaAZHQCvIrH2h7E5oB00XAWgIR0CYSit2s7uEdX2UKGgGR0BcuK508vEkaAdN6ANoCEdAmEu3h4t6HHV9lChoBkdAV9fOHFglW2gHTegDaAhHQJhNRyfcvdx1fZQoaAZHQFiJl+Vkc0doB03oA2gIR0CYTwWhAWzodX2UKGgGR0Ba9tjCpFTeaAdN6ANoCEdAmFCS9Zid8XV9lChoBkdAU1Q9dNWU8mgHTegDaAhHQJhSIMjNY8x1fZQoaAZHwBbOBczImw9oB00ZAWgIR0CYUo3vx6OYdX2UKGgGR0BdMAHNX5nEaAdN6ANoCEdAmFQajnFHa3V9lChoBkdAVTBIjGDL82gHTegDaAhHQJhVrIgeRxN1fZQoaAZHQFTWosqaw2VoB03oA2gIR0CYVz8lXzUadX2UKGgGR0BgZJwQ176YaAdN6ANoCEdAmFjPbj94vHV9lChoBkdAYcMxKxs2vWgHTegDaAhHQJhaYYEW69V1fZQoaAZHwDc7NbC79Q5oB01dAWgIR0CYWuryUcGUdX2UKGgGR8BKKDb8FY+0aAdNaQFoCEdAmFt5N47ihnV9lChoBkdAYsN/d69kBmgHTegDaAhHQJhdC9SMtK91fZQoaAZHQF79DZlFtsNoB03oA2gIR0CYXsg9Net0dX2UKGgGR0BQ1bgflp49aAdN6ANoCEdAmGBZUDMeOnV9lChoBkdAX0I0rK/202gHTegDaAhHQJhh7DuSfUZ1fZQoaAZHQGFviJoCdSVoB03oA2gIR0CYY3dMj/uLdX2UKGgGR8BPEzdUKiPAaAdNTwFoCEdAmGP58a4tpXV9lChoBkdAWVJRIjGDMGgHTegDaAhHQJhlhSm65G11fZQoaAZHQFyooePq9oNoB03oA2gIR0CYZxGTs6aLdX2UKGgGR0BhJwZ88cMmaAdN6ANoCEdAmGidTtLL6nV9lChoBkfARMBjWkJrtWgHTUUBaAhHQJhpG4c3l0Z1fZQoaAZHQEUAZqmCROloB00UAWgIR0CYaYW1+iJwdX2UKGgGR0Bf6mVRk3CLaAdN6ANoCEdAmGsSdSVGC3V9lChoBkdAUz3QMQVbimgHTegDaAhHQJhsngflp491fZQoaAZHQFthS1Vo6CFoB03oA2gIR0CYbinJDE3sdX2UKGgGR0BYNSLZSNwSaAdN6ANoCEdAmG/hBiTdL3V9lChoBkdAAyJ+DvmYB2gHTVkBaAhHQJhwamoBJZp1fZQoaAZHQF19Nh3JPqNoB03oA2gIR0CYcf9H+ZPVdX2UKGgGR0BVjk0WM0gsaAdN6ANoCEdAmHOPn4fwJHV9lChoBkdAYzPdSEUTMGgHTegDaAhHQJh1JIvrWy11fZQoaAZHQFoanHeaa1FoB03oA2gIR0CYdrb212JSdX2UKGgGR0BhD3LowEhaaAdN6ANoCEdAmHhKgM+eOHV9lChoBkdAKY+4Cp3otGgHS+1oCEdAmHiosZpBX3V9lChoBkdAYNCvmozeoGgHTegDaAhHQJh6NyjpLVZ1fZQoaAZHwFEICxNZeRhoB0vsaAhHQJh6lTYNAkd1fZQoaAZHQFdhvStvGZNoB03oA2gIR0CYfB7Sy+pPdX2UKGgGR0BSaNlqagEmaAdN6ANoCEdAmH2tVea8YnV9lChoBkdAW3V/EwWWQmgHTegDaAhHQJh/Z70Fr2x1fZQoaAZHwBUGucMEzO5oB01xAWgIR0CYf/f0VafSdX2UKGgGR0Bf51BhQWN4aAdN6ANoCEdAmIGDK5kK/nV9lChoBkdAWF25vtMPBmgHTegDaAhHQJiDEQTVUdd1fZQoaAZHQC9T5XU6PsBoB00uAWgIR0CYg4a1Cw8odX2UKGgGR0BhKHYDklu4aAdN6ANoCEdAmIUWH+Idl3V9lChoBkdAFvV2Rq46O2gHS+9oCEdAmIVzrVvuPXV9lChoBke/97im2sq8UWgHTToBaAhHQJiF7gBLf1p1fZQoaAZHQEODPO6d1+1oB03oA2gIR0CYh3up0fYBdX2UKGgGR0BgnqkEcKgJaAdN6ANoCEdAmIkKC17Y03V9lChoBkdAXz6eVcD8tWgHTegDaAhHQJiKmoUBXCF1fZQoaAZHQGD/HnEETxpoB03oA2gIR0CYjCcPOIIodX2UKGgGR0BUo/OyE+PjaAdN6ANoCEdAmI2yrT6SDHV9lChoBkdAWZ7vZyuIRGgHTegDaAhHQJiPcvsZ5zJ1fZQoaAZHwDlMyULUkOZoB0vraAhHQJiPzvWpZOl1fZQoaAZHQFhZBk7OmixoB03oA2gIR0CYkWA/s3Q2dX2UKGgGR0Bjn9SqEOAiaAdN6ANoCEdAmJLwuRLbpXV9lChoBkdAQz9tQ9A5aWgHTegDaAhHQJiUgIjW07d1fZQoaAZHwDp7HNorWiFoB00aAWgIR0CYlO44Ia99dX2UKGgGR0BZgY77sOXmaAdN6ANoCEdAmJZ6PS2H+XV9lChoBkdAVpCX+l0o0GgHTegDaAhHQJiYBo8IRiB1fZQoaAZHQFe1RHf/FR5oB03oA2gIR0CYmZKTB68hdX2UKGgGR0BguWhufmLcaAdN6ANoCEdAmJsmHLzPKXV9lChoBkdAWAOpIczZYmgHTegDaAhHQJictg2Ifr91fZQoaAZHQFydGfPHDJloB03oA2gIR0CYnkHy3CsPdX2UKGgGR8BPLi5mRNh3aAdNOgFoCEdAmJ69C3PRiXV9lChoBkdAXIo/7iyY5WgHTegDaAhHQJigc4HX2/V1fZQoaAZHQFKpLVnVXmxoB03oA2gIR0CYof+QEIPcdX2UKGgGR0Bge49JSR8uaAdN6ANoCEdAmKOMZgogFHV9lChoBkdAMdoGdI5HVmgHS/9oCEdAmKPv0Eovz3V9lChoBkdAXXwnndO6/mgHTegDaAhHQJilfjU/fO51fZQoaAZHwDvpE1EVnEloB01DAWgIR0CYpfy8zyjIdX2UKGgGR0BjFqZWq95AaAdN6ANoCEdAmKeJLVWjoXV9lChoBkfAIhuKfnOjZmgHTTIBaAhHQJioAE0SAYp1fZQoaAZHQGGxkjopx3poB03oA2gIR0CYqY91loUSdX2UKGgGR0AtbzK9wm3OaAdNGQFoCEdAmKn9BOYYznV9lChoBkfAIgNVinYQKGgHTegDaAhHQJirjOv+wTx1fZQoaAZHQFwZpvxYq5NoB03oA2gIR0CYrSGgi/widX2UKGgGR0BYmwVCXyAhaAdN6ANoCEdAmK62aQV9GHV9lChoBkdAYV1gtOEdvWgHTegDaAhHQJiwb6ZYxL11fZQoaAZHQFUHzuF6AvtoB03oA2gIR0CYsgmKIi1RdX2UKGgGR0BgpWnbZezEaAdN6ANoCEdAmLOX1vl2eXV9lChoBkfASNN8b70nPWgHTWMBaAhHQJi0JRhttQ91fZQoaAZHQFyVipNsWO9oB03oA2gIR0CYtbERJ2+xdX2UKGgGR8AnGEmplz2faAdNeAFoCEdAmLZC83++/XV9lChoBkdAY1Oc4HX2/WgHTegDaAhHQJi30SmIj4Z1fZQoaAZHQFhT6z3RG+doB03oA2gIR0CYuWC0F8ohdX2UKGgGR0BLiVLSNOuaaAdL3GgIR0CYubZBcAzYdX2UKGgGR0BKdTasZHd5aAdL+mgIR0CYuhe/Yao/dX2UKGgGR0Bgubel9BrvaAdN6ANoCEdAmLuljqfOEHV9lChoBkdAXcJnbqQiimgHTegDaAhHQJi9MNwzch11fZQoaAZHQBJn2h7E5yVoB00HAWgIR0CYvZf/FR51dX2UKGgGR8BNniILw4KhaAdNZQFoCEdAmL4k1dgOSXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1564, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 10240, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 10240, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL3N5c2NvbWFjaC8uY29uZGEvZW52cy9STC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvc3lzY29tYWNoLy5jb25kYS9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL3N5c2NvbWFjaC8uY29uZGEvZW52cy9STC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvc3lzY29tYWNoLy5jb25kYS9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.2.0-33-generic-x86_64-with-glibc2.17 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Thu Sep 7 10:33:52 UTC 2", "Python": "3.8.18", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:380c4d42afa256f0f22e8987374c4e9a1d4810774e1074b8e130b51412ac945e
|
3 |
+
size 146205
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f1a78a419d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1a78a41a60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1a78a41af0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1a78a41b80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f1a78a41c10>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f1a78a41ca0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1a78a41d30>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1a78a41dc0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f1a78a41e50>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1a78a41ee0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1a78a41f70>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1a78a45040>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f1a78abdd80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1003520,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1696305299136998456,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADOXD7xShoU6ojAgPF0gn7zBOvm5xklzvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.0035199999999999676,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFWjd/8VHnWMAWyUTegDjAF0lEdAmELag2606nV9lChoBkdASAT+kxh2GWgHTegDaAhHQJhEZaaCtih1fZQoaAZHQFkzLKmsNlRoB03oA2gIR0CYRfQDV6NVdX2UKGgGR8BOMXq7iADraAdL7WgIR0CYRlA6uGKydX2UKGgGR0Bh3ReiSJTEaAdN6ANoCEdAmEfczMzMzXV9lChoBkdAUaA6fapPymgHTegDaAhHQJhJa5MDfWN1fZQoaAZHQEbEdNFjNINoB0vXaAhHQJhJv1QIldF1fZQoaAZHQCvIrH2h7E5oB00XAWgIR0CYSit2s7uEdX2UKGgGR0BcuK508vEkaAdN6ANoCEdAmEu3h4t6HHV9lChoBkdAV9fOHFglW2gHTegDaAhHQJhNRyfcvdx1fZQoaAZHQFiJl+Vkc0doB03oA2gIR0CYTwWhAWzodX2UKGgGR0Ba9tjCpFTeaAdN6ANoCEdAmFCS9Zid8XV9lChoBkdAU1Q9dNWU8mgHTegDaAhHQJhSIMjNY8x1fZQoaAZHwBbOBczImw9oB00ZAWgIR0CYUo3vx6OYdX2UKGgGR0BdMAHNX5nEaAdN6ANoCEdAmFQajnFHa3V9lChoBkdAVTBIjGDL82gHTegDaAhHQJhVrIgeRxN1fZQoaAZHQFTWosqaw2VoB03oA2gIR0CYVz8lXzUadX2UKGgGR0BgZJwQ176YaAdN6ANoCEdAmFjPbj94vHV9lChoBkdAYcMxKxs2vWgHTegDaAhHQJhaYYEW69V1fZQoaAZHwDc7NbC79Q5oB01dAWgIR0CYWuryUcGUdX2UKGgGR8BKKDb8FY+0aAdNaQFoCEdAmFt5N47ihnV9lChoBkdAYsN/d69kBmgHTegDaAhHQJhdC9SMtK91fZQoaAZHQF79DZlFtsNoB03oA2gIR0CYXsg9Net0dX2UKGgGR0BQ1bgflp49aAdN6ANoCEdAmGBZUDMeOnV9lChoBkdAX0I0rK/202gHTegDaAhHQJhh7DuSfUZ1fZQoaAZHQGFviJoCdSVoB03oA2gIR0CYY3dMj/uLdX2UKGgGR8BPEzdUKiPAaAdNTwFoCEdAmGP58a4tpXV9lChoBkdAWVJRIjGDMGgHTegDaAhHQJhlhSm65G11fZQoaAZHQFyooePq9oNoB03oA2gIR0CYZxGTs6aLdX2UKGgGR0BhJwZ88cMmaAdN6ANoCEdAmGidTtLL6nV9lChoBkfARMBjWkJrtWgHTUUBaAhHQJhpG4c3l0Z1fZQoaAZHQEUAZqmCROloB00UAWgIR0CYaYW1+iJwdX2UKGgGR0Bf6mVRk3CLaAdN6ANoCEdAmGsSdSVGC3V9lChoBkdAUz3QMQVbimgHTegDaAhHQJhsngflp491fZQoaAZHQFthS1Vo6CFoB03oA2gIR0CYbinJDE3sdX2UKGgGR0BYNSLZSNwSaAdN6ANoCEdAmG/hBiTdL3V9lChoBkdAAyJ+DvmYB2gHTVkBaAhHQJhwamoBJZp1fZQoaAZHQF19Nh3JPqNoB03oA2gIR0CYcf9H+ZPVdX2UKGgGR0BVjk0WM0gsaAdN6ANoCEdAmHOPn4fwJHV9lChoBkdAYzPdSEUTMGgHTegDaAhHQJh1JIvrWy11fZQoaAZHQFoanHeaa1FoB03oA2gIR0CYdrb212JSdX2UKGgGR0BhD3LowEhaaAdN6ANoCEdAmHhKgM+eOHV9lChoBkdAKY+4Cp3otGgHS+1oCEdAmHiosZpBX3V9lChoBkdAYNCvmozeoGgHTegDaAhHQJh6NyjpLVZ1fZQoaAZHwFEICxNZeRhoB0vsaAhHQJh6lTYNAkd1fZQoaAZHQFdhvStvGZNoB03oA2gIR0CYfB7Sy+pPdX2UKGgGR0BSaNlqagEmaAdN6ANoCEdAmH2tVea8YnV9lChoBkdAW3V/EwWWQmgHTegDaAhHQJh/Z70Fr2x1fZQoaAZHwBUGucMEzO5oB01xAWgIR0CYf/f0VafSdX2UKGgGR0Bf51BhQWN4aAdN6ANoCEdAmIGDK5kK/nV9lChoBkdAWF25vtMPBmgHTegDaAhHQJiDEQTVUdd1fZQoaAZHQC9T5XU6PsBoB00uAWgIR0CYg4a1Cw8odX2UKGgGR0BhKHYDklu4aAdN6ANoCEdAmIUWH+Idl3V9lChoBkdAFvV2Rq46O2gHS+9oCEdAmIVzrVvuPXV9lChoBke/97im2sq8UWgHTToBaAhHQJiF7gBLf1p1fZQoaAZHQEODPO6d1+1oB03oA2gIR0CYh3up0fYBdX2UKGgGR0BgnqkEcKgJaAdN6ANoCEdAmIkKC17Y03V9lChoBkdAXz6eVcD8tWgHTegDaAhHQJiKmoUBXCF1fZQoaAZHQGD/HnEETxpoB03oA2gIR0CYjCcPOIIodX2UKGgGR0BUo/OyE+PjaAdN6ANoCEdAmI2yrT6SDHV9lChoBkdAWZ7vZyuIRGgHTegDaAhHQJiPcvsZ5zJ1fZQoaAZHwDlMyULUkOZoB0vraAhHQJiPzvWpZOl1fZQoaAZHQFhZBk7OmixoB03oA2gIR0CYkWA/s3Q2dX2UKGgGR0Bjn9SqEOAiaAdN6ANoCEdAmJLwuRLbpXV9lChoBkdAQz9tQ9A5aWgHTegDaAhHQJiUgIjW07d1fZQoaAZHwDp7HNorWiFoB00aAWgIR0CYlO44Ia99dX2UKGgGR0BZgY77sOXmaAdN6ANoCEdAmJZ6PS2H+XV9lChoBkdAVpCX+l0o0GgHTegDaAhHQJiYBo8IRiB1fZQoaAZHQFe1RHf/FR5oB03oA2gIR0CYmZKTB68hdX2UKGgGR0BguWhufmLcaAdN6ANoCEdAmJsmHLzPKXV9lChoBkdAWAOpIczZYmgHTegDaAhHQJictg2Ifr91fZQoaAZHQFydGfPHDJloB03oA2gIR0CYnkHy3CsPdX2UKGgGR8BPLi5mRNh3aAdNOgFoCEdAmJ69C3PRiXV9lChoBkdAXIo/7iyY5WgHTegDaAhHQJigc4HX2/V1fZQoaAZHQFKpLVnVXmxoB03oA2gIR0CYof+QEIPcdX2UKGgGR0Bge49JSR8uaAdN6ANoCEdAmKOMZgogFHV9lChoBkdAMdoGdI5HVmgHS/9oCEdAmKPv0Eovz3V9lChoBkdAXXwnndO6/mgHTegDaAhHQJilfjU/fO51fZQoaAZHwDvpE1EVnEloB01DAWgIR0CYpfy8zyjIdX2UKGgGR0BjFqZWq95AaAdN6ANoCEdAmKeJLVWjoXV9lChoBkfAIhuKfnOjZmgHTTIBaAhHQJioAE0SAYp1fZQoaAZHQGGxkjopx3poB03oA2gIR0CYqY91loUSdX2UKGgGR0AtbzK9wm3OaAdNGQFoCEdAmKn9BOYYznV9lChoBkfAIgNVinYQKGgHTegDaAhHQJirjOv+wTx1fZQoaAZHQFwZpvxYq5NoB03oA2gIR0CYrSGgi/widX2UKGgGR0BYmwVCXyAhaAdN6ANoCEdAmK62aQV9GHV9lChoBkdAYV1gtOEdvWgHTegDaAhHQJiwb6ZYxL11fZQoaAZHQFUHzuF6AvtoB03oA2gIR0CYsgmKIi1RdX2UKGgGR0BgpWnbZezEaAdN6ANoCEdAmLOX1vl2eXV9lChoBkfASNN8b70nPWgHTWMBaAhHQJi0JRhttQ91fZQoaAZHQFyVipNsWO9oB03oA2gIR0CYtbERJ2+xdX2UKGgGR8AnGEmplz2faAdNeAFoCEdAmLZC83++/XV9lChoBkdAY1Oc4HX2/WgHTegDaAhHQJi30SmIj4Z1fZQoaAZHQFhT6z3RG+doB03oA2gIR0CYuWC0F8ohdX2UKGgGR0BLiVLSNOuaaAdL3GgIR0CYubZBcAzYdX2UKGgGR0BKdTasZHd5aAdL+mgIR0CYuhe/Yao/dX2UKGgGR0Bgubel9BrvaAdN6ANoCEdAmLuljqfOEHV9lChoBkdAXcJnbqQiimgHTegDaAhHQJi9MNwzch11fZQoaAZHQBJn2h7E5yVoB00HAWgIR0CYvZf/FR51dX2UKGgGR8BNniILw4KhaAdNZQFoCEdAmL4k1dgOSXVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 1564,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 1,
|
80 |
+
"n_steps": 10240,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 10240,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL3N5c2NvbWFjaC8uY29uZGEvZW52cy9STC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvc3lzY29tYWNoLy5jb25kYS9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWV6wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXC9ob21lL3N5c2NvbWFjaC8uY29uZGEvZW52cy9STC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLhEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxcL2hvbWUvc3lzY29tYWNoLy5jb25kYS9lbnZzL1JML2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0f6d3a135bd99da2d29fcff381186e3e40b4175a2689461357cde91f4bbc486
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4b40585f89962930b0329a67af67591c02d67a8dd7503e9b5611393ba8fcf40
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.2.0-33-generic-x86_64-with-glibc2.17 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Thu Sep 7 10:33:52 UTC 2
|
2 |
+
- Python: 3.8.18
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
replay.mp4
ADDED
Binary file (204 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -57.7919701, "std_reward": 10.04469108523948, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-03T12:01:44.151594"}
|