Add transformers.js tag and example code
Browse files
README.md
CHANGED
@@ -5,6 +5,8 @@ tags:
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- mteb
|
|
|
|
|
8 |
model-index:
|
9 |
- name: epoch_0_model
|
10 |
results:
|
@@ -2708,6 +2710,22 @@ The model natively supports scaling of the sequence length past 2048 tokens. To
|
|
2708 |
+ model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True, rotary_scaling_factor=2)
|
2709 |
```
|
2710 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2711 |
# Join the Nomic Community
|
2712 |
|
2713 |
- Nomic: [https://nomic.ai](https://nomic.ai)
|
|
|
5 |
- feature-extraction
|
6 |
- sentence-similarity
|
7 |
- mteb
|
8 |
+
- transformers
|
9 |
+
- transformers.js
|
10 |
model-index:
|
11 |
- name: epoch_0_model
|
12 |
results:
|
|
|
2710 |
+ model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1', trust_remote_code=True, rotary_scaling_factor=2)
|
2711 |
```
|
2712 |
|
2713 |
+
### Transformers.js
|
2714 |
+
|
2715 |
+
```js
|
2716 |
+
import { pipeline } from '@xenova/transformers';
|
2717 |
+
|
2718 |
+
// Create a feature extraction pipeline
|
2719 |
+
const extractor = await pipeline('feature-extraction', 'nomic-ai/nomic-embed-text-v1', {
|
2720 |
+
quantized: false, // Comment out this line to use the quantized version
|
2721 |
+
});
|
2722 |
+
|
2723 |
+
// Compute sentence embeddings
|
2724 |
+
const texts = ['What is TSNE?', 'Who is Laurens van der Maaten?'];
|
2725 |
+
const embeddings = await extractor(texts, { pooling: 'mean', normalize: true });
|
2726 |
+
console.log(embeddings);
|
2727 |
+
```
|
2728 |
+
|
2729 |
# Join the Nomic Community
|
2730 |
|
2731 |
- Nomic: [https://nomic.ai](https://nomic.ai)
|