usage at the top (#28)
Browse files- usage at the top (22a61f969963dc430753f8b0bdf3d8d25f5b9e5d)
Co-authored-by: Max Cembalest <MaxNomic@users.noreply.huggingface.co>
README.md
CHANGED
@@ -2609,63 +2609,8 @@ language:
|
|
2609 |
|
2610 |
# nomic-embed-text-v1.5: Resizable Production Embeddings with Matryoshka Representation Learning
|
2611 |
|
2612 |
-
`nomic-embed-text-v1.5` is an improvement upon [Nomic Embed](https://huggingface.co/nomic-ai/nomic-embed-text-v1) that utilizes [Matryoshka Representation Learning](https://arxiv.org/abs/2205.13147) which gives developers the flexibility to trade off the embedding size for a negligible reduction in performance.
|
2613 |
-
|
2614 |
-
|
2615 |
-
|
2616 |
-
| Name | SeqLen | Dimension | MTEB |
|
2617 |
-
| :-------------------------------:| :----- | :-------- | :------: |
|
2618 |
-
| nomic-embed-text-v1 | 8192 | 768 | **62.39** |
|
2619 |
-
| nomic-embed-text-v1.5 | 8192 | 768 | 62.28 |
|
2620 |
-
| nomic-embed-text-v1.5 | 8192 | 512 | 61.96 |
|
2621 |
-
| nomic-embed-text-v1.5 | 8192 | 256 | 61.04 |
|
2622 |
-
| nomic-embed-text-v1.5 | 8192 | 128 | 59.34 |
|
2623 |
-
| nomic-embed-text-v1.5 | 8192 | 64 | 56.10 |
|
2624 |
-
|
2625 |
-
|
2626 |
-
![image/png](https://cdn-uploads.huggingface.co/production/uploads/607997c83a565c15675055b3/CRnaHV-c2wMUMZKw72q85.png)
|
2627 |
-
|
2628 |
**Exciting Update!**: `nomic-embed-text-v1.5` is now multimodal! [nomic-embed-vision-v1](https://huggingface.co/nomic-ai/nomic-embed-vision-v1.5) is aligned to the embedding space of `nomic-embed-text-v1.5`, meaning any text embedding is multimodal!
|
2629 |
|
2630 |
-
|
2631 |
-
## Hosted Inference API
|
2632 |
-
|
2633 |
-
The easiest way to get started with Nomic Embed is through the Nomic Embedding API.
|
2634 |
-
|
2635 |
-
Generating embeddings with the `nomic` Python client is as easy as
|
2636 |
-
|
2637 |
-
```python
|
2638 |
-
from nomic import embed
|
2639 |
-
|
2640 |
-
output = embed.text(
|
2641 |
-
texts=['Nomic Embedding API', '#keepAIOpen'],
|
2642 |
-
model='nomic-embed-text-v1.5',
|
2643 |
-
task_type='search_document',
|
2644 |
-
dimensionality=256,
|
2645 |
-
)
|
2646 |
-
|
2647 |
-
print(output)
|
2648 |
-
```
|
2649 |
-
|
2650 |
-
For more information, see the [API reference](https://docs.nomic.ai/reference/endpoints/nomic-embed-text)
|
2651 |
-
|
2652 |
-
## Data Visualization
|
2653 |
-
Click the Nomic Atlas map below to visualize a 5M sample of our contrastive pretraining data!
|
2654 |
-
|
2655 |
-
|
2656 |
-
[![image/webp](https://cdn-uploads.huggingface.co/production/uploads/607997c83a565c15675055b3/pjhJhuNyRfPagRd_c_iUz.webp)](https://atlas.nomic.ai/map/nomic-text-embed-v1-5m-sample)
|
2657 |
-
|
2658 |
-
## Training Details
|
2659 |
-
|
2660 |
-
We train our embedder using a multi-stage training pipeline. Starting from a long-context [BERT model](https://huggingface.co/nomic-ai/nomic-bert-2048),
|
2661 |
-
the first unsupervised contrastive stage trains on a dataset generated from weakly related text pairs, such as question-answer pairs from forums like StackExchange and Quora, title-body pairs from Amazon reviews, and summarizations from news articles.
|
2662 |
-
|
2663 |
-
In the second finetuning stage, higher quality labeled datasets such as search queries and answers from web searches are leveraged. Data curation and hard-example mining is crucial in this stage.
|
2664 |
-
|
2665 |
-
For more details, see the Nomic Embed [Technical Report](https://static.nomic.ai/reports/2024_Nomic_Embed_Text_Technical_Report.pdf) and corresponding [blog post](https://blog.nomic.ai/posts/nomic-embed-matryoshka).
|
2666 |
-
|
2667 |
-
Training data to train the models is released in its entirety. For more details, see the `contrastors` [repository](https://github.com/nomic-ai/contrastors)
|
2668 |
-
|
2669 |
## Usage
|
2670 |
|
2671 |
**Important**: the text prompt *must* include a *task instruction prefix*, instructing the model which task is being performed.
|
@@ -2818,6 +2763,61 @@ embeddings = layer_norm(embeddings, [embeddings.dims[1]])
|
|
2818 |
console.log(embeddings.tolist());
|
2819 |
```
|
2820 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2821 |
# Join the Nomic Community
|
2822 |
|
2823 |
- Nomic: [https://nomic.ai](https://nomic.ai)
|
|
|
2609 |
|
2610 |
# nomic-embed-text-v1.5: Resizable Production Embeddings with Matryoshka Representation Learning
|
2611 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2612 |
**Exciting Update!**: `nomic-embed-text-v1.5` is now multimodal! [nomic-embed-vision-v1](https://huggingface.co/nomic-ai/nomic-embed-vision-v1.5) is aligned to the embedding space of `nomic-embed-text-v1.5`, meaning any text embedding is multimodal!
|
2613 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2614 |
## Usage
|
2615 |
|
2616 |
**Important**: the text prompt *must* include a *task instruction prefix*, instructing the model which task is being performed.
|
|
|
2763 |
console.log(embeddings.tolist());
|
2764 |
```
|
2765 |
|
2766 |
+
|
2767 |
+
## Nomic API
|
2768 |
+
|
2769 |
+
The easiest way to use Nomic Embed is through the Nomic Embedding API.
|
2770 |
+
|
2771 |
+
Generating embeddings with the `nomic` Python client is as easy as
|
2772 |
+
|
2773 |
+
```python
|
2774 |
+
from nomic import embed
|
2775 |
+
|
2776 |
+
output = embed.text(
|
2777 |
+
texts=['Nomic Embedding API', '#keepAIOpen'],
|
2778 |
+
model='nomic-embed-text-v1.5',
|
2779 |
+
task_type='search_document',
|
2780 |
+
dimensionality=256,
|
2781 |
+
)
|
2782 |
+
|
2783 |
+
print(output)
|
2784 |
+
```
|
2785 |
+
|
2786 |
+
For more information, see the [API reference](https://docs.nomic.ai/reference/endpoints/nomic-embed-text)
|
2787 |
+
|
2788 |
+
|
2789 |
+
## Adjusting Dimensionality
|
2790 |
+
|
2791 |
+
`nomic-embed-text-v1.5` is an improvement upon [Nomic Embed](https://huggingface.co/nomic-ai/nomic-embed-text-v1) that utilizes [Matryoshka Representation Learning](https://arxiv.org/abs/2205.13147) which gives developers the flexibility to trade off the embedding size for a negligible reduction in performance.
|
2792 |
+
|
2793 |
+
|
2794 |
+
| Name | SeqLen | Dimension | MTEB |
|
2795 |
+
| :-------------------------------:| :----- | :-------- | :------: |
|
2796 |
+
| nomic-embed-text-v1 | 8192 | 768 | **62.39** |
|
2797 |
+
| nomic-embed-text-v1.5 | 8192 | 768 | 62.28 |
|
2798 |
+
| nomic-embed-text-v1.5 | 8192 | 512 | 61.96 |
|
2799 |
+
| nomic-embed-text-v1.5 | 8192 | 256 | 61.04 |
|
2800 |
+
| nomic-embed-text-v1.5 | 8192 | 128 | 59.34 |
|
2801 |
+
| nomic-embed-text-v1.5 | 8192 | 64 | 56.10 |
|
2802 |
+
|
2803 |
+
|
2804 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/607997c83a565c15675055b3/CRnaHV-c2wMUMZKw72q85.png)
|
2805 |
+
|
2806 |
+
## Training
|
2807 |
+
Click the Nomic Atlas map below to visualize a 5M sample of our contrastive pretraining data!
|
2808 |
+
|
2809 |
+
[![image/webp](https://cdn-uploads.huggingface.co/production/uploads/607997c83a565c15675055b3/pjhJhuNyRfPagRd_c_iUz.webp)](https://atlas.nomic.ai/map/nomic-text-embed-v1-5m-sample)
|
2810 |
+
|
2811 |
+
We train our embedder using a multi-stage training pipeline. Starting from a long-context [BERT model](https://huggingface.co/nomic-ai/nomic-bert-2048),
|
2812 |
+
the first unsupervised contrastive stage trains on a dataset generated from weakly related text pairs, such as question-answer pairs from forums like StackExchange and Quora, title-body pairs from Amazon reviews, and summarizations from news articles.
|
2813 |
+
|
2814 |
+
In the second finetuning stage, higher quality labeled datasets such as search queries and answers from web searches are leveraged. Data curation and hard-example mining is crucial in this stage.
|
2815 |
+
|
2816 |
+
For more details, see the Nomic Embed [Technical Report](https://static.nomic.ai/reports/2024_Nomic_Embed_Text_Technical_Report.pdf) and corresponding [blog post](https://blog.nomic.ai/posts/nomic-embed-matryoshka).
|
2817 |
+
|
2818 |
+
Training data to train the models is released in its entirety. For more details, see the `contrastors` [repository](https://github.com/nomic-ai/contrastors)
|
2819 |
+
|
2820 |
+
|
2821 |
# Join the Nomic Community
|
2822 |
|
2823 |
- Nomic: [https://nomic.ai](https://nomic.ai)
|