zpn commited on
Commit
34d3225
·
verified ·
1 Parent(s): 94e044d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +2609 -0
README.md ADDED
@@ -0,0 +1,2609 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ inference: false
6
+ ---
7
+ tags:
8
+ - mteb
9
+ model-index:
10
+ - name: epoch_0_model
11
+ results:
12
+ - task:
13
+ type: Classification
14
+ dataset:
15
+ type: mteb/amazon_counterfactual
16
+ name: MTEB AmazonCounterfactualClassification (en)
17
+ config: en
18
+ split: test
19
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
20
+ metrics:
21
+ - type: accuracy
22
+ value: 76.98507462686568
23
+ - type: ap
24
+ value: 39.47222193126652
25
+ - type: f1
26
+ value: 70.5923611893019
27
+ - task:
28
+ type: Classification
29
+ dataset:
30
+ type: mteb/amazon_polarity
31
+ name: MTEB AmazonPolarityClassification
32
+ config: default
33
+ split: test
34
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
35
+ metrics:
36
+ - type: accuracy
37
+ value: 87.540175
38
+ - type: ap
39
+ value: 83.16128207188409
40
+ - type: f1
41
+ value: 87.5231988227265
42
+ - task:
43
+ type: Classification
44
+ dataset:
45
+ type: mteb/amazon_reviews_multi
46
+ name: MTEB AmazonReviewsClassification (en)
47
+ config: en
48
+ split: test
49
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
50
+ metrics:
51
+ - type: accuracy
52
+ value: 46.80799999999999
53
+ - type: f1
54
+ value: 46.2632547445265
55
+ - task:
56
+ type: Retrieval
57
+ dataset:
58
+ type: arguana
59
+ name: MTEB ArguAna
60
+ config: default
61
+ split: test
62
+ revision: None
63
+ metrics:
64
+ - type: map_at_1
65
+ value: 30.583
66
+ - type: map_at_10
67
+ value: 46.17
68
+ - type: map_at_100
69
+ value: 47.115
70
+ - type: map_at_1000
71
+ value: 47.121
72
+ - type: map_at_3
73
+ value: 41.489
74
+ - type: map_at_5
75
+ value: 44.046
76
+ - type: mrr_at_1
77
+ value: 30.939
78
+ - type: mrr_at_10
79
+ value: 46.289
80
+ - type: mrr_at_100
81
+ value: 47.241
82
+ - type: mrr_at_1000
83
+ value: 47.247
84
+ - type: mrr_at_3
85
+ value: 41.596
86
+ - type: mrr_at_5
87
+ value: 44.149
88
+ - type: ndcg_at_1
89
+ value: 30.583
90
+ - type: ndcg_at_10
91
+ value: 54.812000000000005
92
+ - type: ndcg_at_100
93
+ value: 58.605
94
+ - type: ndcg_at_1000
95
+ value: 58.753
96
+ - type: ndcg_at_3
97
+ value: 45.095
98
+ - type: ndcg_at_5
99
+ value: 49.744
100
+ - type: precision_at_1
101
+ value: 30.583
102
+ - type: precision_at_10
103
+ value: 8.243
104
+ - type: precision_at_100
105
+ value: 0.984
106
+ - type: precision_at_1000
107
+ value: 0.1
108
+ - type: precision_at_3
109
+ value: 18.516
110
+ - type: precision_at_5
111
+ value: 13.385
112
+ - type: recall_at_1
113
+ value: 30.583
114
+ - type: recall_at_10
115
+ value: 82.432
116
+ - type: recall_at_100
117
+ value: 98.43499999999999
118
+ - type: recall_at_1000
119
+ value: 99.57300000000001
120
+ - type: recall_at_3
121
+ value: 55.547999999999995
122
+ - type: recall_at_5
123
+ value: 66.927
124
+ - task:
125
+ type: Clustering
126
+ dataset:
127
+ type: mteb/arxiv-clustering-p2p
128
+ name: MTEB ArxivClusteringP2P
129
+ config: default
130
+ split: test
131
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
132
+ metrics:
133
+ - type: v_measure
134
+ value: 45.17830107652425
135
+ - task:
136
+ type: Clustering
137
+ dataset:
138
+ type: mteb/arxiv-clustering-s2s
139
+ name: MTEB ArxivClusteringS2S
140
+ config: default
141
+ split: test
142
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
143
+ metrics:
144
+ - type: v_measure
145
+ value: 35.90561364087807
146
+ - task:
147
+ type: Reranking
148
+ dataset:
149
+ type: mteb/askubuntudupquestions-reranking
150
+ name: MTEB AskUbuntuDupQuestions
151
+ config: default
152
+ split: test
153
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
154
+ metrics:
155
+ - type: map
156
+ value: 59.57222651819297
157
+ - type: mrr
158
+ value: 73.19241085169062
159
+ - task:
160
+ type: STS
161
+ dataset:
162
+ type: mteb/biosses-sts
163
+ name: MTEB BIOSSES
164
+ config: default
165
+ split: test
166
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
167
+ metrics:
168
+ - type: cos_sim_pearson
169
+ value: 89.55181686367382
170
+ - type: cos_sim_spearman
171
+ value: 87.18933606575987
172
+ - type: euclidean_pearson
173
+ value: 87.78077503434338
174
+ - type: euclidean_spearman
175
+ value: 87.18933606575987
176
+ - type: manhattan_pearson
177
+ value: 87.75124980168601
178
+ - type: manhattan_spearman
179
+ value: 86.79113422137638
180
+ - task:
181
+ type: Classification
182
+ dataset:
183
+ type: mteb/banking77
184
+ name: MTEB Banking77Classification
185
+ config: default
186
+ split: test
187
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
188
+ metrics:
189
+ - type: accuracy
190
+ value: 81.09415584415585
191
+ - type: f1
192
+ value: 80.60088693212091
193
+ - task:
194
+ type: Clustering
195
+ dataset:
196
+ type: mteb/biorxiv-clustering-p2p
197
+ name: MTEB BiorxivClusteringP2P
198
+ config: default
199
+ split: test
200
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
201
+ metrics:
202
+ - type: v_measure
203
+ value: 36.57061229905462
204
+ - task:
205
+ type: Clustering
206
+ dataset:
207
+ type: mteb/biorxiv-clustering-s2s
208
+ name: MTEB BiorxivClusteringS2S
209
+ config: default
210
+ split: test
211
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
212
+ metrics:
213
+ - type: v_measure
214
+ value: 32.05342946608653
215
+ - task:
216
+ type: Retrieval
217
+ dataset:
218
+ type: BeIR/cqadupstack
219
+ name: MTEB CQADupstackAndroidRetrieval
220
+ config: default
221
+ split: test
222
+ revision: None
223
+ metrics:
224
+ - type: map_at_1
225
+ value: 34.376
226
+ - type: map_at_10
227
+ value: 45.214
228
+ - type: map_at_100
229
+ value: 46.635
230
+ - type: map_at_1000
231
+ value: 46.755
232
+ - type: map_at_3
233
+ value: 42.198
234
+ - type: map_at_5
235
+ value: 43.723
236
+ - type: mrr_at_1
237
+ value: 41.774
238
+ - type: mrr_at_10
239
+ value: 51.07000000000001
240
+ - type: mrr_at_100
241
+ value: 51.785000000000004
242
+ - type: mrr_at_1000
243
+ value: 51.824999999999996
244
+ - type: mrr_at_3
245
+ value: 48.808
246
+ - type: mrr_at_5
247
+ value: 50.11
248
+ - type: ndcg_at_1
249
+ value: 41.774
250
+ - type: ndcg_at_10
251
+ value: 51.105999999999995
252
+ - type: ndcg_at_100
253
+ value: 56.358
254
+ - type: ndcg_at_1000
255
+ value: 58.205
256
+ - type: ndcg_at_3
257
+ value: 46.965
258
+ - type: ndcg_at_5
259
+ value: 48.599
260
+ - type: precision_at_1
261
+ value: 41.774
262
+ - type: precision_at_10
263
+ value: 9.514
264
+ - type: precision_at_100
265
+ value: 1.508
266
+ - type: precision_at_1000
267
+ value: 0.196
268
+ - type: precision_at_3
269
+ value: 22.175
270
+ - type: precision_at_5
271
+ value: 15.508
272
+ - type: recall_at_1
273
+ value: 34.376
274
+ - type: recall_at_10
275
+ value: 61.748000000000005
276
+ - type: recall_at_100
277
+ value: 84.025
278
+ - type: recall_at_1000
279
+ value: 95.5
280
+ - type: recall_at_3
281
+ value: 49.378
282
+ - type: recall_at_5
283
+ value: 54.276
284
+ - task:
285
+ type: Retrieval
286
+ dataset:
287
+ type: BeIR/cqadupstack
288
+ name: MTEB CQADupstackEnglishRetrieval
289
+ config: default
290
+ split: test
291
+ revision: None
292
+ metrics:
293
+ - type: map_at_1
294
+ value: 32.394
295
+ - type: map_at_10
296
+ value: 42.707
297
+ - type: map_at_100
298
+ value: 43.893
299
+ - type: map_at_1000
300
+ value: 44.019000000000005
301
+ - type: map_at_3
302
+ value: 39.51
303
+ - type: map_at_5
304
+ value: 41.381
305
+ - type: mrr_at_1
306
+ value: 41.019
307
+ - type: mrr_at_10
308
+ value: 49.042
309
+ - type: mrr_at_100
310
+ value: 49.669000000000004
311
+ - type: mrr_at_1000
312
+ value: 49.712
313
+ - type: mrr_at_3
314
+ value: 46.921
315
+ - type: mrr_at_5
316
+ value: 48.192
317
+ - type: ndcg_at_1
318
+ value: 41.019
319
+ - type: ndcg_at_10
320
+ value: 48.46
321
+ - type: ndcg_at_100
322
+ value: 52.537
323
+ - type: ndcg_at_1000
324
+ value: 54.491
325
+ - type: ndcg_at_3
326
+ value: 44.232
327
+ - type: ndcg_at_5
328
+ value: 46.305
329
+ - type: precision_at_1
330
+ value: 41.019
331
+ - type: precision_at_10
332
+ value: 9.134
333
+ - type: precision_at_100
334
+ value: 1.422
335
+ - type: precision_at_1000
336
+ value: 0.188
337
+ - type: precision_at_3
338
+ value: 21.38
339
+ - type: precision_at_5
340
+ value: 15.096000000000002
341
+ - type: recall_at_1
342
+ value: 32.394
343
+ - type: recall_at_10
344
+ value: 58.11500000000001
345
+ - type: recall_at_100
346
+ value: 75.509
347
+ - type: recall_at_1000
348
+ value: 87.812
349
+ - type: recall_at_3
350
+ value: 45.476
351
+ - type: recall_at_5
352
+ value: 51.549
353
+ - task:
354
+ type: Retrieval
355
+ dataset:
356
+ type: BeIR/cqadupstack
357
+ name: MTEB CQADupstackGamingRetrieval
358
+ config: default
359
+ split: test
360
+ revision: None
361
+ metrics:
362
+ - type: map_at_1
363
+ value: 43.47
364
+ - type: map_at_10
365
+ value: 55.871
366
+ - type: map_at_100
367
+ value: 56.745000000000005
368
+ - type: map_at_1000
369
+ value: 56.794
370
+ - type: map_at_3
371
+ value: 52.439
372
+ - type: map_at_5
373
+ value: 54.412000000000006
374
+ - type: mrr_at_1
375
+ value: 49.592000000000006
376
+ - type: mrr_at_10
377
+ value: 59.34199999999999
378
+ - type: mrr_at_100
379
+ value: 59.857000000000006
380
+ - type: mrr_at_1000
381
+ value: 59.88
382
+ - type: mrr_at_3
383
+ value: 56.897
384
+ - type: mrr_at_5
385
+ value: 58.339
386
+ - type: ndcg_at_1
387
+ value: 49.592000000000006
388
+ - type: ndcg_at_10
389
+ value: 61.67
390
+ - type: ndcg_at_100
391
+ value: 65.11099999999999
392
+ - type: ndcg_at_1000
393
+ value: 66.065
394
+ - type: ndcg_at_3
395
+ value: 56.071000000000005
396
+ - type: ndcg_at_5
397
+ value: 58.84700000000001
398
+ - type: precision_at_1
399
+ value: 49.592000000000006
400
+ - type: precision_at_10
401
+ value: 9.774
402
+ - type: precision_at_100
403
+ value: 1.2449999999999999
404
+ - type: precision_at_1000
405
+ value: 0.13699999999999998
406
+ - type: precision_at_3
407
+ value: 24.66
408
+ - type: precision_at_5
409
+ value: 16.878
410
+ - type: recall_at_1
411
+ value: 43.47
412
+ - type: recall_at_10
413
+ value: 75.387
414
+ - type: recall_at_100
415
+ value: 90.253
416
+ - type: recall_at_1000
417
+ value: 97.00800000000001
418
+ - type: recall_at_3
419
+ value: 60.616
420
+ - type: recall_at_5
421
+ value: 67.31899999999999
422
+ - task:
423
+ type: Retrieval
424
+ dataset:
425
+ type: BeIR/cqadupstack
426
+ name: MTEB CQADupstackGisRetrieval
427
+ config: default
428
+ split: test
429
+ revision: None
430
+ metrics:
431
+ - type: map_at_1
432
+ value: 26.633000000000003
433
+ - type: map_at_10
434
+ value: 35.497
435
+ - type: map_at_100
436
+ value: 36.504
437
+ - type: map_at_1000
438
+ value: 36.574
439
+ - type: map_at_3
440
+ value: 33.115
441
+ - type: map_at_5
442
+ value: 34.536
443
+ - type: mrr_at_1
444
+ value: 28.927000000000003
445
+ - type: mrr_at_10
446
+ value: 37.778
447
+ - type: mrr_at_100
448
+ value: 38.634
449
+ - type: mrr_at_1000
450
+ value: 38.690000000000005
451
+ - type: mrr_at_3
452
+ value: 35.518
453
+ - type: mrr_at_5
454
+ value: 36.908
455
+ - type: ndcg_at_1
456
+ value: 28.927000000000003
457
+ - type: ndcg_at_10
458
+ value: 40.327
459
+ - type: ndcg_at_100
460
+ value: 45.321
461
+ - type: ndcg_at_1000
462
+ value: 47.214
463
+ - type: ndcg_at_3
464
+ value: 35.762
465
+ - type: ndcg_at_5
466
+ value: 38.153999999999996
467
+ - type: precision_at_1
468
+ value: 28.927000000000003
469
+ - type: precision_at_10
470
+ value: 6.045
471
+ - type: precision_at_100
472
+ value: 0.901
473
+ - type: precision_at_1000
474
+ value: 0.11
475
+ - type: precision_at_3
476
+ value: 15.140999999999998
477
+ - type: precision_at_5
478
+ value: 10.485999999999999
479
+ - type: recall_at_1
480
+ value: 26.633000000000003
481
+ - type: recall_at_10
482
+ value: 52.99
483
+ - type: recall_at_100
484
+ value: 76.086
485
+ - type: recall_at_1000
486
+ value: 90.46300000000001
487
+ - type: recall_at_3
488
+ value: 40.738
489
+ - type: recall_at_5
490
+ value: 46.449
491
+ - task:
492
+ type: Retrieval
493
+ dataset:
494
+ type: BeIR/cqadupstack
495
+ name: MTEB CQADupstackMathematicaRetrieval
496
+ config: default
497
+ split: test
498
+ revision: None
499
+ metrics:
500
+ - type: map_at_1
501
+ value: 17.521
502
+ - type: map_at_10
503
+ value: 25.130000000000003
504
+ - type: map_at_100
505
+ value: 26.176
506
+ - type: map_at_1000
507
+ value: 26.289
508
+ - type: map_at_3
509
+ value: 22.829
510
+ - type: map_at_5
511
+ value: 24.082
512
+ - type: mrr_at_1
513
+ value: 21.766
514
+ - type: mrr_at_10
515
+ value: 29.801
516
+ - type: mrr_at_100
517
+ value: 30.682
518
+ - type: mrr_at_1000
519
+ value: 30.75
520
+ - type: mrr_at_3
521
+ value: 27.633000000000003
522
+ - type: mrr_at_5
523
+ value: 28.858
524
+ - type: ndcg_at_1
525
+ value: 21.766
526
+ - type: ndcg_at_10
527
+ value: 30.026000000000003
528
+ - type: ndcg_at_100
529
+ value: 35.429
530
+ - type: ndcg_at_1000
531
+ value: 38.236
532
+ - type: ndcg_at_3
533
+ value: 25.968000000000004
534
+ - type: ndcg_at_5
535
+ value: 27.785
536
+ - type: precision_at_1
537
+ value: 21.766
538
+ - type: precision_at_10
539
+ value: 5.498
540
+ - type: precision_at_100
541
+ value: 0.9450000000000001
542
+ - type: precision_at_1000
543
+ value: 0.133
544
+ - type: precision_at_3
545
+ value: 12.687000000000001
546
+ - type: precision_at_5
547
+ value: 9.005
548
+ - type: recall_at_1
549
+ value: 17.521
550
+ - type: recall_at_10
551
+ value: 40.454
552
+ - type: recall_at_100
553
+ value: 64.828
554
+ - type: recall_at_1000
555
+ value: 84.83800000000001
556
+ - type: recall_at_3
557
+ value: 28.758
558
+ - type: recall_at_5
559
+ value: 33.617000000000004
560
+ - task:
561
+ type: Retrieval
562
+ dataset:
563
+ type: BeIR/cqadupstack
564
+ name: MTEB CQADupstackPhysicsRetrieval
565
+ config: default
566
+ split: test
567
+ revision: None
568
+ metrics:
569
+ - type: map_at_1
570
+ value: 30.564999999999998
571
+ - type: map_at_10
572
+ value: 40.664
573
+ - type: map_at_100
574
+ value: 41.995
575
+ - type: map_at_1000
576
+ value: 42.104
577
+ - type: map_at_3
578
+ value: 37.578
579
+ - type: map_at_5
580
+ value: 39.247
581
+ - type: mrr_at_1
582
+ value: 37.44
583
+ - type: mrr_at_10
584
+ value: 46.533
585
+ - type: mrr_at_100
586
+ value: 47.363
587
+ - type: mrr_at_1000
588
+ value: 47.405
589
+ - type: mrr_at_3
590
+ value: 44.224999999999994
591
+ - type: mrr_at_5
592
+ value: 45.549
593
+ - type: ndcg_at_1
594
+ value: 37.44
595
+ - type: ndcg_at_10
596
+ value: 46.574
597
+ - type: ndcg_at_100
598
+ value: 52.024
599
+ - type: ndcg_at_1000
600
+ value: 53.93900000000001
601
+ - type: ndcg_at_3
602
+ value: 41.722
603
+ - type: ndcg_at_5
604
+ value: 43.973
605
+ - type: precision_at_1
606
+ value: 37.44
607
+ - type: precision_at_10
608
+ value: 8.344999999999999
609
+ - type: precision_at_100
610
+ value: 1.278
611
+ - type: precision_at_1000
612
+ value: 0.16
613
+ - type: precision_at_3
614
+ value: 19.442
615
+ - type: precision_at_5
616
+ value: 13.802
617
+ - type: recall_at_1
618
+ value: 30.564999999999998
619
+ - type: recall_at_10
620
+ value: 58.207
621
+ - type: recall_at_100
622
+ value: 81.137
623
+ - type: recall_at_1000
624
+ value: 93.506
625
+ - type: recall_at_3
626
+ value: 44.606
627
+ - type: recall_at_5
628
+ value: 50.373000000000005
629
+ - task:
630
+ type: Retrieval
631
+ dataset:
632
+ type: BeIR/cqadupstack
633
+ name: MTEB CQADupstackProgrammersRetrieval
634
+ config: default
635
+ split: test
636
+ revision: None
637
+ metrics:
638
+ - type: map_at_1
639
+ value: 27.892
640
+ - type: map_at_10
641
+ value: 37.251
642
+ - type: map_at_100
643
+ value: 38.606
644
+ - type: map_at_1000
645
+ value: 38.716
646
+ - type: map_at_3
647
+ value: 34.312
648
+ - type: map_at_5
649
+ value: 35.791000000000004
650
+ - type: mrr_at_1
651
+ value: 34.247
652
+ - type: mrr_at_10
653
+ value: 42.696
654
+ - type: mrr_at_100
655
+ value: 43.659
656
+ - type: mrr_at_1000
657
+ value: 43.711
658
+ - type: mrr_at_3
659
+ value: 40.563
660
+ - type: mrr_at_5
661
+ value: 41.625
662
+ - type: ndcg_at_1
663
+ value: 34.247
664
+ - type: ndcg_at_10
665
+ value: 42.709
666
+ - type: ndcg_at_100
667
+ value: 48.422
668
+ - type: ndcg_at_1000
669
+ value: 50.544
670
+ - type: ndcg_at_3
671
+ value: 38.105
672
+ - type: ndcg_at_5
673
+ value: 39.846
674
+ - type: precision_at_1
675
+ value: 34.247
676
+ - type: precision_at_10
677
+ value: 7.66
678
+ - type: precision_at_100
679
+ value: 1.2109999999999999
680
+ - type: precision_at_1000
681
+ value: 0.157
682
+ - type: precision_at_3
683
+ value: 17.884
684
+ - type: precision_at_5
685
+ value: 12.489
686
+ - type: recall_at_1
687
+ value: 27.892
688
+ - type: recall_at_10
689
+ value: 53.559
690
+ - type: recall_at_100
691
+ value: 78.018
692
+ - type: recall_at_1000
693
+ value: 92.07300000000001
694
+ - type: recall_at_3
695
+ value: 40.154
696
+ - type: recall_at_5
697
+ value: 45.078
698
+ - task:
699
+ type: Retrieval
700
+ dataset:
701
+ type: BeIR/cqadupstack
702
+ name: MTEB CQADupstackRetrieval
703
+ config: default
704
+ split: test
705
+ revision: None
706
+ metrics:
707
+ - type: map_at_1
708
+ value: 27.29375
709
+ - type: map_at_10
710
+ value: 36.19533333333334
711
+ - type: map_at_100
712
+ value: 37.33183333333334
713
+ - type: map_at_1000
714
+ value: 37.44616666666667
715
+ - type: map_at_3
716
+ value: 33.49125
717
+ - type: map_at_5
718
+ value: 34.94166666666667
719
+ - type: mrr_at_1
720
+ value: 32.336666666666666
721
+ - type: mrr_at_10
722
+ value: 40.45983333333333
723
+ - type: mrr_at_100
724
+ value: 41.26533333333334
725
+ - type: mrr_at_1000
726
+ value: 41.321583333333336
727
+ - type: mrr_at_3
728
+ value: 38.23416666666667
729
+ - type: mrr_at_5
730
+ value: 39.48491666666666
731
+ - type: ndcg_at_1
732
+ value: 32.336666666666666
733
+ - type: ndcg_at_10
734
+ value: 41.39958333333333
735
+ - type: ndcg_at_100
736
+ value: 46.293
737
+ - type: ndcg_at_1000
738
+ value: 48.53425
739
+ - type: ndcg_at_3
740
+ value: 36.88833333333333
741
+ - type: ndcg_at_5
742
+ value: 38.90733333333333
743
+ - type: precision_at_1
744
+ value: 32.336666666666666
745
+ - type: precision_at_10
746
+ value: 7.175916666666667
747
+ - type: precision_at_100
748
+ value: 1.1311666666666669
749
+ - type: precision_at_1000
750
+ value: 0.15141666666666667
751
+ - type: precision_at_3
752
+ value: 16.841166666666666
753
+ - type: precision_at_5
754
+ value: 11.796583333333334
755
+ - type: recall_at_1
756
+ value: 27.29375
757
+ - type: recall_at_10
758
+ value: 52.514583333333334
759
+ - type: recall_at_100
760
+ value: 74.128
761
+ - type: recall_at_1000
762
+ value: 89.64125
763
+ - type: recall_at_3
764
+ value: 39.83258333333333
765
+ - type: recall_at_5
766
+ value: 45.126416666666664
767
+ - task:
768
+ type: Retrieval
769
+ dataset:
770
+ type: BeIR/cqadupstack
771
+ name: MTEB CQADupstackStatsRetrieval
772
+ config: default
773
+ split: test
774
+ revision: None
775
+ metrics:
776
+ - type: map_at_1
777
+ value: 24.62
778
+ - type: map_at_10
779
+ value: 31.517
780
+ - type: map_at_100
781
+ value: 32.322
782
+ - type: map_at_1000
783
+ value: 32.422000000000004
784
+ - type: map_at_3
785
+ value: 29.293999999999997
786
+ - type: map_at_5
787
+ value: 30.403999999999996
788
+ - type: mrr_at_1
789
+ value: 27.607
790
+ - type: mrr_at_10
791
+ value: 34.294999999999995
792
+ - type: mrr_at_100
793
+ value: 35.045
794
+ - type: mrr_at_1000
795
+ value: 35.114000000000004
796
+ - type: mrr_at_3
797
+ value: 32.311
798
+ - type: mrr_at_5
799
+ value: 33.369
800
+ - type: ndcg_at_1
801
+ value: 27.607
802
+ - type: ndcg_at_10
803
+ value: 35.853
804
+ - type: ndcg_at_100
805
+ value: 39.919
806
+ - type: ndcg_at_1000
807
+ value: 42.452
808
+ - type: ndcg_at_3
809
+ value: 31.702
810
+ - type: ndcg_at_5
811
+ value: 33.47
812
+ - type: precision_at_1
813
+ value: 27.607
814
+ - type: precision_at_10
815
+ value: 5.598
816
+ - type: precision_at_100
817
+ value: 0.83
818
+ - type: precision_at_1000
819
+ value: 0.11199999999999999
820
+ - type: precision_at_3
821
+ value: 13.700999999999999
822
+ - type: precision_at_5
823
+ value: 9.325
824
+ - type: recall_at_1
825
+ value: 24.62
826
+ - type: recall_at_10
827
+ value: 46.475
828
+ - type: recall_at_100
829
+ value: 64.891
830
+ - type: recall_at_1000
831
+ value: 83.524
832
+ - type: recall_at_3
833
+ value: 34.954
834
+ - type: recall_at_5
835
+ value: 39.471000000000004
836
+ - task:
837
+ type: Retrieval
838
+ dataset:
839
+ type: BeIR/cqadupstack
840
+ name: MTEB CQADupstackTexRetrieval
841
+ config: default
842
+ split: test
843
+ revision: None
844
+ metrics:
845
+ - type: map_at_1
846
+ value: 16.858999999999998
847
+ - type: map_at_10
848
+ value: 23.746000000000002
849
+ - type: map_at_100
850
+ value: 24.731
851
+ - type: map_at_1000
852
+ value: 24.86
853
+ - type: map_at_3
854
+ value: 21.603
855
+ - type: map_at_5
856
+ value: 22.811999999999998
857
+ - type: mrr_at_1
858
+ value: 20.578
859
+ - type: mrr_at_10
860
+ value: 27.618
861
+ - type: mrr_at_100
862
+ value: 28.459
863
+ - type: mrr_at_1000
864
+ value: 28.543000000000003
865
+ - type: mrr_at_3
866
+ value: 25.533
867
+ - type: mrr_at_5
868
+ value: 26.730999999999998
869
+ - type: ndcg_at_1
870
+ value: 20.578
871
+ - type: ndcg_at_10
872
+ value: 28.147
873
+ - type: ndcg_at_100
874
+ value: 32.946999999999996
875
+ - type: ndcg_at_1000
876
+ value: 36.048
877
+ - type: ndcg_at_3
878
+ value: 24.32
879
+ - type: ndcg_at_5
880
+ value: 26.131999999999998
881
+ - type: precision_at_1
882
+ value: 20.578
883
+ - type: precision_at_10
884
+ value: 5.061999999999999
885
+ - type: precision_at_100
886
+ value: 0.8789999999999999
887
+ - type: precision_at_1000
888
+ value: 0.132
889
+ - type: precision_at_3
890
+ value: 11.448
891
+ - type: precision_at_5
892
+ value: 8.251999999999999
893
+ - type: recall_at_1
894
+ value: 16.858999999999998
895
+ - type: recall_at_10
896
+ value: 37.565
897
+ - type: recall_at_100
898
+ value: 59.239
899
+ - type: recall_at_1000
900
+ value: 81.496
901
+ - type: recall_at_3
902
+ value: 26.865
903
+ - type: recall_at_5
904
+ value: 31.581
905
+ - task:
906
+ type: Retrieval
907
+ dataset:
908
+ type: BeIR/cqadupstack
909
+ name: MTEB CQADupstackUnixRetrieval
910
+ config: default
911
+ split: test
912
+ revision: None
913
+ metrics:
914
+ - type: map_at_1
915
+ value: 26.11
916
+ - type: map_at_10
917
+ value: 34.214
918
+ - type: map_at_100
919
+ value: 35.291
920
+ - type: map_at_1000
921
+ value: 35.400999999999996
922
+ - type: map_at_3
923
+ value: 31.541000000000004
924
+ - type: map_at_5
925
+ value: 33.21
926
+ - type: mrr_at_1
927
+ value: 30.97
928
+ - type: mrr_at_10
929
+ value: 38.522
930
+ - type: mrr_at_100
931
+ value: 39.37
932
+ - type: mrr_at_1000
933
+ value: 39.437
934
+ - type: mrr_at_3
935
+ value: 36.193999999999996
936
+ - type: mrr_at_5
937
+ value: 37.691
938
+ - type: ndcg_at_1
939
+ value: 30.97
940
+ - type: ndcg_at_10
941
+ value: 39.2
942
+ - type: ndcg_at_100
943
+ value: 44.267
944
+ - type: ndcg_at_1000
945
+ value: 46.760000000000005
946
+ - type: ndcg_at_3
947
+ value: 34.474
948
+ - type: ndcg_at_5
949
+ value: 37.016
950
+ - type: precision_at_1
951
+ value: 30.97
952
+ - type: precision_at_10
953
+ value: 6.521000000000001
954
+ - type: precision_at_100
955
+ value: 1.011
956
+ - type: precision_at_1000
957
+ value: 0.135
958
+ - type: precision_at_3
959
+ value: 15.392
960
+ - type: precision_at_5
961
+ value: 11.026
962
+ - type: recall_at_1
963
+ value: 26.11
964
+ - type: recall_at_10
965
+ value: 50.14999999999999
966
+ - type: recall_at_100
967
+ value: 72.398
968
+ - type: recall_at_1000
969
+ value: 89.764
970
+ - type: recall_at_3
971
+ value: 37.352999999999994
972
+ - type: recall_at_5
973
+ value: 43.736000000000004
974
+ - task:
975
+ type: Retrieval
976
+ dataset:
977
+ type: BeIR/cqadupstack
978
+ name: MTEB CQADupstackWebmastersRetrieval
979
+ config: default
980
+ split: test
981
+ revision: None
982
+ metrics:
983
+ - type: map_at_1
984
+ value: 25.514
985
+ - type: map_at_10
986
+ value: 34.278999999999996
987
+ - type: map_at_100
988
+ value: 35.847
989
+ - type: map_at_1000
990
+ value: 36.086
991
+ - type: map_at_3
992
+ value: 31.563999999999997
993
+ - type: map_at_5
994
+ value: 32.903999999999996
995
+ - type: mrr_at_1
996
+ value: 30.830000000000002
997
+ - type: mrr_at_10
998
+ value: 38.719
999
+ - type: mrr_at_100
1000
+ value: 39.678999999999995
1001
+ - type: mrr_at_1000
1002
+ value: 39.741
1003
+ - type: mrr_at_3
1004
+ value: 36.265
1005
+ - type: mrr_at_5
1006
+ value: 37.599
1007
+ - type: ndcg_at_1
1008
+ value: 30.830000000000002
1009
+ - type: ndcg_at_10
1010
+ value: 39.997
1011
+ - type: ndcg_at_100
1012
+ value: 45.537
1013
+ - type: ndcg_at_1000
1014
+ value: 48.296
1015
+ - type: ndcg_at_3
1016
+ value: 35.429
1017
+ - type: ndcg_at_5
1018
+ value: 37.3
1019
+ - type: precision_at_1
1020
+ value: 30.830000000000002
1021
+ - type: precision_at_10
1022
+ value: 7.747
1023
+ - type: precision_at_100
1024
+ value: 1.516
1025
+ - type: precision_at_1000
1026
+ value: 0.24
1027
+ - type: precision_at_3
1028
+ value: 16.601
1029
+ - type: precision_at_5
1030
+ value: 11.818
1031
+ - type: recall_at_1
1032
+ value: 25.514
1033
+ - type: recall_at_10
1034
+ value: 50.71600000000001
1035
+ - type: recall_at_100
1036
+ value: 75.40299999999999
1037
+ - type: recall_at_1000
1038
+ value: 93.10300000000001
1039
+ - type: recall_at_3
1040
+ value: 37.466
1041
+ - type: recall_at_5
1042
+ value: 42.677
1043
+ - task:
1044
+ type: Retrieval
1045
+ dataset:
1046
+ type: BeIR/cqadupstack
1047
+ name: MTEB CQADupstackWordpressRetrieval
1048
+ config: default
1049
+ split: test
1050
+ revision: None
1051
+ metrics:
1052
+ - type: map_at_1
1053
+ value: 21.571
1054
+ - type: map_at_10
1055
+ value: 28.254
1056
+ - type: map_at_100
1057
+ value: 29.237000000000002
1058
+ - type: map_at_1000
1059
+ value: 29.334
1060
+ - type: map_at_3
1061
+ value: 25.912000000000003
1062
+ - type: map_at_5
1063
+ value: 26.798
1064
+ - type: mrr_at_1
1065
+ value: 23.29
1066
+ - type: mrr_at_10
1067
+ value: 30.102
1068
+ - type: mrr_at_100
1069
+ value: 30.982
1070
+ - type: mrr_at_1000
1071
+ value: 31.051000000000002
1072
+ - type: mrr_at_3
1073
+ value: 27.942
1074
+ - type: mrr_at_5
1075
+ value: 28.848000000000003
1076
+ - type: ndcg_at_1
1077
+ value: 23.29
1078
+ - type: ndcg_at_10
1079
+ value: 32.726
1080
+ - type: ndcg_at_100
1081
+ value: 37.644
1082
+ - type: ndcg_at_1000
1083
+ value: 40.161
1084
+ - type: ndcg_at_3
1085
+ value: 27.91
1086
+ - type: ndcg_at_5
1087
+ value: 29.461
1088
+ - type: precision_at_1
1089
+ value: 23.29
1090
+ - type: precision_at_10
1091
+ value: 5.213
1092
+ - type: precision_at_100
1093
+ value: 0.828
1094
+ - type: precision_at_1000
1095
+ value: 0.117
1096
+ - type: precision_at_3
1097
+ value: 11.583
1098
+ - type: precision_at_5
1099
+ value: 7.8740000000000006
1100
+ - type: recall_at_1
1101
+ value: 21.571
1102
+ - type: recall_at_10
1103
+ value: 44.809
1104
+ - type: recall_at_100
1105
+ value: 67.74900000000001
1106
+ - type: recall_at_1000
1107
+ value: 86.60799999999999
1108
+ - type: recall_at_3
1109
+ value: 31.627
1110
+ - type: recall_at_5
1111
+ value: 35.391
1112
+ - task:
1113
+ type: Retrieval
1114
+ dataset:
1115
+ type: climate-fever
1116
+ name: MTEB ClimateFEVER
1117
+ config: default
1118
+ split: test
1119
+ revision: None
1120
+ metrics:
1121
+ - type: map_at_1
1122
+ value: 9.953
1123
+ - type: map_at_10
1124
+ value: 17.183
1125
+ - type: map_at_100
1126
+ value: 18.926000000000002
1127
+ - type: map_at_1000
1128
+ value: 19.105
1129
+ - type: map_at_3
1130
+ value: 14.308000000000002
1131
+ - type: map_at_5
1132
+ value: 15.738
1133
+ - type: mrr_at_1
1134
+ value: 22.02
1135
+ - type: mrr_at_10
1136
+ value: 33.181
1137
+ - type: mrr_at_100
1138
+ value: 34.357
1139
+ - type: mrr_at_1000
1140
+ value: 34.398
1141
+ - type: mrr_at_3
1142
+ value: 29.793999999999997
1143
+ - type: mrr_at_5
1144
+ value: 31.817
1145
+ - type: ndcg_at_1
1146
+ value: 22.02
1147
+ - type: ndcg_at_10
1148
+ value: 24.712
1149
+ - type: ndcg_at_100
1150
+ value: 32.025
1151
+ - type: ndcg_at_1000
1152
+ value: 35.437000000000005
1153
+ - type: ndcg_at_3
1154
+ value: 19.852
1155
+ - type: ndcg_at_5
1156
+ value: 21.565
1157
+ - type: precision_at_1
1158
+ value: 22.02
1159
+ - type: precision_at_10
1160
+ value: 7.779
1161
+ - type: precision_at_100
1162
+ value: 1.554
1163
+ - type: precision_at_1000
1164
+ value: 0.219
1165
+ - type: precision_at_3
1166
+ value: 14.832
1167
+ - type: precision_at_5
1168
+ value: 11.453000000000001
1169
+ - type: recall_at_1
1170
+ value: 9.953
1171
+ - type: recall_at_10
1172
+ value: 30.375000000000004
1173
+ - type: recall_at_100
1174
+ value: 55.737
1175
+ - type: recall_at_1000
1176
+ value: 75.071
1177
+ - type: recall_at_3
1178
+ value: 18.529999999999998
1179
+ - type: recall_at_5
1180
+ value: 23.313
1181
+ - task:
1182
+ type: Retrieval
1183
+ dataset:
1184
+ type: dbpedia-entity
1185
+ name: MTEB DBPedia
1186
+ config: default
1187
+ split: test
1188
+ revision: None
1189
+ metrics:
1190
+ - type: map_at_1
1191
+ value: 8.651
1192
+ - type: map_at_10
1193
+ value: 19.674
1194
+ - type: map_at_100
1195
+ value: 27.855999999999998
1196
+ - type: map_at_1000
1197
+ value: 29.348000000000003
1198
+ - type: map_at_3
1199
+ value: 14.247000000000002
1200
+ - type: map_at_5
1201
+ value: 16.453
1202
+ - type: mrr_at_1
1203
+ value: 61.75000000000001
1204
+ - type: mrr_at_10
1205
+ value: 71.329
1206
+ - type: mrr_at_100
1207
+ value: 71.69200000000001
1208
+ - type: mrr_at_1000
1209
+ value: 71.699
1210
+ - type: mrr_at_3
1211
+ value: 69.042
1212
+ - type: mrr_at_5
1213
+ value: 70.679
1214
+ - type: ndcg_at_1
1215
+ value: 50.125
1216
+ - type: ndcg_at_10
1217
+ value: 40.199
1218
+ - type: ndcg_at_100
1219
+ value: 45.378
1220
+ - type: ndcg_at_1000
1221
+ value: 52.376999999999995
1222
+ - type: ndcg_at_3
1223
+ value: 44.342
1224
+ - type: ndcg_at_5
1225
+ value: 41.730000000000004
1226
+ - type: precision_at_1
1227
+ value: 61.75000000000001
1228
+ - type: precision_at_10
1229
+ value: 32.2
1230
+ - type: precision_at_100
1231
+ value: 10.298
1232
+ - type: precision_at_1000
1233
+ value: 1.984
1234
+ - type: precision_at_3
1235
+ value: 48.667
1236
+ - type: precision_at_5
1237
+ value: 40.5
1238
+ - type: recall_at_1
1239
+ value: 8.651
1240
+ - type: recall_at_10
1241
+ value: 25.607000000000003
1242
+ - type: recall_at_100
1243
+ value: 53.062
1244
+ - type: recall_at_1000
1245
+ value: 74.717
1246
+ - type: recall_at_3
1247
+ value: 15.661
1248
+ - type: recall_at_5
1249
+ value: 19.409000000000002
1250
+ - task:
1251
+ type: Classification
1252
+ dataset:
1253
+ type: mteb/emotion
1254
+ name: MTEB EmotionClassification
1255
+ config: default
1256
+ split: test
1257
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1258
+ metrics:
1259
+ - type: accuracy
1260
+ value: 47.64500000000001
1261
+ - type: f1
1262
+ value: 43.71011316507787
1263
+ - task:
1264
+ type: Retrieval
1265
+ dataset:
1266
+ type: fever
1267
+ name: MTEB FEVER
1268
+ config: default
1269
+ split: test
1270
+ revision: None
1271
+ metrics:
1272
+ - type: map_at_1
1273
+ value: 54.613
1274
+ - type: map_at_10
1275
+ value: 68.02
1276
+ - type: map_at_100
1277
+ value: 68.366
1278
+ - type: map_at_1000
1279
+ value: 68.379
1280
+ - type: map_at_3
1281
+ value: 65.753
1282
+ - type: map_at_5
1283
+ value: 67.242
1284
+ - type: mrr_at_1
1285
+ value: 59.001000000000005
1286
+ - type: mrr_at_10
1287
+ value: 72.318
1288
+ - type: mrr_at_100
1289
+ value: 72.558
1290
+ - type: mrr_at_1000
1291
+ value: 72.56099999999999
1292
+ - type: mrr_at_3
1293
+ value: 70.22699999999999
1294
+ - type: mrr_at_5
1295
+ value: 71.655
1296
+ - type: ndcg_at_1
1297
+ value: 59.001000000000005
1298
+ - type: ndcg_at_10
1299
+ value: 74.386
1300
+ - type: ndcg_at_100
1301
+ value: 75.763
1302
+ - type: ndcg_at_1000
1303
+ value: 76.03
1304
+ - type: ndcg_at_3
1305
+ value: 70.216
1306
+ - type: ndcg_at_5
1307
+ value: 72.697
1308
+ - type: precision_at_1
1309
+ value: 59.001000000000005
1310
+ - type: precision_at_10
1311
+ value: 9.844
1312
+ - type: precision_at_100
1313
+ value: 1.068
1314
+ - type: precision_at_1000
1315
+ value: 0.11100000000000002
1316
+ - type: precision_at_3
1317
+ value: 28.523
1318
+ - type: precision_at_5
1319
+ value: 18.491
1320
+ - type: recall_at_1
1321
+ value: 54.613
1322
+ - type: recall_at_10
1323
+ value: 89.669
1324
+ - type: recall_at_100
1325
+ value: 95.387
1326
+ - type: recall_at_1000
1327
+ value: 97.129
1328
+ - type: recall_at_3
1329
+ value: 78.54100000000001
1330
+ - type: recall_at_5
1331
+ value: 84.637
1332
+ - task:
1333
+ type: Retrieval
1334
+ dataset:
1335
+ type: fiqa
1336
+ name: MTEB FiQA2018
1337
+ config: default
1338
+ split: test
1339
+ revision: None
1340
+ metrics:
1341
+ - type: map_at_1
1342
+ value: 20.348
1343
+ - type: map_at_10
1344
+ value: 32.464999999999996
1345
+ - type: map_at_100
1346
+ value: 34.235
1347
+ - type: map_at_1000
1348
+ value: 34.410000000000004
1349
+ - type: map_at_3
1350
+ value: 28.109
1351
+ - type: map_at_5
1352
+ value: 30.634
1353
+ - type: mrr_at_1
1354
+ value: 38.889
1355
+ - type: mrr_at_10
1356
+ value: 47.131
1357
+ - type: mrr_at_100
1358
+ value: 48.107
1359
+ - type: mrr_at_1000
1360
+ value: 48.138
1361
+ - type: mrr_at_3
1362
+ value: 44.599
1363
+ - type: mrr_at_5
1364
+ value: 46.181
1365
+ - type: ndcg_at_1
1366
+ value: 38.889
1367
+ - type: ndcg_at_10
1368
+ value: 39.86
1369
+ - type: ndcg_at_100
1370
+ value: 46.619
1371
+ - type: ndcg_at_1000
1372
+ value: 49.525999999999996
1373
+ - type: ndcg_at_3
1374
+ value: 35.768
1375
+ - type: ndcg_at_5
1376
+ value: 37.4
1377
+ - type: precision_at_1
1378
+ value: 38.889
1379
+ - type: precision_at_10
1380
+ value: 11.003
1381
+ - type: precision_at_100
1382
+ value: 1.796
1383
+ - type: precision_at_1000
1384
+ value: 0.233
1385
+ - type: precision_at_3
1386
+ value: 23.714
1387
+ - type: precision_at_5
1388
+ value: 17.901
1389
+ - type: recall_at_1
1390
+ value: 20.348
1391
+ - type: recall_at_10
1392
+ value: 46.781
1393
+ - type: recall_at_100
1394
+ value: 71.937
1395
+ - type: recall_at_1000
1396
+ value: 89.18599999999999
1397
+ - type: recall_at_3
1398
+ value: 32.16
1399
+ - type: recall_at_5
1400
+ value: 38.81
1401
+ - task:
1402
+ type: Retrieval
1403
+ dataset:
1404
+ type: hotpotqa
1405
+ name: MTEB HotpotQA
1406
+ config: default
1407
+ split: test
1408
+ revision: None
1409
+ metrics:
1410
+ - type: map_at_1
1411
+ value: 37.198
1412
+ - type: map_at_10
1413
+ value: 54.065
1414
+ - type: map_at_100
1415
+ value: 54.984
1416
+ - type: map_at_1000
1417
+ value: 55.05
1418
+ - type: map_at_3
1419
+ value: 50.758
1420
+ - type: map_at_5
1421
+ value: 52.758
1422
+ - type: mrr_at_1
1423
+ value: 74.396
1424
+ - type: mrr_at_10
1425
+ value: 81.352
1426
+ - type: mrr_at_100
1427
+ value: 81.562
1428
+ - type: mrr_at_1000
1429
+ value: 81.57
1430
+ - type: mrr_at_3
1431
+ value: 80.30199999999999
1432
+ - type: mrr_at_5
1433
+ value: 80.963
1434
+ - type: ndcg_at_1
1435
+ value: 74.396
1436
+ - type: ndcg_at_10
1437
+ value: 63.70099999999999
1438
+ - type: ndcg_at_100
1439
+ value: 66.874
1440
+ - type: ndcg_at_1000
1441
+ value: 68.171
1442
+ - type: ndcg_at_3
1443
+ value: 58.916999999999994
1444
+ - type: ndcg_at_5
1445
+ value: 61.495999999999995
1446
+ - type: precision_at_1
1447
+ value: 74.396
1448
+ - type: precision_at_10
1449
+ value: 13.228000000000002
1450
+ - type: precision_at_100
1451
+ value: 1.569
1452
+ - type: precision_at_1000
1453
+ value: 0.174
1454
+ - type: precision_at_3
1455
+ value: 37.007
1456
+ - type: precision_at_5
1457
+ value: 24.248
1458
+ - type: recall_at_1
1459
+ value: 37.198
1460
+ - type: recall_at_10
1461
+ value: 66.13799999999999
1462
+ - type: recall_at_100
1463
+ value: 78.45400000000001
1464
+ - type: recall_at_1000
1465
+ value: 87.04899999999999
1466
+ - type: recall_at_3
1467
+ value: 55.510000000000005
1468
+ - type: recall_at_5
1469
+ value: 60.621
1470
+ - task:
1471
+ type: Classification
1472
+ dataset:
1473
+ type: mteb/imdb
1474
+ name: MTEB ImdbClassification
1475
+ config: default
1476
+ split: test
1477
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1478
+ metrics:
1479
+ - type: accuracy
1480
+ value: 86.32240000000002
1481
+ - type: ap
1482
+ value: 81.37708984744188
1483
+ - type: f1
1484
+ value: 86.29645005523952
1485
+ - task:
1486
+ type: Retrieval
1487
+ dataset:
1488
+ type: msmarco
1489
+ name: MTEB MSMARCO
1490
+ config: default
1491
+ split: dev
1492
+ revision: None
1493
+ metrics:
1494
+ - type: map_at_1
1495
+ value: 16.402
1496
+ - type: map_at_10
1497
+ value: 28.097
1498
+ - type: map_at_100
1499
+ value: 29.421999999999997
1500
+ - type: map_at_1000
1501
+ value: 29.476999999999997
1502
+ - type: map_at_3
1503
+ value: 24.015
1504
+ - type: map_at_5
1505
+ value: 26.316
1506
+ - type: mrr_at_1
1507
+ value: 16.905
1508
+ - type: mrr_at_10
1509
+ value: 28.573999999999998
1510
+ - type: mrr_at_100
1511
+ value: 29.862
1512
+ - type: mrr_at_1000
1513
+ value: 29.912
1514
+ - type: mrr_at_3
1515
+ value: 24.589
1516
+ - type: mrr_at_5
1517
+ value: 26.851000000000003
1518
+ - type: ndcg_at_1
1519
+ value: 16.905
1520
+ - type: ndcg_at_10
1521
+ value: 34.99
1522
+ - type: ndcg_at_100
1523
+ value: 41.419
1524
+ - type: ndcg_at_1000
1525
+ value: 42.815999999999995
1526
+ - type: ndcg_at_3
1527
+ value: 26.695
1528
+ - type: ndcg_at_5
1529
+ value: 30.789
1530
+ - type: precision_at_1
1531
+ value: 16.905
1532
+ - type: precision_at_10
1533
+ value: 5.891
1534
+ - type: precision_at_100
1535
+ value: 0.91
1536
+ - type: precision_at_1000
1537
+ value: 0.10300000000000001
1538
+ - type: precision_at_3
1539
+ value: 11.724
1540
+ - type: precision_at_5
1541
+ value: 9.097
1542
+ - type: recall_at_1
1543
+ value: 16.402
1544
+ - type: recall_at_10
1545
+ value: 56.462999999999994
1546
+ - type: recall_at_100
1547
+ value: 86.246
1548
+ - type: recall_at_1000
1549
+ value: 96.926
1550
+ - type: recall_at_3
1551
+ value: 33.897
1552
+ - type: recall_at_5
1553
+ value: 43.718
1554
+ - task:
1555
+ type: Classification
1556
+ dataset:
1557
+ type: mteb/mtop_domain
1558
+ name: MTEB MTOPDomainClassification (en)
1559
+ config: en
1560
+ split: test
1561
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1562
+ metrics:
1563
+ - type: accuracy
1564
+ value: 92.35978112175103
1565
+ - type: f1
1566
+ value: 92.04704651024416
1567
+ - task:
1568
+ type: Classification
1569
+ dataset:
1570
+ type: mteb/mtop_intent
1571
+ name: MTEB MTOPIntentClassification (en)
1572
+ config: en
1573
+ split: test
1574
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1575
+ metrics:
1576
+ - type: accuracy
1577
+ value: 65.20063839489283
1578
+ - type: f1
1579
+ value: 45.34047546059121
1580
+ - task:
1581
+ type: Classification
1582
+ dataset:
1583
+ type: mteb/amazon_massive_intent
1584
+ name: MTEB MassiveIntentClassification (en)
1585
+ config: en
1586
+ split: test
1587
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1588
+ metrics:
1589
+ - type: accuracy
1590
+ value: 67.74714189643578
1591
+ - type: f1
1592
+ value: 65.36156843270334
1593
+ - task:
1594
+ type: Classification
1595
+ dataset:
1596
+ type: mteb/amazon_massive_scenario
1597
+ name: MTEB MassiveScenarioClassification (en)
1598
+ config: en
1599
+ split: test
1600
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1601
+ metrics:
1602
+ - type: accuracy
1603
+ value: 74.03160726294554
1604
+ - type: f1
1605
+ value: 73.42899064973165
1606
+ - task:
1607
+ type: Clustering
1608
+ dataset:
1609
+ type: mteb/medrxiv-clustering-p2p
1610
+ name: MTEB MedrxivClusteringP2P
1611
+ config: default
1612
+ split: test
1613
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1614
+ metrics:
1615
+ - type: v_measure
1616
+ value: 31.347360980344476
1617
+ - task:
1618
+ type: Clustering
1619
+ dataset:
1620
+ type: mteb/medrxiv-clustering-s2s
1621
+ name: MTEB MedrxivClusteringS2S
1622
+ config: default
1623
+ split: test
1624
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1625
+ metrics:
1626
+ - type: v_measure
1627
+ value: 29.56022733162805
1628
+ - task:
1629
+ type: Reranking
1630
+ dataset:
1631
+ type: mteb/mind_small
1632
+ name: MTEB MindSmallReranking
1633
+ config: default
1634
+ split: test
1635
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1636
+ metrics:
1637
+ - type: map
1638
+ value: 30.60132765358296
1639
+ - type: mrr
1640
+ value: 31.710892632824468
1641
+ - task:
1642
+ type: Retrieval
1643
+ dataset:
1644
+ type: nfcorpus
1645
+ name: MTEB NFCorpus
1646
+ config: default
1647
+ split: test
1648
+ revision: None
1649
+ metrics:
1650
+ - type: map_at_1
1651
+ value: 5.827999999999999
1652
+ - type: map_at_10
1653
+ value: 13.547
1654
+ - type: map_at_100
1655
+ value: 16.869
1656
+ - type: map_at_1000
1657
+ value: 18.242
1658
+ - type: map_at_3
1659
+ value: 9.917
1660
+ - type: map_at_5
1661
+ value: 11.648
1662
+ - type: mrr_at_1
1663
+ value: 46.44
1664
+ - type: mrr_at_10
1665
+ value: 55.062
1666
+ - type: mrr_at_100
1667
+ value: 55.513999999999996
1668
+ - type: mrr_at_1000
1669
+ value: 55.564
1670
+ - type: mrr_at_3
1671
+ value: 52.735
1672
+ - type: mrr_at_5
1673
+ value: 54.391
1674
+ - type: ndcg_at_1
1675
+ value: 44.582
1676
+ - type: ndcg_at_10
1677
+ value: 35.684
1678
+ - type: ndcg_at_100
1679
+ value: 31.913999999999998
1680
+ - type: ndcg_at_1000
1681
+ value: 40.701
1682
+ - type: ndcg_at_3
1683
+ value: 40.819
1684
+ - type: ndcg_at_5
1685
+ value: 39.117000000000004
1686
+ - type: precision_at_1
1687
+ value: 46.129999999999995
1688
+ - type: precision_at_10
1689
+ value: 26.687
1690
+ - type: precision_at_100
1691
+ value: 8.062
1692
+ - type: precision_at_1000
1693
+ value: 2.073
1694
+ - type: precision_at_3
1695
+ value: 38.493
1696
+ - type: precision_at_5
1697
+ value: 34.241
1698
+ - type: recall_at_1
1699
+ value: 5.827999999999999
1700
+ - type: recall_at_10
1701
+ value: 17.391000000000002
1702
+ - type: recall_at_100
1703
+ value: 31.228
1704
+ - type: recall_at_1000
1705
+ value: 63.943000000000005
1706
+ - type: recall_at_3
1707
+ value: 10.81
1708
+ - type: recall_at_5
1709
+ value: 13.618
1710
+ - task:
1711
+ type: Retrieval
1712
+ dataset:
1713
+ type: nq
1714
+ name: MTEB NQ
1715
+ config: default
1716
+ split: test
1717
+ revision: None
1718
+ metrics:
1719
+ - type: map_at_1
1720
+ value: 24.02
1721
+ - type: map_at_10
1722
+ value: 40.054
1723
+ - type: map_at_100
1724
+ value: 41.318
1725
+ - type: map_at_1000
1726
+ value: 41.343999999999994
1727
+ - type: map_at_3
1728
+ value: 35.221999999999994
1729
+ - type: map_at_5
1730
+ value: 38.057
1731
+ - type: mrr_at_1
1732
+ value: 27.230999999999998
1733
+ - type: mrr_at_10
1734
+ value: 42.315999999999995
1735
+ - type: mrr_at_100
1736
+ value: 43.254
1737
+ - type: mrr_at_1000
1738
+ value: 43.272
1739
+ - type: mrr_at_3
1740
+ value: 38.176
1741
+ - type: mrr_at_5
1742
+ value: 40.64
1743
+ - type: ndcg_at_1
1744
+ value: 27.230999999999998
1745
+ - type: ndcg_at_10
1746
+ value: 48.551
1747
+ - type: ndcg_at_100
1748
+ value: 53.737
1749
+ - type: ndcg_at_1000
1750
+ value: 54.313
1751
+ - type: ndcg_at_3
1752
+ value: 39.367999999999995
1753
+ - type: ndcg_at_5
1754
+ value: 44.128
1755
+ - type: precision_at_1
1756
+ value: 27.230999999999998
1757
+ - type: precision_at_10
1758
+ value: 8.578
1759
+ - type: precision_at_100
1760
+ value: 1.145
1761
+ - type: precision_at_1000
1762
+ value: 0.12
1763
+ - type: precision_at_3
1764
+ value: 18.704
1765
+ - type: precision_at_5
1766
+ value: 13.927999999999999
1767
+ - type: recall_at_1
1768
+ value: 24.02
1769
+ - type: recall_at_10
1770
+ value: 72.258
1771
+ - type: recall_at_100
1772
+ value: 94.489
1773
+ - type: recall_at_1000
1774
+ value: 98.721
1775
+ - type: recall_at_3
1776
+ value: 48.373
1777
+ - type: recall_at_5
1778
+ value: 59.388
1779
+ - task:
1780
+ type: Retrieval
1781
+ dataset:
1782
+ type: quora
1783
+ name: MTEB QuoraRetrieval
1784
+ config: default
1785
+ split: test
1786
+ revision: None
1787
+ metrics:
1788
+ - type: map_at_1
1789
+ value: 70.476
1790
+ - type: map_at_10
1791
+ value: 84.41300000000001
1792
+ - type: map_at_100
1793
+ value: 85.036
1794
+ - type: map_at_1000
1795
+ value: 85.055
1796
+ - type: map_at_3
1797
+ value: 81.45599999999999
1798
+ - type: map_at_5
1799
+ value: 83.351
1800
+ - type: mrr_at_1
1801
+ value: 81.07
1802
+ - type: mrr_at_10
1803
+ value: 87.408
1804
+ - type: mrr_at_100
1805
+ value: 87.509
1806
+ - type: mrr_at_1000
1807
+ value: 87.51
1808
+ - type: mrr_at_3
1809
+ value: 86.432
1810
+ - type: mrr_at_5
1811
+ value: 87.128
1812
+ - type: ndcg_at_1
1813
+ value: 81.13
1814
+ - type: ndcg_at_10
1815
+ value: 88.18599999999999
1816
+ - type: ndcg_at_100
1817
+ value: 89.401
1818
+ - type: ndcg_at_1000
1819
+ value: 89.515
1820
+ - type: ndcg_at_3
1821
+ value: 85.332
1822
+ - type: ndcg_at_5
1823
+ value: 86.97
1824
+ - type: precision_at_1
1825
+ value: 81.13
1826
+ - type: precision_at_10
1827
+ value: 13.361
1828
+ - type: precision_at_100
1829
+ value: 1.5230000000000001
1830
+ - type: precision_at_1000
1831
+ value: 0.156
1832
+ - type: precision_at_3
1833
+ value: 37.31
1834
+ - type: precision_at_5
1835
+ value: 24.548000000000002
1836
+ - type: recall_at_1
1837
+ value: 70.476
1838
+ - type: recall_at_10
1839
+ value: 95.3
1840
+ - type: recall_at_100
1841
+ value: 99.46000000000001
1842
+ - type: recall_at_1000
1843
+ value: 99.96000000000001
1844
+ - type: recall_at_3
1845
+ value: 87.057
1846
+ - type: recall_at_5
1847
+ value: 91.739
1848
+ - task:
1849
+ type: Clustering
1850
+ dataset:
1851
+ type: mteb/reddit-clustering
1852
+ name: MTEB RedditClustering
1853
+ config: default
1854
+ split: test
1855
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1856
+ metrics:
1857
+ - type: v_measure
1858
+ value: 55.36775089400664
1859
+ - task:
1860
+ type: Clustering
1861
+ dataset:
1862
+ type: mteb/reddit-clustering-p2p
1863
+ name: MTEB RedditClusteringP2P
1864
+ config: default
1865
+ split: test
1866
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1867
+ metrics:
1868
+ - type: v_measure
1869
+ value: 60.05041008018361
1870
+ - task:
1871
+ type: Retrieval
1872
+ dataset:
1873
+ type: scidocs
1874
+ name: MTEB SCIDOCS
1875
+ config: default
1876
+ split: test
1877
+ revision: None
1878
+ metrics:
1879
+ - type: map_at_1
1880
+ value: 4.743
1881
+ - type: map_at_10
1882
+ value: 12.171
1883
+ - type: map_at_100
1884
+ value: 14.174999999999999
1885
+ - type: map_at_1000
1886
+ value: 14.446
1887
+ - type: map_at_3
1888
+ value: 8.698
1889
+ - type: map_at_5
1890
+ value: 10.444
1891
+ - type: mrr_at_1
1892
+ value: 23.400000000000002
1893
+ - type: mrr_at_10
1894
+ value: 34.284
1895
+ - type: mrr_at_100
1896
+ value: 35.400999999999996
1897
+ - type: mrr_at_1000
1898
+ value: 35.451
1899
+ - type: mrr_at_3
1900
+ value: 31.167
1901
+ - type: mrr_at_5
1902
+ value: 32.946999999999996
1903
+ - type: ndcg_at_1
1904
+ value: 23.400000000000002
1905
+ - type: ndcg_at_10
1906
+ value: 20.169999999999998
1907
+ - type: ndcg_at_100
1908
+ value: 27.967
1909
+ - type: ndcg_at_1000
1910
+ value: 32.982
1911
+ - type: ndcg_at_3
1912
+ value: 19.308
1913
+ - type: ndcg_at_5
1914
+ value: 16.837
1915
+ - type: precision_at_1
1916
+ value: 23.400000000000002
1917
+ - type: precision_at_10
1918
+ value: 10.41
1919
+ - type: precision_at_100
1920
+ value: 2.162
1921
+ - type: precision_at_1000
1922
+ value: 0.338
1923
+ - type: precision_at_3
1924
+ value: 18.067
1925
+ - type: precision_at_5
1926
+ value: 14.78
1927
+ - type: recall_at_1
1928
+ value: 4.743
1929
+ - type: recall_at_10
1930
+ value: 21.098
1931
+ - type: recall_at_100
1932
+ value: 43.85
1933
+ - type: recall_at_1000
1934
+ value: 68.60000000000001
1935
+ - type: recall_at_3
1936
+ value: 10.993
1937
+ - type: recall_at_5
1938
+ value: 14.998000000000001
1939
+ - task:
1940
+ type: STS
1941
+ dataset:
1942
+ type: mteb/sickr-sts
1943
+ name: MTEB SICK-R
1944
+ config: default
1945
+ split: test
1946
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1947
+ metrics:
1948
+ - type: cos_sim_pearson
1949
+ value: 81.129376905658
1950
+ - type: cos_sim_spearman
1951
+ value: 74.18938626206575
1952
+ - type: euclidean_pearson
1953
+ value: 77.95192851803141
1954
+ - type: euclidean_spearman
1955
+ value: 74.18938626206575
1956
+ - type: manhattan_pearson
1957
+ value: 77.97718819383338
1958
+ - type: manhattan_spearman
1959
+ value: 74.20580317409417
1960
+ - task:
1961
+ type: STS
1962
+ dataset:
1963
+ type: mteb/sts12-sts
1964
+ name: MTEB STS12
1965
+ config: default
1966
+ split: test
1967
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1968
+ metrics:
1969
+ - type: cos_sim_pearson
1970
+ value: 78.36913772828827
1971
+ - type: cos_sim_spearman
1972
+ value: 73.22311186990363
1973
+ - type: euclidean_pearson
1974
+ value: 74.45263405031004
1975
+ - type: euclidean_spearman
1976
+ value: 73.22311186990363
1977
+ - type: manhattan_pearson
1978
+ value: 74.56201270071791
1979
+ - type: manhattan_spearman
1980
+ value: 73.26490493774821
1981
+ - task:
1982
+ type: STS
1983
+ dataset:
1984
+ type: mteb/sts13-sts
1985
+ name: MTEB STS13
1986
+ config: default
1987
+ split: test
1988
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1989
+ metrics:
1990
+ - type: cos_sim_pearson
1991
+ value: 84.79920796384403
1992
+ - type: cos_sim_spearman
1993
+ value: 84.77145185366201
1994
+ - type: euclidean_pearson
1995
+ value: 83.90638366191354
1996
+ - type: euclidean_spearman
1997
+ value: 84.77145185366201
1998
+ - type: manhattan_pearson
1999
+ value: 83.83788216629048
2000
+ - type: manhattan_spearman
2001
+ value: 84.70515987131665
2002
+ - task:
2003
+ type: STS
2004
+ dataset:
2005
+ type: mteb/sts14-sts
2006
+ name: MTEB STS14
2007
+ config: default
2008
+ split: test
2009
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2010
+ metrics:
2011
+ - type: cos_sim_pearson
2012
+ value: 83.18883765092875
2013
+ - type: cos_sim_spearman
2014
+ value: 79.9948128016449
2015
+ - type: euclidean_pearson
2016
+ value: 81.57436738666773
2017
+ - type: euclidean_spearman
2018
+ value: 79.9948128016449
2019
+ - type: manhattan_pearson
2020
+ value: 81.55274202648187
2021
+ - type: manhattan_spearman
2022
+ value: 79.99854975019382
2023
+ - task:
2024
+ type: STS
2025
+ dataset:
2026
+ type: mteb/sts15-sts
2027
+ name: MTEB STS15
2028
+ config: default
2029
+ split: test
2030
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2031
+ metrics:
2032
+ - type: cos_sim_pearson
2033
+ value: 86.89669110871021
2034
+ - type: cos_sim_spearman
2035
+ value: 87.26758456901442
2036
+ - type: euclidean_pearson
2037
+ value: 86.62614163641416
2038
+ - type: euclidean_spearman
2039
+ value: 87.26758456901442
2040
+ - type: manhattan_pearson
2041
+ value: 86.58584490012353
2042
+ - type: manhattan_spearman
2043
+ value: 87.20340001562076
2044
+ - task:
2045
+ type: STS
2046
+ dataset:
2047
+ type: mteb/sts16-sts
2048
+ name: MTEB STS16
2049
+ config: default
2050
+ split: test
2051
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2052
+ metrics:
2053
+ - type: cos_sim_pearson
2054
+ value: 81.983023415916
2055
+ - type: cos_sim_spearman
2056
+ value: 82.31169002657151
2057
+ - type: euclidean_pearson
2058
+ value: 81.52305092886222
2059
+ - type: euclidean_spearman
2060
+ value: 82.31169002657151
2061
+ - type: manhattan_pearson
2062
+ value: 81.63024996600281
2063
+ - type: manhattan_spearman
2064
+ value: 82.44579116264026
2065
+ - task:
2066
+ type: STS
2067
+ dataset:
2068
+ type: mteb/sts17-crosslingual-sts
2069
+ name: MTEB STS17 (en-en)
2070
+ config: en-en
2071
+ split: test
2072
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2073
+ metrics:
2074
+ - type: cos_sim_pearson
2075
+ value: 89.27779520541694
2076
+ - type: cos_sim_spearman
2077
+ value: 89.54137104681308
2078
+ - type: euclidean_pearson
2079
+ value: 88.99136079955996
2080
+ - type: euclidean_spearman
2081
+ value: 89.54137104681308
2082
+ - type: manhattan_pearson
2083
+ value: 88.95980417618277
2084
+ - type: manhattan_spearman
2085
+ value: 89.55178819334718
2086
+ - task:
2087
+ type: STS
2088
+ dataset:
2089
+ type: mteb/sts22-crosslingual-sts
2090
+ name: MTEB STS22 (en)
2091
+ config: en
2092
+ split: test
2093
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2094
+ metrics:
2095
+ - type: cos_sim_pearson
2096
+ value: 66.50806758829178
2097
+ - type: cos_sim_spearman
2098
+ value: 65.92675365587571
2099
+ - type: euclidean_pearson
2100
+ value: 67.09216876696559
2101
+ - type: euclidean_spearman
2102
+ value: 65.92675365587571
2103
+ - type: manhattan_pearson
2104
+ value: 67.37398716891478
2105
+ - type: manhattan_spearman
2106
+ value: 66.34811143508206
2107
+ - task:
2108
+ type: STS
2109
+ dataset:
2110
+ type: mteb/stsbenchmark-sts
2111
+ name: MTEB STSBenchmark
2112
+ config: default
2113
+ split: test
2114
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2115
+ metrics:
2116
+ - type: cos_sim_pearson
2117
+ value: 84.557575753862
2118
+ - type: cos_sim_spearman
2119
+ value: 83.95859527071087
2120
+ - type: euclidean_pearson
2121
+ value: 83.77287626715369
2122
+ - type: euclidean_spearman
2123
+ value: 83.95859527071087
2124
+ - type: manhattan_pearson
2125
+ value: 83.7898033034244
2126
+ - type: manhattan_spearman
2127
+ value: 83.94860981294184
2128
+ - task:
2129
+ type: Reranking
2130
+ dataset:
2131
+ type: mteb/scidocs-reranking
2132
+ name: MTEB SciDocsRR
2133
+ config: default
2134
+ split: test
2135
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2136
+ metrics:
2137
+ - type: map
2138
+ value: 79.90679624144718
2139
+ - type: mrr
2140
+ value: 94.33150183150182
2141
+ - task:
2142
+ type: Retrieval
2143
+ dataset:
2144
+ type: scifact
2145
+ name: MTEB SciFact
2146
+ config: default
2147
+ split: test
2148
+ revision: None
2149
+ metrics:
2150
+ - type: map_at_1
2151
+ value: 56.81699999999999
2152
+ - type: map_at_10
2153
+ value: 67.301
2154
+ - type: map_at_100
2155
+ value: 67.73599999999999
2156
+ - type: map_at_1000
2157
+ value: 67.757
2158
+ - type: map_at_3
2159
+ value: 64.865
2160
+ - type: map_at_5
2161
+ value: 66.193
2162
+ - type: mrr_at_1
2163
+ value: 59.667
2164
+ - type: mrr_at_10
2165
+ value: 68.324
2166
+ - type: mrr_at_100
2167
+ value: 68.66
2168
+ - type: mrr_at_1000
2169
+ value: 68.676
2170
+ - type: mrr_at_3
2171
+ value: 66.556
2172
+ - type: mrr_at_5
2173
+ value: 67.472
2174
+ - type: ndcg_at_1
2175
+ value: 59.667
2176
+ - type: ndcg_at_10
2177
+ value: 71.982
2178
+ - type: ndcg_at_100
2179
+ value: 74.149
2180
+ - type: ndcg_at_1000
2181
+ value: 74.60799999999999
2182
+ - type: ndcg_at_3
2183
+ value: 67.796
2184
+ - type: ndcg_at_5
2185
+ value: 69.64099999999999
2186
+ - type: precision_at_1
2187
+ value: 59.667
2188
+ - type: precision_at_10
2189
+ value: 9.633
2190
+ - type: precision_at_100
2191
+ value: 1.08
2192
+ - type: precision_at_1000
2193
+ value: 0.11199999999999999
2194
+ - type: precision_at_3
2195
+ value: 26.889000000000003
2196
+ - type: precision_at_5
2197
+ value: 17.467
2198
+ - type: recall_at_1
2199
+ value: 56.81699999999999
2200
+ - type: recall_at_10
2201
+ value: 85.18900000000001
2202
+ - type: recall_at_100
2203
+ value: 95.6
2204
+ - type: recall_at_1000
2205
+ value: 99.0
2206
+ - type: recall_at_3
2207
+ value: 73.617
2208
+ - type: recall_at_5
2209
+ value: 78.444
2210
+ - task:
2211
+ type: PairClassification
2212
+ dataset:
2213
+ type: mteb/sprintduplicatequestions-pairclassification
2214
+ name: MTEB SprintDuplicateQuestions
2215
+ config: default
2216
+ split: test
2217
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2218
+ metrics:
2219
+ - type: cos_sim_accuracy
2220
+ value: 99.83465346534653
2221
+ - type: cos_sim_ap
2222
+ value: 95.93387984443646
2223
+ - type: cos_sim_f1
2224
+ value: 91.49261334691798
2225
+ - type: cos_sim_precision
2226
+ value: 93.25025960539979
2227
+ - type: cos_sim_recall
2228
+ value: 89.8
2229
+ - type: dot_accuracy
2230
+ value: 99.83465346534653
2231
+ - type: dot_ap
2232
+ value: 95.93389375761485
2233
+ - type: dot_f1
2234
+ value: 91.49261334691798
2235
+ - type: dot_precision
2236
+ value: 93.25025960539979
2237
+ - type: dot_recall
2238
+ value: 89.8
2239
+ - type: euclidean_accuracy
2240
+ value: 99.83465346534653
2241
+ - type: euclidean_ap
2242
+ value: 95.93389375761487
2243
+ - type: euclidean_f1
2244
+ value: 91.49261334691798
2245
+ - type: euclidean_precision
2246
+ value: 93.25025960539979
2247
+ - type: euclidean_recall
2248
+ value: 89.8
2249
+ - type: manhattan_accuracy
2250
+ value: 99.83564356435643
2251
+ - type: manhattan_ap
2252
+ value: 95.89877504534601
2253
+ - type: manhattan_f1
2254
+ value: 91.53061224489795
2255
+ - type: manhattan_precision
2256
+ value: 93.4375
2257
+ - type: manhattan_recall
2258
+ value: 89.7
2259
+ - type: max_accuracy
2260
+ value: 99.83564356435643
2261
+ - type: max_ap
2262
+ value: 95.93389375761487
2263
+ - type: max_f1
2264
+ value: 91.53061224489795
2265
+ - task:
2266
+ type: Clustering
2267
+ dataset:
2268
+ type: mteb/stackexchange-clustering
2269
+ name: MTEB StackExchangeClustering
2270
+ config: default
2271
+ split: test
2272
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2273
+ metrics:
2274
+ - type: v_measure
2275
+ value: 62.2780055191805
2276
+ - task:
2277
+ type: Clustering
2278
+ dataset:
2279
+ type: mteb/stackexchange-clustering-p2p
2280
+ name: MTEB StackExchangeClusteringP2P
2281
+ config: default
2282
+ split: test
2283
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2284
+ metrics:
2285
+ - type: v_measure
2286
+ value: 33.94461701798904
2287
+ - task:
2288
+ type: Reranking
2289
+ dataset:
2290
+ type: mteb/stackoverflowdupquestions-reranking
2291
+ name: MTEB StackOverflowDupQuestions
2292
+ config: default
2293
+ split: test
2294
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2295
+ metrics:
2296
+ - type: map
2297
+ value: 49.865789666749535
2298
+ - type: mrr
2299
+ value: 50.61783804430863
2300
+ - task:
2301
+ type: Summarization
2302
+ dataset:
2303
+ type: mteb/summeval
2304
+ name: MTEB SummEval
2305
+ config: default
2306
+ split: test
2307
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2308
+ metrics:
2309
+ - type: cos_sim_pearson
2310
+ value: 29.97703436199298
2311
+ - type: cos_sim_spearman
2312
+ value: 30.71880290978946
2313
+ - type: dot_pearson
2314
+ value: 29.977036284086818
2315
+ - type: dot_spearman
2316
+ value: 30.71880290978946
2317
+ - task:
2318
+ type: Retrieval
2319
+ dataset:
2320
+ type: trec-covid
2321
+ name: MTEB TRECCOVID
2322
+ config: default
2323
+ split: test
2324
+ revision: None
2325
+ metrics:
2326
+ - type: map_at_1
2327
+ value: 0.22799999999999998
2328
+ - type: map_at_10
2329
+ value: 1.559
2330
+ - type: map_at_100
2331
+ value: 8.866
2332
+ - type: map_at_1000
2333
+ value: 23.071
2334
+ - type: map_at_3
2335
+ value: 0.592
2336
+ - type: map_at_5
2337
+ value: 0.906
2338
+ - type: mrr_at_1
2339
+ value: 84.0
2340
+ - type: mrr_at_10
2341
+ value: 88.567
2342
+ - type: mrr_at_100
2343
+ value: 88.748
2344
+ - type: mrr_at_1000
2345
+ value: 88.748
2346
+ - type: mrr_at_3
2347
+ value: 87.667
2348
+ - type: mrr_at_5
2349
+ value: 88.067
2350
+ - type: ndcg_at_1
2351
+ value: 73.0
2352
+ - type: ndcg_at_10
2353
+ value: 62.202999999999996
2354
+ - type: ndcg_at_100
2355
+ value: 49.66
2356
+ - type: ndcg_at_1000
2357
+ value: 48.760999999999996
2358
+ - type: ndcg_at_3
2359
+ value: 67.52
2360
+ - type: ndcg_at_5
2361
+ value: 64.80799999999999
2362
+ - type: precision_at_1
2363
+ value: 84.0
2364
+ - type: precision_at_10
2365
+ value: 65.4
2366
+ - type: precision_at_100
2367
+ value: 51.72
2368
+ - type: precision_at_1000
2369
+ value: 22.014
2370
+ - type: precision_at_3
2371
+ value: 74.0
2372
+ - type: precision_at_5
2373
+ value: 69.19999999999999
2374
+ - type: recall_at_1
2375
+ value: 0.22799999999999998
2376
+ - type: recall_at_10
2377
+ value: 1.7680000000000002
2378
+ - type: recall_at_100
2379
+ value: 12.581999999999999
2380
+ - type: recall_at_1000
2381
+ value: 46.883
2382
+ - type: recall_at_3
2383
+ value: 0.618
2384
+ - type: recall_at_5
2385
+ value: 0.9690000000000001
2386
+ - task:
2387
+ type: Retrieval
2388
+ dataset:
2389
+ type: webis-touche2020
2390
+ name: MTEB Touche2020
2391
+ config: default
2392
+ split: test
2393
+ revision: None
2394
+ metrics:
2395
+ - type: map_at_1
2396
+ value: 1.295
2397
+ - type: map_at_10
2398
+ value: 7.481
2399
+ - type: map_at_100
2400
+ value: 13.120999999999999
2401
+ - type: map_at_1000
2402
+ value: 14.863999999999999
2403
+ - type: map_at_3
2404
+ value: 3.266
2405
+ - type: map_at_5
2406
+ value: 4.662
2407
+ - type: mrr_at_1
2408
+ value: 14.285999999999998
2409
+ - type: mrr_at_10
2410
+ value: 31.995
2411
+ - type: mrr_at_100
2412
+ value: 33.415
2413
+ - type: mrr_at_1000
2414
+ value: 33.432
2415
+ - type: mrr_at_3
2416
+ value: 27.551
2417
+ - type: mrr_at_5
2418
+ value: 30.306
2419
+ - type: ndcg_at_1
2420
+ value: 11.224
2421
+ - type: ndcg_at_10
2422
+ value: 19.166
2423
+ - type: ndcg_at_100
2424
+ value: 31.86
2425
+ - type: ndcg_at_1000
2426
+ value: 44.668
2427
+ - type: ndcg_at_3
2428
+ value: 17.371
2429
+ - type: ndcg_at_5
2430
+ value: 18.567
2431
+ - type: precision_at_1
2432
+ value: 14.285999999999998
2433
+ - type: precision_at_10
2434
+ value: 18.98
2435
+ - type: precision_at_100
2436
+ value: 7.041
2437
+ - type: precision_at_1000
2438
+ value: 1.555
2439
+ - type: precision_at_3
2440
+ value: 19.728
2441
+ - type: precision_at_5
2442
+ value: 20.816000000000003
2443
+ - type: recall_at_1
2444
+ value: 1.295
2445
+ - type: recall_at_10
2446
+ value: 14.482000000000001
2447
+ - type: recall_at_100
2448
+ value: 45.149
2449
+ - type: recall_at_1000
2450
+ value: 84.317
2451
+ - type: recall_at_3
2452
+ value: 4.484
2453
+ - type: recall_at_5
2454
+ value: 7.7170000000000005
2455
+ - task:
2456
+ type: Classification
2457
+ dataset:
2458
+ type: mteb/toxic_conversations_50k
2459
+ name: MTEB ToxicConversationsClassification
2460
+ config: default
2461
+ split: test
2462
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2463
+ metrics:
2464
+ - type: accuracy
2465
+ value: 72.96340000000001
2466
+ - type: ap
2467
+ value: 15.62835559397026
2468
+ - type: f1
2469
+ value: 56.42561616707867
2470
+ - task:
2471
+ type: Classification
2472
+ dataset:
2473
+ type: mteb/tweet_sentiment_extraction
2474
+ name: MTEB TweetSentimentExtractionClassification
2475
+ config: default
2476
+ split: test
2477
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2478
+ metrics:
2479
+ - type: accuracy
2480
+ value: 55.280135823429546
2481
+ - type: f1
2482
+ value: 55.61428067547153
2483
+ - task:
2484
+ type: Clustering
2485
+ dataset:
2486
+ type: mteb/twentynewsgroups-clustering
2487
+ name: MTEB TwentyNewsgroupsClustering
2488
+ config: default
2489
+ split: test
2490
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2491
+ metrics:
2492
+ - type: v_measure
2493
+ value: 45.426677723253555
2494
+ - task:
2495
+ type: PairClassification
2496
+ dataset:
2497
+ type: mteb/twittersemeval2015-pairclassification
2498
+ name: MTEB TwitterSemEval2015
2499
+ config: default
2500
+ split: test
2501
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2502
+ metrics:
2503
+ - type: cos_sim_accuracy
2504
+ value: 84.57411933003517
2505
+ - type: cos_sim_ap
2506
+ value: 69.68254951354992
2507
+ - type: cos_sim_f1
2508
+ value: 65.05232416646386
2509
+ - type: cos_sim_precision
2510
+ value: 60.36585365853659
2511
+ - type: cos_sim_recall
2512
+ value: 70.52770448548813
2513
+ - type: dot_accuracy
2514
+ value: 84.57411933003517
2515
+ - type: dot_ap
2516
+ value: 69.68256519978905
2517
+ - type: dot_f1
2518
+ value: 65.05232416646386
2519
+ - type: dot_precision
2520
+ value: 60.36585365853659
2521
+ - type: dot_recall
2522
+ value: 70.52770448548813
2523
+ - type: euclidean_accuracy
2524
+ value: 84.57411933003517
2525
+ - type: euclidean_ap
2526
+ value: 69.6825655240522
2527
+ - type: euclidean_f1
2528
+ value: 65.05232416646386
2529
+ - type: euclidean_precision
2530
+ value: 60.36585365853659
2531
+ - type: euclidean_recall
2532
+ value: 70.52770448548813
2533
+ - type: manhattan_accuracy
2534
+ value: 84.5502771651666
2535
+ - type: manhattan_ap
2536
+ value: 69.61700491283233
2537
+ - type: manhattan_f1
2538
+ value: 64.83962148211872
2539
+ - type: manhattan_precision
2540
+ value: 60.68553025074765
2541
+ - type: manhattan_recall
2542
+ value: 69.6042216358839
2543
+ - type: max_accuracy
2544
+ value: 84.57411933003517
2545
+ - type: max_ap
2546
+ value: 69.6825655240522
2547
+ - type: max_f1
2548
+ value: 65.05232416646386
2549
+ - task:
2550
+ type: PairClassification
2551
+ dataset:
2552
+ type: mteb/twitterurlcorpus-pairclassification
2553
+ name: MTEB TwitterURLCorpus
2554
+ config: default
2555
+ split: test
2556
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2557
+ metrics:
2558
+ - type: cos_sim_accuracy
2559
+ value: 88.80350836341057
2560
+ - type: cos_sim_ap
2561
+ value: 85.41051415803449
2562
+ - type: cos_sim_f1
2563
+ value: 77.99305633329602
2564
+ - type: cos_sim_precision
2565
+ value: 75.70113776360607
2566
+ - type: cos_sim_recall
2567
+ value: 80.42808746535263
2568
+ - type: dot_accuracy
2569
+ value: 88.80350836341057
2570
+ - type: dot_ap
2571
+ value: 85.41051488820463
2572
+ - type: dot_f1
2573
+ value: 77.99305633329602
2574
+ - type: dot_precision
2575
+ value: 75.70113776360607
2576
+ - type: dot_recall
2577
+ value: 80.42808746535263
2578
+ - type: euclidean_accuracy
2579
+ value: 88.80350836341057
2580
+ - type: euclidean_ap
2581
+ value: 85.41051374760137
2582
+ - type: euclidean_f1
2583
+ value: 77.99305633329602
2584
+ - type: euclidean_precision
2585
+ value: 75.70113776360607
2586
+ - type: euclidean_recall
2587
+ value: 80.42808746535263
2588
+ - type: manhattan_accuracy
2589
+ value: 88.74529436876625
2590
+ - type: manhattan_ap
2591
+ value: 85.38380242074525
2592
+ - type: manhattan_f1
2593
+ value: 78.02957839746892
2594
+ - type: manhattan_precision
2595
+ value: 74.71466816964914
2596
+ - type: manhattan_recall
2597
+ value: 81.65229442562365
2598
+ - type: max_accuracy
2599
+ value: 88.80350836341057
2600
+ - type: max_ap
2601
+ value: 85.41051488820463
2602
+ - type: max_f1
2603
+ value: 78.02957839746892
2604
+ ---
2605
+
2606
+ # nomic-embed-text-v1-unsupervised:
2607
+
2608
+ `nomic-embed-text-v1-unsupervised` is 8192 context length text encoder. This is an intermediate checkpoint from multi-stage contrastive training.
2609
+