Fill-Mask
Transformers
PyTorch
Safetensors
English
nomic_bert
custom_code
zpn commited on
Commit
5a550ad
1 Parent(s): 5b6e9d2

Update modeling_hf_nomic_bert.py

Browse files
Files changed (1) hide show
  1. modeling_hf_nomic_bert.py +4 -15
modeling_hf_nomic_bert.py CHANGED
@@ -1694,7 +1694,6 @@ class NomicBertModel(NomicBertPreTrainedModel):
1694
  return_dict=None,
1695
  matryoshka_dim=None,
1696
  inputs_embeds=None,
1697
- head_mask=None,
1698
  ):
1699
  if input_ids is not None and inputs_embeds is not None:
1700
  raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
@@ -1868,7 +1867,7 @@ class NomicBertForMultipleChoice(NomicBertPreTrainedModel):
1868
  def __init__(self, config):
1869
  super().__init__(config)
1870
 
1871
- self.bert = NomicBertModel(config, add_pooling_layer=True)
1872
  classifier_dropout = (
1873
  config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
1874
  )
@@ -1911,17 +1910,13 @@ class NomicBertForMultipleChoice(NomicBertPreTrainedModel):
1911
  else None
1912
  )
1913
 
1914
- outputs = self.bert(
1915
  input_ids,
1916
  attention_mask=attention_mask,
1917
  token_type_ids=token_type_ids,
1918
  position_ids=position_ids,
1919
  head_mask=head_mask,
1920
  inputs_embeds=inputs_embeds,
1921
- output_attentions=output_attentions,
1922
- output_hidden_states=output_hidden_states,
1923
- return_dict=return_dict,
1924
- unpad_inputs=unpad_inputs,
1925
  )
1926
 
1927
  pooled_output = outputs[1]
@@ -1987,9 +1982,6 @@ class NomicBertForTokenClassification(NomicBertPreTrainedModel):
1987
  position_ids=position_ids,
1988
  head_mask=head_mask,
1989
  inputs_embeds=inputs_embeds,
1990
- output_attentions=output_attentions,
1991
- output_hidden_states=output_hidden_states,
1992
- return_dict=return_dict,
1993
  )
1994
 
1995
  sequence_output = outputs[0]
@@ -1999,7 +1991,7 @@ class NomicBertForTokenClassification(NomicBertPreTrainedModel):
1999
 
2000
  loss = None
2001
  if labels is not None:
2002
- loss_fct = CrossEntropyLoss()
2003
  loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
2004
 
2005
  if not return_dict:
@@ -2057,9 +2049,6 @@ class NomicBertForQuestionAnswering(NomicBertPreTrainedModel):
2057
  position_ids=position_ids,
2058
  head_mask=head_mask,
2059
  inputs_embeds=inputs_embeds,
2060
- output_attentions=output_attentions,
2061
- output_hidden_states=output_hidden_states,
2062
- return_dict=return_dict,
2063
  )
2064
 
2065
  sequence_output = outputs[0]
@@ -2081,7 +2070,7 @@ class NomicBertForQuestionAnswering(NomicBertPreTrainedModel):
2081
  start_positions = start_positions.clamp(0, ignored_index)
2082
  end_positions = end_positions.clamp(0, ignored_index)
2083
 
2084
- loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
2085
  start_loss = loss_fct(start_logits, start_positions)
2086
  end_loss = loss_fct(end_logits, end_positions)
2087
  total_loss = (start_loss + end_loss) / 2
 
1694
  return_dict=None,
1695
  matryoshka_dim=None,
1696
  inputs_embeds=None,
 
1697
  ):
1698
  if input_ids is not None and inputs_embeds is not None:
1699
  raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
 
1867
  def __init__(self, config):
1868
  super().__init__(config)
1869
 
1870
+ self.new = NomicBertModel(config, add_pooling_layer=True)
1871
  classifier_dropout = (
1872
  config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
1873
  )
 
1910
  else None
1911
  )
1912
 
1913
+ outputs = self.new(
1914
  input_ids,
1915
  attention_mask=attention_mask,
1916
  token_type_ids=token_type_ids,
1917
  position_ids=position_ids,
1918
  head_mask=head_mask,
1919
  inputs_embeds=inputs_embeds,
 
 
 
 
1920
  )
1921
 
1922
  pooled_output = outputs[1]
 
1982
  position_ids=position_ids,
1983
  head_mask=head_mask,
1984
  inputs_embeds=inputs_embeds,
 
 
 
1985
  )
1986
 
1987
  sequence_output = outputs[0]
 
1991
 
1992
  loss = None
1993
  if labels is not None:
1994
+ loss_fct = nn.CrossEntropyLoss()
1995
  loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1996
 
1997
  if not return_dict:
 
2049
  position_ids=position_ids,
2050
  head_mask=head_mask,
2051
  inputs_embeds=inputs_embeds,
 
 
 
2052
  )
2053
 
2054
  sequence_output = outputs[0]
 
2070
  start_positions = start_positions.clamp(0, ignored_index)
2071
  end_positions = end_positions.clamp(0, ignored_index)
2072
 
2073
+ loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
2074
  start_loss = loss_fct(start_logits, start_positions)
2075
  end_loss = loss_fct(end_logits, end_positions)
2076
  total_loss = (start_loss + end_loss) / 2