Let input text in pipeline
Browse files- pipeline.py +2 -2
pipeline.py
CHANGED
@@ -43,12 +43,12 @@ class PreTrainedPipeline():
|
|
43 |
- "feature_vector": A list of floats corresponding to the image embedding.
|
44 |
"""
|
45 |
inputs = data.pop("inputs", data)
|
46 |
-
parameters = data.pop("parameters", {"mode": "
|
47 |
|
48 |
# decode base64 image to PIL
|
49 |
image = Image.open(BytesIO(base64.b64decode(inputs['image'])))
|
50 |
image = self.transform(image).unsqueeze(0).to(device)
|
51 |
-
text=
|
52 |
with torch.no_grad():
|
53 |
feature_vector = self.model(image, text, mode=parameters["mode"])[0,0].tolist()
|
54 |
# postprocess the prediction
|
|
|
43 |
- "feature_vector": A list of floats corresponding to the image embedding.
|
44 |
"""
|
45 |
inputs = data.pop("inputs", data)
|
46 |
+
parameters = data.pop("parameters", {"mode": "multimodal"})
|
47 |
|
48 |
# decode base64 image to PIL
|
49 |
image = Image.open(BytesIO(base64.b64decode(inputs['image'])))
|
50 |
image = self.transform(image).unsqueeze(0).to(device)
|
51 |
+
text = inputs['text'] if 'text' in inputs else ''# already gets tokenised in the model
|
52 |
with torch.no_grad():
|
53 |
feature_vector = self.model(image, text, mode=parameters["mode"])[0,0].tolist()
|
54 |
# postprocess the prediction
|