|
import torch |
|
import os |
|
import collections |
|
from collections import namedtuple |
|
from modules import shared, devices, script_callbacks |
|
from modules.paths import models_path |
|
import glob |
|
from copy import deepcopy |
|
|
|
|
|
model_dir = "Stable-diffusion" |
|
model_path = os.path.abspath(os.path.join(models_path, model_dir)) |
|
vae_dir = "VAE" |
|
vae_path = os.path.abspath(os.path.join(models_path, vae_dir)) |
|
|
|
|
|
vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"} |
|
|
|
|
|
default_vae_dict = {"auto": "auto", "None": None, None: None} |
|
default_vae_list = ["auto", "None"] |
|
|
|
|
|
default_vae_values = [default_vae_dict[x] for x in default_vae_list] |
|
vae_dict = dict(default_vae_dict) |
|
vae_list = list(default_vae_list) |
|
first_load = True |
|
|
|
|
|
base_vae = None |
|
loaded_vae_file = None |
|
checkpoint_info = None |
|
|
|
checkpoints_loaded = collections.OrderedDict() |
|
|
|
def get_base_vae(model): |
|
if base_vae is not None and checkpoint_info == model.sd_checkpoint_info and model: |
|
return base_vae |
|
return None |
|
|
|
|
|
def store_base_vae(model): |
|
global base_vae, checkpoint_info |
|
if checkpoint_info != model.sd_checkpoint_info: |
|
assert not loaded_vae_file, "Trying to store non-base VAE!" |
|
base_vae = deepcopy(model.first_stage_model.state_dict()) |
|
checkpoint_info = model.sd_checkpoint_info |
|
|
|
|
|
def delete_base_vae(): |
|
global base_vae, checkpoint_info |
|
base_vae = None |
|
checkpoint_info = None |
|
|
|
|
|
def restore_base_vae(model): |
|
global loaded_vae_file |
|
if base_vae is not None and checkpoint_info == model.sd_checkpoint_info: |
|
print("Restoring base VAE") |
|
_load_vae_dict(model, base_vae) |
|
loaded_vae_file = None |
|
delete_base_vae() |
|
|
|
|
|
def get_filename(filepath): |
|
return os.path.splitext(os.path.basename(filepath))[0] |
|
|
|
|
|
def refresh_vae_list(vae_path=vae_path, model_path=model_path): |
|
global vae_dict, vae_list |
|
res = {} |
|
candidates = [ |
|
*glob.iglob(os.path.join(model_path, '**/*.vae.ckpt'), recursive=True), |
|
*glob.iglob(os.path.join(model_path, '**/*.vae.pt'), recursive=True), |
|
*glob.iglob(os.path.join(vae_path, '**/*.ckpt'), recursive=True), |
|
*glob.iglob(os.path.join(vae_path, '**/*.pt'), recursive=True) |
|
] |
|
if shared.cmd_opts.vae_path is not None and os.path.isfile(shared.cmd_opts.vae_path): |
|
candidates.append(shared.cmd_opts.vae_path) |
|
for filepath in candidates: |
|
name = get_filename(filepath) |
|
res[name] = filepath |
|
vae_list.clear() |
|
vae_list.extend(default_vae_list) |
|
vae_list.extend(list(res.keys())) |
|
vae_dict.clear() |
|
vae_dict.update(res) |
|
vae_dict.update(default_vae_dict) |
|
return vae_list |
|
|
|
|
|
def get_vae_from_settings(vae_file="auto"): |
|
|
|
if vae_file == "auto" and shared.opts.sd_vae is not None: |
|
|
|
vae_file = vae_dict.get(shared.opts.sd_vae, "auto") |
|
|
|
if vae_file not in default_vae_values and not os.path.isfile(vae_file): |
|
vae_file = "auto" |
|
print(f"Selected VAE doesn't exist: {vae_file}") |
|
return vae_file |
|
|
|
|
|
def resolve_vae(checkpoint_file=None, vae_file="auto"): |
|
global first_load, vae_dict, vae_list |
|
|
|
|
|
if vae_file and vae_file not in default_vae_list: |
|
if not os.path.isfile(vae_file): |
|
print(f"VAE provided as function argument doesn't exist: {vae_file}") |
|
vae_file = "auto" |
|
|
|
if first_load and shared.cmd_opts.vae_path is not None: |
|
if os.path.isfile(shared.cmd_opts.vae_path): |
|
vae_file = shared.cmd_opts.vae_path |
|
shared.opts.data['sd_vae'] = get_filename(vae_file) |
|
else: |
|
print(f"VAE provided as command line argument doesn't exist: {vae_file}") |
|
|
|
if not shared.opts.sd_vae_as_default: |
|
vae_file = get_vae_from_settings(vae_file) |
|
|
|
if vae_file == "auto" and shared.cmd_opts.vae_path is not None: |
|
if os.path.isfile(shared.cmd_opts.vae_path): |
|
vae_file = shared.cmd_opts.vae_path |
|
print(f"Using VAE provided as command line argument: {vae_file}") |
|
|
|
model_path = os.path.splitext(checkpoint_file)[0] |
|
if vae_file == "auto": |
|
vae_file_try = model_path + ".vae.pt" |
|
if os.path.isfile(vae_file_try): |
|
vae_file = vae_file_try |
|
print(f"Using VAE found similar to selected model: {vae_file}") |
|
|
|
if vae_file == "auto": |
|
vae_file_try = model_path + ".vae.ckpt" |
|
if os.path.isfile(vae_file_try): |
|
vae_file = vae_file_try |
|
print(f"Using VAE found similar to selected model: {vae_file}") |
|
|
|
if vae_file == "auto": |
|
vae_file = None |
|
|
|
if vae_file and not os.path.exists(vae_file): |
|
vae_file = None |
|
|
|
return vae_file |
|
|
|
|
|
def load_vae(model, vae_file=None): |
|
global first_load, vae_dict, vae_list, loaded_vae_file |
|
|
|
|
|
cache_enabled = shared.opts.sd_vae_checkpoint_cache > 0 |
|
|
|
if vae_file: |
|
if cache_enabled and vae_file in checkpoints_loaded: |
|
|
|
print(f"Loading VAE weights [{get_filename(vae_file)}] from cache") |
|
store_base_vae(model) |
|
_load_vae_dict(model, checkpoints_loaded[vae_file]) |
|
else: |
|
assert os.path.isfile(vae_file), f"VAE file doesn't exist: {vae_file}" |
|
print(f"Loading VAE weights from: {vae_file}") |
|
store_base_vae(model) |
|
vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location) |
|
vae_dict_1 = {k: v for k, v in vae_ckpt["state_dict"].items() if k[0:4] != "loss" and k not in vae_ignore_keys} |
|
_load_vae_dict(model, vae_dict_1) |
|
|
|
if cache_enabled: |
|
|
|
checkpoints_loaded[vae_file] = vae_dict_1.copy() |
|
|
|
|
|
if cache_enabled: |
|
while len(checkpoints_loaded) > shared.opts.sd_vae_checkpoint_cache + 1: |
|
checkpoints_loaded.popitem(last=False) |
|
|
|
|
|
|
|
vae_opt = get_filename(vae_file) |
|
if vae_opt not in vae_dict: |
|
vae_dict[vae_opt] = vae_file |
|
vae_list.append(vae_opt) |
|
elif loaded_vae_file: |
|
restore_base_vae(model) |
|
|
|
loaded_vae_file = vae_file |
|
|
|
first_load = False |
|
|
|
|
|
|
|
def _load_vae_dict(model, vae_dict_1): |
|
model.first_stage_model.load_state_dict(vae_dict_1) |
|
model.first_stage_model.to(devices.dtype_vae) |
|
|
|
def clear_loaded_vae(): |
|
global loaded_vae_file |
|
loaded_vae_file = None |
|
|
|
def reload_vae_weights(sd_model=None, vae_file="auto"): |
|
from modules import lowvram, devices, sd_hijack |
|
|
|
if not sd_model: |
|
sd_model = shared.sd_model |
|
|
|
checkpoint_info = sd_model.sd_checkpoint_info |
|
checkpoint_file = checkpoint_info.filename |
|
vae_file = resolve_vae(checkpoint_file, vae_file=vae_file) |
|
|
|
if loaded_vae_file == vae_file: |
|
return |
|
|
|
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: |
|
lowvram.send_everything_to_cpu() |
|
else: |
|
sd_model.to(devices.cpu) |
|
|
|
sd_hijack.model_hijack.undo_hijack(sd_model) |
|
|
|
load_vae(sd_model, vae_file) |
|
|
|
sd_hijack.model_hijack.hijack(sd_model) |
|
script_callbacks.model_loaded_callback(sd_model) |
|
|
|
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram: |
|
sd_model.to(devices.device) |
|
|
|
print("VAE Weights loaded.") |
|
return sd_model |
|
|