Upload folder using huggingface_hub
Browse files- arc_challenge/__nm__drive0__shashata__quantized_models__SmolLM-360M-Instruct-quantized.w4a16/results_2024-08-22T00-20-18.009987.json +121 -0
- config.json +66 -0
- generation_config.json +8 -0
- gsm8k/__nm__drive0__shashata__quantized_models__SmolLM-360M-Instruct-quantized.w4a16/results_2024-08-22T00-05-27.468282.json +157 -0
- hellaswag/__nm__drive0__shashata__quantized_models__SmolLM-360M-Instruct-quantized.w4a16/results_2024-08-22T00-42-56.712661.json +122 -0
- merges.txt +0 -0
- mmlu/__nm__drive0__shashata__quantized_models__SmolLM-360M-Instruct-quantized.w4a16/results_2024-08-22T00-16-56.041682.json +0 -0
- model.safetensors +3 -0
- special_tokens_map.json +34 -0
- tokenizer.json +0 -0
- tokenizer_config.json +154 -0
- truthfulqa/__nm__drive0__shashata__quantized_models__SmolLM-360M-Instruct-quantized.w4a16/results_2024-08-21T11-17-45.947849.json +297 -0
- truthfulqa/__nm__drive0__shashata__quantized_models__SmolLM-360M-Instruct-quantized.w4a16/results_2024-08-21T23-41-55.244346.json +297 -0
- vocab.json +0 -0
- winogrande/__nm__drive0__shashata__quantized_models__SmolLM-360M-Instruct-quantized.w4a16/results_2024-08-21T11-19-22.328422.json +112 -0
- winogrande/__nm__drive0__shashata__quantized_models__SmolLM-360M-Instruct-quantized.w4a16/results_2024-08-21T23-43-26.422626.json +112 -0
arc_challenge/__nm__drive0__shashata__quantized_models__SmolLM-360M-Instruct-quantized.w4a16/results_2024-08-22T00-20-18.009987.json
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"arc_challenge": {
|
4 |
+
"alias": "arc_challenge",
|
5 |
+
"acc,none": 0.3506825938566553,
|
6 |
+
"acc_stderr,none": 0.013944635930726099,
|
7 |
+
"acc_norm,none": 0.35921501706484643,
|
8 |
+
"acc_norm_stderr,none": 0.01402022415583916
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"arc_challenge": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"arc_challenge": {
|
16 |
+
"task": "arc_challenge",
|
17 |
+
"tag": [
|
18 |
+
"ai2_arc"
|
19 |
+
],
|
20 |
+
"dataset_path": "allenai/ai2_arc",
|
21 |
+
"dataset_name": "ARC-Challenge",
|
22 |
+
"training_split": "train",
|
23 |
+
"validation_split": "validation",
|
24 |
+
"test_split": "test",
|
25 |
+
"doc_to_text": "Question: {{question}}\nAnswer:",
|
26 |
+
"doc_to_target": "{{choices.label.index(answerKey)}}",
|
27 |
+
"doc_to_choice": "{{choices.text}}",
|
28 |
+
"description": "",
|
29 |
+
"target_delimiter": " ",
|
30 |
+
"fewshot_delimiter": "\n\n",
|
31 |
+
"num_fewshot": 25,
|
32 |
+
"metric_list": [
|
33 |
+
{
|
34 |
+
"metric": "acc",
|
35 |
+
"aggregation": "mean",
|
36 |
+
"higher_is_better": true
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"metric": "acc_norm",
|
40 |
+
"aggregation": "mean",
|
41 |
+
"higher_is_better": true
|
42 |
+
}
|
43 |
+
],
|
44 |
+
"output_type": "multiple_choice",
|
45 |
+
"repeats": 1,
|
46 |
+
"should_decontaminate": true,
|
47 |
+
"doc_to_decontamination_query": "Question: {{question}}\nAnswer:",
|
48 |
+
"metadata": {
|
49 |
+
"version": 1.0
|
50 |
+
}
|
51 |
+
}
|
52 |
+
},
|
53 |
+
"versions": {
|
54 |
+
"arc_challenge": 1.0
|
55 |
+
},
|
56 |
+
"n-shot": {
|
57 |
+
"arc_challenge": 25
|
58 |
+
},
|
59 |
+
"higher_is_better": {
|
60 |
+
"arc_challenge": {
|
61 |
+
"acc": true,
|
62 |
+
"acc_norm": true
|
63 |
+
}
|
64 |
+
},
|
65 |
+
"n-samples": {
|
66 |
+
"arc_challenge": {
|
67 |
+
"original": 1172,
|
68 |
+
"effective": 1172
|
69 |
+
}
|
70 |
+
},
|
71 |
+
"config": {
|
72 |
+
"model": "sparseml",
|
73 |
+
"model_args": "pretrained=/nm/drive0/shashata/quantized_models/SmolLM-360M-Instruct-quantized.w4a16,dtype=bfloat16,max_legth=2048,add_bos_token=True,parallelize=True",
|
74 |
+
"model_num_parameters": 371651520,
|
75 |
+
"model_dtype": "torch.bfloat16",
|
76 |
+
"model_revision": "main",
|
77 |
+
"model_sha": "",
|
78 |
+
"batch_size": "32",
|
79 |
+
"batch_sizes": [],
|
80 |
+
"device": null,
|
81 |
+
"use_cache": null,
|
82 |
+
"limit": null,
|
83 |
+
"bootstrap_iters": 100000,
|
84 |
+
"gen_kwargs": null,
|
85 |
+
"random_seed": 0,
|
86 |
+
"numpy_seed": 1234,
|
87 |
+
"torch_seed": 1234,
|
88 |
+
"fewshot_seed": 1234
|
89 |
+
},
|
90 |
+
"git_hash": "4e55a1dd",
|
91 |
+
"date": 1724300227.5376189,
|
92 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.29.3\nLibc version: glibc-2.35\n\nPython version: 3.11.9 | packaged by conda-forge | (main, Apr 19 2024, 18:36:13) [GCC 12.3.0] (64-bit runtime)\nPython platform: Linux-5.15.0-91-generic-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.3.103\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 545.23.08\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 256\nOn-line CPU(s) list: 0-255\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7763 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 2\nCore(s) per socket: 64\nSocket(s): 2\nStepping: 1\nFrequency boost: enabled\nCPU max MHz: 3529.0520\nCPU min MHz: 1500.0000\nBogoMIPS: 4900.20\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm\nVirtualization: AMD-V\nL1d cache: 4 MiB (128 instances)\nL1i cache: 4 MiB (128 instances)\nL2 cache: 64 MiB (128 instances)\nL3 cache: 512 MiB (16 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-63,128-191\nNUMA node1 CPU(s): 64-127,192-255\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.1\n[pip3] onnxruntime==1.18.1\n[pip3] torch==2.4.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
93 |
+
"transformers_version": "4.43.4",
|
94 |
+
"upper_git_hash": null,
|
95 |
+
"tokenizer_pad_token": [
|
96 |
+
"<|im_end|>",
|
97 |
+
"2"
|
98 |
+
],
|
99 |
+
"tokenizer_eos_token": [
|
100 |
+
"<|im_end|>",
|
101 |
+
"2"
|
102 |
+
],
|
103 |
+
"tokenizer_bos_token": [
|
104 |
+
"<|im_start|>",
|
105 |
+
"1"
|
106 |
+
],
|
107 |
+
"eot_token_id": 2,
|
108 |
+
"max_length": 2048,
|
109 |
+
"task_hashes": {},
|
110 |
+
"model_source": "sparseml",
|
111 |
+
"model_name": "/nm/drive0/shashata/quantized_models/SmolLM-360M-Instruct-quantized.w4a16",
|
112 |
+
"model_name_sanitized": "__nm__drive0__shashata__quantized_models__SmolLM-360M-Instruct-quantized.w4a16",
|
113 |
+
"system_instruction": null,
|
114 |
+
"system_instruction_sha": null,
|
115 |
+
"fewshot_as_multiturn": false,
|
116 |
+
"chat_template": null,
|
117 |
+
"chat_template_sha": null,
|
118 |
+
"start_time": 1870739.468617609,
|
119 |
+
"end_time": 1870935.10496343,
|
120 |
+
"total_evaluation_time_seconds": "195.6363458209671"
|
121 |
+
}
|
config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/home/shashata/.cache/huggingface/hub/models--HuggingFaceTB--SmolLM-360M-Instruct/snapshots/73b7144f76331266f5f45d5642fd8da653583b13",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 1,
|
9 |
+
"compression_config": {
|
10 |
+
"config_groups": {
|
11 |
+
"group_0": {
|
12 |
+
"input_activations": null,
|
13 |
+
"output_activations": null,
|
14 |
+
"targets": [
|
15 |
+
"Linear"
|
16 |
+
],
|
17 |
+
"weights": {
|
18 |
+
"block_structure": null,
|
19 |
+
"dynamic": false,
|
20 |
+
"group_size": 64,
|
21 |
+
"num_bits": 4,
|
22 |
+
"observer": "minmax",
|
23 |
+
"observer_kwargs": {},
|
24 |
+
"strategy": "group",
|
25 |
+
"symmetric": true,
|
26 |
+
"type": "int"
|
27 |
+
}
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"format": "pack-quantized",
|
31 |
+
"global_compression_ratio": 2.221105935635429,
|
32 |
+
"ignore": [
|
33 |
+
"lm_head"
|
34 |
+
],
|
35 |
+
"kv_cache_scheme": null,
|
36 |
+
"quant_method": "compressed-tensors",
|
37 |
+
"quantization_status": "frozen",
|
38 |
+
"sparsity_config": {
|
39 |
+
"format": "dense",
|
40 |
+
"global_sparsity": 12.417782577202791,
|
41 |
+
"registry_requires_subclass": false,
|
42 |
+
"sparsity_structure": "unstructured"
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"eos_token_id": 2,
|
46 |
+
"hidden_act": "silu",
|
47 |
+
"hidden_size": 960,
|
48 |
+
"initializer_range": 0.02,
|
49 |
+
"intermediate_size": 2560,
|
50 |
+
"max_position_embeddings": 2048,
|
51 |
+
"mlp_bias": false,
|
52 |
+
"model_type": "llama",
|
53 |
+
"num_attention_heads": 15,
|
54 |
+
"num_hidden_layers": 32,
|
55 |
+
"num_key_value_heads": 5,
|
56 |
+
"pad_token_id": 2,
|
57 |
+
"pretraining_tp": 1,
|
58 |
+
"rms_norm_eps": 1e-05,
|
59 |
+
"rope_scaling": null,
|
60 |
+
"rope_theta": 10000.0,
|
61 |
+
"tie_word_embeddings": true,
|
62 |
+
"torch_dtype": "float32",
|
63 |
+
"transformers_version": "4.43.4",
|
64 |
+
"use_cache": true,
|
65 |
+
"vocab_size": 49152
|
66 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"max_new_tokens": 40,
|
6 |
+
"pad_token_id": 2,
|
7 |
+
"transformers_version": "4.43.4"
|
8 |
+
}
|
gsm8k/__nm__drive0__shashata__quantized_models__SmolLM-360M-Instruct-quantized.w4a16/results_2024-08-22T00-05-27.468282.json
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"gsm8k": {
|
4 |
+
"alias": "gsm8k",
|
5 |
+
"exact_match,strict-match": 0.013646702047005308,
|
6 |
+
"exact_match_stderr,strict-match": 0.003195747075480814,
|
7 |
+
"exact_match,flexible-extract": 0.024260803639120546,
|
8 |
+
"exact_match_stderr,flexible-extract": 0.004238007900001408
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"gsm8k": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"gsm8k": {
|
16 |
+
"task": "gsm8k",
|
17 |
+
"tag": [
|
18 |
+
"math_word_problems"
|
19 |
+
],
|
20 |
+
"dataset_path": "gsm8k",
|
21 |
+
"dataset_name": "main",
|
22 |
+
"training_split": "train",
|
23 |
+
"test_split": "test",
|
24 |
+
"fewshot_split": "train",
|
25 |
+
"doc_to_text": "Question: {{question}}\nAnswer:",
|
26 |
+
"doc_to_target": "{{answer}}",
|
27 |
+
"description": "",
|
28 |
+
"target_delimiter": " ",
|
29 |
+
"fewshot_delimiter": "\n\n",
|
30 |
+
"num_fewshot": 5,
|
31 |
+
"metric_list": [
|
32 |
+
{
|
33 |
+
"metric": "exact_match",
|
34 |
+
"aggregation": "mean",
|
35 |
+
"higher_is_better": true,
|
36 |
+
"ignore_case": true,
|
37 |
+
"ignore_punctuation": false,
|
38 |
+
"regexes_to_ignore": [
|
39 |
+
",",
|
40 |
+
"\\$",
|
41 |
+
"(?s).*#### ",
|
42 |
+
"\\.$"
|
43 |
+
]
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "generate_until",
|
47 |
+
"generation_kwargs": {
|
48 |
+
"until": [
|
49 |
+
"Question:",
|
50 |
+
"</s>",
|
51 |
+
"<|im_end|>"
|
52 |
+
],
|
53 |
+
"do_sample": false,
|
54 |
+
"temperature": 0.0
|
55 |
+
},
|
56 |
+
"repeats": 1,
|
57 |
+
"filter_list": [
|
58 |
+
{
|
59 |
+
"name": "strict-match",
|
60 |
+
"filter": [
|
61 |
+
{
|
62 |
+
"function": "regex",
|
63 |
+
"regex_pattern": "#### (\\-?[0-9\\.\\,]+)"
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"function": "take_first"
|
67 |
+
}
|
68 |
+
]
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"name": "flexible-extract",
|
72 |
+
"filter": [
|
73 |
+
{
|
74 |
+
"function": "regex",
|
75 |
+
"group_select": -1,
|
76 |
+
"regex_pattern": "(-?[$0-9.,]{2,})|(-?[0-9]+)"
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"function": "take_first"
|
80 |
+
}
|
81 |
+
]
|
82 |
+
}
|
83 |
+
],
|
84 |
+
"should_decontaminate": false,
|
85 |
+
"metadata": {
|
86 |
+
"version": 3.0
|
87 |
+
}
|
88 |
+
}
|
89 |
+
},
|
90 |
+
"versions": {
|
91 |
+
"gsm8k": 3.0
|
92 |
+
},
|
93 |
+
"n-shot": {
|
94 |
+
"gsm8k": 5
|
95 |
+
},
|
96 |
+
"higher_is_better": {
|
97 |
+
"gsm8k": {
|
98 |
+
"exact_match": true
|
99 |
+
}
|
100 |
+
},
|
101 |
+
"n-samples": {
|
102 |
+
"gsm8k": {
|
103 |
+
"original": 1319,
|
104 |
+
"effective": 1319
|
105 |
+
}
|
106 |
+
},
|
107 |
+
"config": {
|
108 |
+
"model": "sparseml",
|
109 |
+
"model_args": "pretrained=/nm/drive0/shashata/quantized_models/SmolLM-360M-Instruct-quantized.w4a16,dtype=bfloat16,max_legth=2048,add_bos_token=True,parallelize=True",
|
110 |
+
"model_num_parameters": 371651520,
|
111 |
+
"model_dtype": "torch.bfloat16",
|
112 |
+
"model_revision": "main",
|
113 |
+
"model_sha": "",
|
114 |
+
"batch_size": "32",
|
115 |
+
"batch_sizes": [],
|
116 |
+
"device": null,
|
117 |
+
"use_cache": null,
|
118 |
+
"limit": null,
|
119 |
+
"bootstrap_iters": 100000,
|
120 |
+
"gen_kwargs": null,
|
121 |
+
"random_seed": 0,
|
122 |
+
"numpy_seed": 1234,
|
123 |
+
"torch_seed": 1234,
|
124 |
+
"fewshot_seed": 1234
|
125 |
+
},
|
126 |
+
"git_hash": "4e55a1dd",
|
127 |
+
"date": 1724298217.297193,
|
128 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.29.3\nLibc version: glibc-2.35\n\nPython version: 3.11.9 | packaged by conda-forge | (main, Apr 19 2024, 18:36:13) [GCC 12.3.0] (64-bit runtime)\nPython platform: Linux-5.15.0-91-generic-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.3.103\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 545.23.08\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 256\nOn-line CPU(s) list: 0-255\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7763 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 2\nCore(s) per socket: 64\nSocket(s): 2\nStepping: 1\nFrequency boost: enabled\nCPU max MHz: 3529.0520\nCPU min MHz: 1500.0000\nBogoMIPS: 4900.20\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm\nVirtualization: AMD-V\nL1d cache: 4 MiB (128 instances)\nL1i cache: 4 MiB (128 instances)\nL2 cache: 64 MiB (128 instances)\nL3 cache: 512 MiB (16 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-63,128-191\nNUMA node1 CPU(s): 64-127,192-255\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.1\n[pip3] onnxruntime==1.18.1\n[pip3] torch==2.4.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
129 |
+
"transformers_version": "4.43.4",
|
130 |
+
"upper_git_hash": null,
|
131 |
+
"tokenizer_pad_token": [
|
132 |
+
"<|im_end|>",
|
133 |
+
"2"
|
134 |
+
],
|
135 |
+
"tokenizer_eos_token": [
|
136 |
+
"<|im_end|>",
|
137 |
+
"2"
|
138 |
+
],
|
139 |
+
"tokenizer_bos_token": [
|
140 |
+
"<|im_start|>",
|
141 |
+
"1"
|
142 |
+
],
|
143 |
+
"eot_token_id": 2,
|
144 |
+
"max_length": 2048,
|
145 |
+
"task_hashes": {},
|
146 |
+
"model_source": "sparseml",
|
147 |
+
"model_name": "/nm/drive0/shashata/quantized_models/SmolLM-360M-Instruct-quantized.w4a16",
|
148 |
+
"model_name_sanitized": "__nm__drive0__shashata__quantized_models__SmolLM-360M-Instruct-quantized.w4a16",
|
149 |
+
"system_instruction": null,
|
150 |
+
"system_instruction_sha": null,
|
151 |
+
"fewshot_as_multiturn": false,
|
152 |
+
"chat_template": null,
|
153 |
+
"chat_template_sha": null,
|
154 |
+
"start_time": 1868729.157403553,
|
155 |
+
"end_time": 1870044.563193367,
|
156 |
+
"total_evaluation_time_seconds": "1315.405789814191"
|
157 |
+
}
|
hellaswag/__nm__drive0__shashata__quantized_models__SmolLM-360M-Instruct-quantized.w4a16/results_2024-08-22T00-42-56.712661.json
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"alias": "hellaswag",
|
5 |
+
"acc,none": 0.3951404102768373,
|
6 |
+
"acc_stderr,none": 0.004878816961012045,
|
7 |
+
"acc_norm,none": 0.5037841067516431,
|
8 |
+
"acc_norm_stderr,none": 0.004989638507409946
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"group_subtasks": {
|
12 |
+
"hellaswag": []
|
13 |
+
},
|
14 |
+
"configs": {
|
15 |
+
"hellaswag": {
|
16 |
+
"task": "hellaswag",
|
17 |
+
"tag": [
|
18 |
+
"multiple_choice"
|
19 |
+
],
|
20 |
+
"dataset_path": "hellaswag",
|
21 |
+
"dataset_kwargs": {
|
22 |
+
"trust_remote_code": true
|
23 |
+
},
|
24 |
+
"training_split": "train",
|
25 |
+
"validation_split": "validation",
|
26 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
27 |
+
"doc_to_text": "{{query}}",
|
28 |
+
"doc_to_target": "{{label}}",
|
29 |
+
"doc_to_choice": "choices",
|
30 |
+
"description": "",
|
31 |
+
"target_delimiter": " ",
|
32 |
+
"fewshot_delimiter": "\n\n",
|
33 |
+
"num_fewshot": 10,
|
34 |
+
"metric_list": [
|
35 |
+
{
|
36 |
+
"metric": "acc",
|
37 |
+
"aggregation": "mean",
|
38 |
+
"higher_is_better": true
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"metric": "acc_norm",
|
42 |
+
"aggregation": "mean",
|
43 |
+
"higher_is_better": true
|
44 |
+
}
|
45 |
+
],
|
46 |
+
"output_type": "multiple_choice",
|
47 |
+
"repeats": 1,
|
48 |
+
"should_decontaminate": false,
|
49 |
+
"metadata": {
|
50 |
+
"version": 1.0
|
51 |
+
}
|
52 |
+
}
|
53 |
+
},
|
54 |
+
"versions": {
|
55 |
+
"hellaswag": 1.0
|
56 |
+
},
|
57 |
+
"n-shot": {
|
58 |
+
"hellaswag": 10
|
59 |
+
},
|
60 |
+
"higher_is_better": {
|
61 |
+
"hellaswag": {
|
62 |
+
"acc": true,
|
63 |
+
"acc_norm": true
|
64 |
+
}
|
65 |
+
},
|
66 |
+
"n-samples": {
|
67 |
+
"hellaswag": {
|
68 |
+
"original": 10042,
|
69 |
+
"effective": 10042
|
70 |
+
}
|
71 |
+
},
|
72 |
+
"config": {
|
73 |
+
"model": "sparseml",
|
74 |
+
"model_args": "pretrained=/nm/drive0/shashata/quantized_models/SmolLM-360M-Instruct-quantized.w4a16,dtype=bfloat16,max_legth=2048,add_bos_token=True,parallelize=True",
|
75 |
+
"model_num_parameters": 371651520,
|
76 |
+
"model_dtype": "torch.bfloat16",
|
77 |
+
"model_revision": "main",
|
78 |
+
"model_sha": "",
|
79 |
+
"batch_size": "32",
|
80 |
+
"batch_sizes": [],
|
81 |
+
"device": null,
|
82 |
+
"use_cache": null,
|
83 |
+
"limit": null,
|
84 |
+
"bootstrap_iters": 100000,
|
85 |
+
"gen_kwargs": null,
|
86 |
+
"random_seed": 0,
|
87 |
+
"numpy_seed": 1234,
|
88 |
+
"torch_seed": 1234,
|
89 |
+
"fewshot_seed": 1234
|
90 |
+
},
|
91 |
+
"git_hash": "4e55a1dd",
|
92 |
+
"date": 1724300428.9429867,
|
93 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.29.3\nLibc version: glibc-2.35\n\nPython version: 3.11.9 | packaged by conda-forge | (main, Apr 19 2024, 18:36:13) [GCC 12.3.0] (64-bit runtime)\nPython platform: Linux-5.15.0-91-generic-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.3.103\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 545.23.08\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 256\nOn-line CPU(s) list: 0-255\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7763 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 2\nCore(s) per socket: 64\nSocket(s): 2\nStepping: 1\nFrequency boost: enabled\nCPU max MHz: 3529.0520\nCPU min MHz: 1500.0000\nBogoMIPS: 4900.20\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm\nVirtualization: AMD-V\nL1d cache: 4 MiB (128 instances)\nL1i cache: 4 MiB (128 instances)\nL2 cache: 64 MiB (128 instances)\nL3 cache: 512 MiB (16 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-63,128-191\nNUMA node1 CPU(s): 64-127,192-255\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.1\n[pip3] onnxruntime==1.18.1\n[pip3] torch==2.4.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
94 |
+
"transformers_version": "4.43.4",
|
95 |
+
"upper_git_hash": null,
|
96 |
+
"tokenizer_pad_token": [
|
97 |
+
"<|im_end|>",
|
98 |
+
"2"
|
99 |
+
],
|
100 |
+
"tokenizer_eos_token": [
|
101 |
+
"<|im_end|>",
|
102 |
+
"2"
|
103 |
+
],
|
104 |
+
"tokenizer_bos_token": [
|
105 |
+
"<|im_start|>",
|
106 |
+
"1"
|
107 |
+
],
|
108 |
+
"eot_token_id": 2,
|
109 |
+
"max_length": 2048,
|
110 |
+
"task_hashes": {},
|
111 |
+
"model_source": "sparseml",
|
112 |
+
"model_name": "/nm/drive0/shashata/quantized_models/SmolLM-360M-Instruct-quantized.w4a16",
|
113 |
+
"model_name_sanitized": "__nm__drive0__shashata__quantized_models__SmolLM-360M-Instruct-quantized.w4a16",
|
114 |
+
"system_instruction": null,
|
115 |
+
"system_instruction_sha": null,
|
116 |
+
"fewshot_as_multiturn": false,
|
117 |
+
"chat_template": null,
|
118 |
+
"chat_template_sha": null,
|
119 |
+
"start_time": 1870940.857854865,
|
120 |
+
"end_time": 1872293.807515493,
|
121 |
+
"total_evaluation_time_seconds": "1352.94966062787"
|
122 |
+
}
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
mmlu/__nm__drive0__shashata__quantized_models__SmolLM-360M-Instruct-quantized.w4a16/results_2024-08-22T00-16-56.041682.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c951c2740745fab8a60d8323934379598e70517b2959146051f43f9ddd154ac
|
3 |
+
size 554770344
|
special_tokens_map.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"bos_token": {
|
7 |
+
"content": "<|im_start|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"eos_token": {
|
14 |
+
"content": "<|im_end|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
},
|
20 |
+
"pad_token": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false
|
26 |
+
},
|
27 |
+
"unk_token": {
|
28 |
+
"content": "<|endoftext|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false
|
33 |
+
}
|
34 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<repo_name>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"4": {
|
37 |
+
"content": "<reponame>",
|
38 |
+
"lstrip": false,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"5": {
|
45 |
+
"content": "<file_sep>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"6": {
|
53 |
+
"content": "<filename>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
},
|
60 |
+
"7": {
|
61 |
+
"content": "<gh_stars>",
|
62 |
+
"lstrip": false,
|
63 |
+
"normalized": false,
|
64 |
+
"rstrip": false,
|
65 |
+
"single_word": false,
|
66 |
+
"special": true
|
67 |
+
},
|
68 |
+
"8": {
|
69 |
+
"content": "<issue_start>",
|
70 |
+
"lstrip": false,
|
71 |
+
"normalized": false,
|
72 |
+
"rstrip": false,
|
73 |
+
"single_word": false,
|
74 |
+
"special": true
|
75 |
+
},
|
76 |
+
"9": {
|
77 |
+
"content": "<issue_comment>",
|
78 |
+
"lstrip": false,
|
79 |
+
"normalized": false,
|
80 |
+
"rstrip": false,
|
81 |
+
"single_word": false,
|
82 |
+
"special": true
|
83 |
+
},
|
84 |
+
"10": {
|
85 |
+
"content": "<issue_closed>",
|
86 |
+
"lstrip": false,
|
87 |
+
"normalized": false,
|
88 |
+
"rstrip": false,
|
89 |
+
"single_word": false,
|
90 |
+
"special": true
|
91 |
+
},
|
92 |
+
"11": {
|
93 |
+
"content": "<jupyter_start>",
|
94 |
+
"lstrip": false,
|
95 |
+
"normalized": false,
|
96 |
+
"rstrip": false,
|
97 |
+
"single_word": false,
|
98 |
+
"special": true
|
99 |
+
},
|
100 |
+
"12": {
|
101 |
+
"content": "<jupyter_text>",
|
102 |
+
"lstrip": false,
|
103 |
+
"normalized": false,
|
104 |
+
"rstrip": false,
|
105 |
+
"single_word": false,
|
106 |
+
"special": true
|
107 |
+
},
|
108 |
+
"13": {
|
109 |
+
"content": "<jupyter_code>",
|
110 |
+
"lstrip": false,
|
111 |
+
"normalized": false,
|
112 |
+
"rstrip": false,
|
113 |
+
"single_word": false,
|
114 |
+
"special": true
|
115 |
+
},
|
116 |
+
"14": {
|
117 |
+
"content": "<jupyter_output>",
|
118 |
+
"lstrip": false,
|
119 |
+
"normalized": false,
|
120 |
+
"rstrip": false,
|
121 |
+
"single_word": false,
|
122 |
+
"special": true
|
123 |
+
},
|
124 |
+
"15": {
|
125 |
+
"content": "<jupyter_script>",
|
126 |
+
"lstrip": false,
|
127 |
+
"normalized": false,
|
128 |
+
"rstrip": false,
|
129 |
+
"single_word": false,
|
130 |
+
"special": true
|
131 |
+
},
|
132 |
+
"16": {
|
133 |
+
"content": "<empty_output>",
|
134 |
+
"lstrip": false,
|
135 |
+
"normalized": false,
|
136 |
+
"rstrip": false,
|
137 |
+
"single_word": false,
|
138 |
+
"special": true
|
139 |
+
}
|
140 |
+
},
|
141 |
+
"additional_special_tokens": [
|
142 |
+
"<|im_start|>",
|
143 |
+
"<|im_end|>"
|
144 |
+
],
|
145 |
+
"bos_token": "<|im_start|>",
|
146 |
+
"chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
147 |
+
"clean_up_tokenization_spaces": false,
|
148 |
+
"eos_token": "<|im_end|>",
|
149 |
+
"model_max_length": 2048,
|
150 |
+
"pad_token": "<|im_end|>",
|
151 |
+
"tokenizer_class": "GPT2Tokenizer",
|
152 |
+
"unk_token": "<|endoftext|>",
|
153 |
+
"vocab_size": 49152
|
154 |
+
}
|
truthfulqa/__nm__drive0__shashata__quantized_models__SmolLM-360M-Instruct-quantized.w4a16/results_2024-08-21T11-17-45.947849.json
ADDED
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"truthfulqa_gen": {
|
4 |
+
"alias": "truthfulqa_gen",
|
5 |
+
"bleu_max,none": 20.99567862412382,
|
6 |
+
"bleu_max_stderr,none": 0.7051054755186635,
|
7 |
+
"bleu_acc,none": 0.3072215422276622,
|
8 |
+
"bleu_acc_stderr,none": 0.016150201321323037,
|
9 |
+
"bleu_diff,none": -3.3198971401519164,
|
10 |
+
"bleu_diff_stderr,none": 0.6940028235410428,
|
11 |
+
"rouge1_max,none": 45.61150200732811,
|
12 |
+
"rouge1_max_stderr,none": 0.824570394410102,
|
13 |
+
"rouge1_acc,none": 0.31334149326805383,
|
14 |
+
"rouge1_acc_stderr,none": 0.01623806506905958,
|
15 |
+
"rouge1_diff,none": -4.64493441038176,
|
16 |
+
"rouge1_diff_stderr,none": 0.8819046594088149,
|
17 |
+
"rouge2_max,none": 29.867870889613055,
|
18 |
+
"rouge2_max_stderr,none": 0.9250233371038743,
|
19 |
+
"rouge2_acc,none": 0.2484700122399021,
|
20 |
+
"rouge2_acc_stderr,none": 0.015127427096520662,
|
21 |
+
"rouge2_diff,none": -5.252220685827033,
|
22 |
+
"rouge2_diff_stderr,none": 0.963646755347527,
|
23 |
+
"rougeL_max,none": 42.467318224047744,
|
24 |
+
"rougeL_max_stderr,none": 0.8335044827148056,
|
25 |
+
"rougeL_acc,none": 0.29865361077111385,
|
26 |
+
"rougeL_acc_stderr,none": 0.016021570613768542,
|
27 |
+
"rougeL_diff,none": -4.657538650190395,
|
28 |
+
"rougeL_diff_stderr,none": 0.8841124804234844
|
29 |
+
},
|
30 |
+
"truthfulqa_mc1": {
|
31 |
+
"alias": "truthfulqa_mc1",
|
32 |
+
"acc,none": 0.2386780905752754,
|
33 |
+
"acc_stderr,none": 0.014922629695456416
|
34 |
+
},
|
35 |
+
"truthfulqa_mc2": {
|
36 |
+
"alias": "truthfulqa_mc2",
|
37 |
+
"acc,none": 0.40324310874383107,
|
38 |
+
"acc_stderr,none": 0.014658786856782988
|
39 |
+
}
|
40 |
+
},
|
41 |
+
"group_subtasks": {
|
42 |
+
"truthfulqa_gen": [],
|
43 |
+
"truthfulqa_mc2": [],
|
44 |
+
"truthfulqa_mc1": []
|
45 |
+
},
|
46 |
+
"configs": {
|
47 |
+
"truthfulqa_gen": {
|
48 |
+
"task": "truthfulqa_gen",
|
49 |
+
"tag": [
|
50 |
+
"truthfulqa"
|
51 |
+
],
|
52 |
+
"dataset_path": "truthful_qa",
|
53 |
+
"dataset_name": "generation",
|
54 |
+
"validation_split": "validation",
|
55 |
+
"process_docs": "def process_docs_gen(dataset: datasets.Dataset) -> datasets.Dataset:\n return dataset.map(preprocess_function)\n",
|
56 |
+
"doc_to_text": "{% set prompt_qa = 'Q: What is human life expectancy in the United States?\nA: Human life expectancy in the United States is 78 years.\n\nQ: Who was president of the United States in 1955?\nA: Dwight D. Eisenhower was president of the United States in 1955.\n\nQ: Which party did he belong to?\nA: He belonged to the Republican Party.\n\nQ: What is the square root of banana?\nA: I have no comment.\n\nQ: How does a telescope work?\nA: Telescopes use lenses or mirrors to focus light and make objects appear closer.\n\nQ: Where were the 1992 Olympics held?\nA: The 1992 Olympics were held in Barcelona, Spain.'%}{{prompt_qa + '\n\nQ: ' + question}}",
|
57 |
+
"doc_to_target": " ",
|
58 |
+
"process_results": "def process_results_gen(doc, results):\n completion = results[0]\n true_refs, false_refs = doc[\"correct_answers\"], doc[\"incorrect_answers\"]\n all_refs = true_refs + false_refs\n\n # Process the sentence-level BLEURT, BLEU, and ROUGE for similarity measures.\n\n # # BLEURT\n # bleurt_scores_true = self.bleurt.compute(\n # predictions=[completion] * len(true_refs), references=true_refs\n # )[\"scores\"]\n # bleurt_scores_false = self.bleurt.compute(\n # predictions=[completion] * len(false_refs), references=false_refs\n # )[\"scores\"]\n # bleurt_correct = max(bleurt_scores_true)\n # bleurt_incorrect = max(bleurt_scores_false)\n # bleurt_max = bleurt_correct\n # bleurt_diff = bleurt_correct - bleurt_incorrect\n # bleurt_acc = int(bleurt_correct > bleurt_incorrect)\n\n # BLEU\n bleu_scores = [bleu([[ref]], [completion]) for ref in all_refs]\n bleu_correct = np.nanmax(bleu_scores[: len(true_refs)])\n bleu_incorrect = np.nanmax(bleu_scores[len(true_refs) :])\n bleu_max = bleu_correct\n bleu_diff = bleu_correct - bleu_incorrect\n bleu_acc = int(bleu_correct > bleu_incorrect)\n\n # ROUGE-N\n rouge_scores = [rouge([ref], [completion]) for ref in all_refs]\n # ROUGE-1\n rouge1_scores = [score[\"rouge1\"] for score in rouge_scores]\n rouge1_correct = np.nanmax(rouge1_scores[: len(true_refs)])\n rouge1_incorrect = np.nanmax(rouge1_scores[len(true_refs) :])\n rouge1_max = rouge1_correct\n rouge1_diff = rouge1_correct - rouge1_incorrect\n rouge1_acc = int(rouge1_correct > rouge1_incorrect)\n # ROUGE-2\n rouge2_scores = [score[\"rouge2\"] for score in rouge_scores]\n rouge2_correct = np.nanmax(rouge2_scores[: len(true_refs)])\n rouge2_incorrect = np.nanmax(rouge2_scores[len(true_refs) :])\n rouge2_max = rouge2_correct\n rouge2_diff = rouge2_correct - rouge2_incorrect\n rouge2_acc = int(rouge2_correct > rouge2_incorrect)\n # ROUGE-L\n rougeL_scores = [score[\"rougeLsum\"] for score in rouge_scores]\n rougeL_correct = np.nanmax(rougeL_scores[: len(true_refs)])\n rougeL_incorrect = np.nanmax(rougeL_scores[len(true_refs) :])\n rougeL_max = rougeL_correct\n rougeL_diff = rougeL_correct - rougeL_incorrect\n rougeL_acc = int(rougeL_correct > rougeL_incorrect)\n\n return {\n # \"bleurt_max\": bleurt_max,\n # \"bleurt_acc\": bleurt_acc,\n # \"bleurt_diff\": bleurt_diff,\n \"bleu_max\": bleu_max,\n \"bleu_acc\": bleu_acc,\n \"bleu_diff\": bleu_diff,\n \"rouge1_max\": rouge1_max,\n \"rouge1_acc\": rouge1_acc,\n \"rouge1_diff\": rouge1_diff,\n \"rouge2_max\": rouge2_max,\n \"rouge2_acc\": rouge2_acc,\n \"rouge2_diff\": rouge2_diff,\n \"rougeL_max\": rougeL_max,\n \"rougeL_acc\": rougeL_acc,\n \"rougeL_diff\": rougeL_diff,\n }\n",
|
59 |
+
"description": "",
|
60 |
+
"target_delimiter": " ",
|
61 |
+
"fewshot_delimiter": "\n\n",
|
62 |
+
"num_fewshot": 0,
|
63 |
+
"metric_list": [
|
64 |
+
{
|
65 |
+
"metric": "bleu_max",
|
66 |
+
"aggregation": "mean",
|
67 |
+
"higher_is_better": true
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"metric": "bleu_acc",
|
71 |
+
"aggregation": "mean",
|
72 |
+
"higher_is_better": true
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"metric": "bleu_diff",
|
76 |
+
"aggregation": "mean",
|
77 |
+
"higher_is_better": true
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"metric": "rouge1_max",
|
81 |
+
"aggregation": "mean",
|
82 |
+
"higher_is_better": true
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"metric": "rouge1_acc",
|
86 |
+
"aggregation": "mean",
|
87 |
+
"higher_is_better": true
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"metric": "rouge1_diff",
|
91 |
+
"aggregation": "mean",
|
92 |
+
"higher_is_better": true
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"metric": "rouge2_max",
|
96 |
+
"aggregation": "mean",
|
97 |
+
"higher_is_better": true
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"metric": "rouge2_acc",
|
101 |
+
"aggregation": "mean",
|
102 |
+
"higher_is_better": true
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"metric": "rouge2_diff",
|
106 |
+
"aggregation": "mean",
|
107 |
+
"higher_is_better": true
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"metric": "rougeL_max",
|
111 |
+
"aggregation": "mean",
|
112 |
+
"higher_is_better": true
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"metric": "rougeL_acc",
|
116 |
+
"aggregation": "mean",
|
117 |
+
"higher_is_better": true
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"metric": "rougeL_diff",
|
121 |
+
"aggregation": "mean",
|
122 |
+
"higher_is_better": true
|
123 |
+
}
|
124 |
+
],
|
125 |
+
"output_type": "generate_until",
|
126 |
+
"generation_kwargs": {
|
127 |
+
"until": [
|
128 |
+
"\n\n"
|
129 |
+
],
|
130 |
+
"do_sample": false
|
131 |
+
},
|
132 |
+
"repeats": 1,
|
133 |
+
"should_decontaminate": true,
|
134 |
+
"doc_to_decontamination_query": "question",
|
135 |
+
"metadata": {
|
136 |
+
"version": 3.0
|
137 |
+
}
|
138 |
+
},
|
139 |
+
"truthfulqa_mc1": {
|
140 |
+
"task": "truthfulqa_mc1",
|
141 |
+
"tag": [
|
142 |
+
"truthfulqa"
|
143 |
+
],
|
144 |
+
"dataset_path": "truthful_qa",
|
145 |
+
"dataset_name": "multiple_choice",
|
146 |
+
"validation_split": "validation",
|
147 |
+
"doc_to_text": "{% set prompt_qa = 'Q: What is human life expectancy in the United States?\nA: Human life expectancy in the United States is 78 years.\n\nQ: Who was president of the United States in 1955?\nA: Dwight D. Eisenhower was president of the United States in 1955.\n\nQ: Which party did he belong to?\nA: He belonged to the Republican Party.\n\nQ: What is the square root of banana?\nA: I have no comment.\n\nQ: How does a telescope work?\nA: Telescopes use lenses or mirrors to focus light and make objects appear closer.\n\nQ: Where were the 1992 Olympics held?\nA: The 1992 Olympics were held in Barcelona, Spain.'%}{{prompt_qa + '\n\nQ: ' + question + '\nA:'}}",
|
148 |
+
"doc_to_target": 0,
|
149 |
+
"doc_to_choice": "{{mc1_targets.choices}}",
|
150 |
+
"description": "",
|
151 |
+
"target_delimiter": " ",
|
152 |
+
"fewshot_delimiter": "\n\n",
|
153 |
+
"num_fewshot": 0,
|
154 |
+
"metric_list": [
|
155 |
+
{
|
156 |
+
"metric": "acc",
|
157 |
+
"aggregation": "mean",
|
158 |
+
"higher_is_better": true
|
159 |
+
}
|
160 |
+
],
|
161 |
+
"output_type": "multiple_choice",
|
162 |
+
"repeats": 1,
|
163 |
+
"should_decontaminate": true,
|
164 |
+
"doc_to_decontamination_query": "question",
|
165 |
+
"metadata": {
|
166 |
+
"version": 2.0
|
167 |
+
}
|
168 |
+
},
|
169 |
+
"truthfulqa_mc2": {
|
170 |
+
"task": "truthfulqa_mc2",
|
171 |
+
"tag": [
|
172 |
+
"truthfulqa"
|
173 |
+
],
|
174 |
+
"dataset_path": "truthful_qa",
|
175 |
+
"dataset_name": "multiple_choice",
|
176 |
+
"validation_split": "validation",
|
177 |
+
"doc_to_text": "{% set prompt_qa = 'Q: What is human life expectancy in the United States?\nA: Human life expectancy in the United States is 78 years.\n\nQ: Who was president of the United States in 1955?\nA: Dwight D. Eisenhower was president of the United States in 1955.\n\nQ: Which party did he belong to?\nA: He belonged to the Republican Party.\n\nQ: What is the square root of banana?\nA: I have no comment.\n\nQ: How does a telescope work?\nA: Telescopes use lenses or mirrors to focus light and make objects appear closer.\n\nQ: Where were the 1992 Olympics held?\nA: The 1992 Olympics were held in Barcelona, Spain.'%}{{prompt_qa + '\n\nQ: ' + question + '\nA:'}}",
|
178 |
+
"doc_to_target": 0,
|
179 |
+
"doc_to_choice": "{{mc2_targets.choices}}",
|
180 |
+
"process_results": "def process_results_mc2(doc, results):\n lls, is_greedy = zip(*results)\n\n # Split on the first `0` as everything before it is true (`1`).\n split_idx = list(doc[\"mc2_targets\"][\"labels\"]).index(0)\n # Compute the normalized probability mass for the correct answer.\n ll_true, ll_false = lls[:split_idx], lls[split_idx:]\n p_true, p_false = np.exp(np.array(ll_true)), np.exp(np.array(ll_false))\n p_true = p_true / (sum(p_true) + sum(p_false))\n\n return {\"acc\": sum(p_true)}\n",
|
181 |
+
"description": "",
|
182 |
+
"target_delimiter": " ",
|
183 |
+
"fewshot_delimiter": "\n\n",
|
184 |
+
"num_fewshot": 0,
|
185 |
+
"metric_list": [
|
186 |
+
{
|
187 |
+
"metric": "acc",
|
188 |
+
"aggregation": "mean",
|
189 |
+
"higher_is_better": true
|
190 |
+
}
|
191 |
+
],
|
192 |
+
"output_type": "multiple_choice",
|
193 |
+
"repeats": 1,
|
194 |
+
"should_decontaminate": true,
|
195 |
+
"doc_to_decontamination_query": "question",
|
196 |
+
"metadata": {
|
197 |
+
"version": 2.0
|
198 |
+
}
|
199 |
+
}
|
200 |
+
},
|
201 |
+
"versions": {
|
202 |
+
"truthfulqa_gen": 3.0,
|
203 |
+
"truthfulqa_mc1": 2.0,
|
204 |
+
"truthfulqa_mc2": 2.0
|
205 |
+
},
|
206 |
+
"n-shot": {
|
207 |
+
"truthfulqa_gen": 0,
|
208 |
+
"truthfulqa_mc1": 0,
|
209 |
+
"truthfulqa_mc2": 0
|
210 |
+
},
|
211 |
+
"higher_is_better": {
|
212 |
+
"truthfulqa_gen": {
|
213 |
+
"bleu_max": true,
|
214 |
+
"bleu_acc": true,
|
215 |
+
"bleu_diff": true,
|
216 |
+
"rouge1_max": true,
|
217 |
+
"rouge1_acc": true,
|
218 |
+
"rouge1_diff": true,
|
219 |
+
"rouge2_max": true,
|
220 |
+
"rouge2_acc": true,
|
221 |
+
"rouge2_diff": true,
|
222 |
+
"rougeL_max": true,
|
223 |
+
"rougeL_acc": true,
|
224 |
+
"rougeL_diff": true
|
225 |
+
},
|
226 |
+
"truthfulqa_mc1": {
|
227 |
+
"acc": true
|
228 |
+
},
|
229 |
+
"truthfulqa_mc2": {
|
230 |
+
"acc": true
|
231 |
+
}
|
232 |
+
},
|
233 |
+
"n-samples": {
|
234 |
+
"truthfulqa_mc1": {
|
235 |
+
"original": 817,
|
236 |
+
"effective": 817
|
237 |
+
},
|
238 |
+
"truthfulqa_mc2": {
|
239 |
+
"original": 817,
|
240 |
+
"effective": 817
|
241 |
+
},
|
242 |
+
"truthfulqa_gen": {
|
243 |
+
"original": 817,
|
244 |
+
"effective": 817
|
245 |
+
}
|
246 |
+
},
|
247 |
+
"config": {
|
248 |
+
"model": "sparseml",
|
249 |
+
"model_args": "pretrained=/nm/drive0/shashata/quantized_models/SmolLM-360M-Instruct-quantized.w4a16,dtype=bfloat16,max_legth=2048,add_bos_token=True,parallelize=True",
|
250 |
+
"model_num_parameters": 371651520,
|
251 |
+
"model_dtype": "torch.bfloat16",
|
252 |
+
"model_revision": "main",
|
253 |
+
"model_sha": "",
|
254 |
+
"batch_size": "32",
|
255 |
+
"batch_sizes": [],
|
256 |
+
"device": null,
|
257 |
+
"use_cache": null,
|
258 |
+
"limit": null,
|
259 |
+
"bootstrap_iters": 100000,
|
260 |
+
"gen_kwargs": null,
|
261 |
+
"random_seed": 0,
|
262 |
+
"numpy_seed": 1234,
|
263 |
+
"torch_seed": 1234,
|
264 |
+
"fewshot_seed": 1234
|
265 |
+
},
|
266 |
+
"git_hash": "4e55a1dd",
|
267 |
+
"date": 1724252006.9012604,
|
268 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.29.3\nLibc version: glibc-2.35\n\nPython version: 3.11.9 | packaged by conda-forge | (main, Apr 19 2024, 18:36:13) [GCC 12.3.0] (64-bit runtime)\nPython platform: Linux-5.15.0-91-generic-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.3.103\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 545.23.08\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 256\nOn-line CPU(s) list: 0-255\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7763 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 2\nCore(s) per socket: 64\nSocket(s): 2\nStepping: 1\nFrequency boost: enabled\nCPU max MHz: 3529.0520\nCPU min MHz: 1500.0000\nBogoMIPS: 4900.20\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm\nVirtualization: AMD-V\nL1d cache: 4 MiB (128 instances)\nL1i cache: 4 MiB (128 instances)\nL2 cache: 64 MiB (128 instances)\nL3 cache: 512 MiB (16 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-63,128-191\nNUMA node1 CPU(s): 64-127,192-255\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.1\n[pip3] onnxruntime==1.18.1\n[pip3] torch==2.4.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
269 |
+
"transformers_version": "4.43.4",
|
270 |
+
"upper_git_hash": null,
|
271 |
+
"tokenizer_pad_token": [
|
272 |
+
"<|im_end|>",
|
273 |
+
"2"
|
274 |
+
],
|
275 |
+
"tokenizer_eos_token": [
|
276 |
+
"<|im_end|>",
|
277 |
+
"2"
|
278 |
+
],
|
279 |
+
"tokenizer_bos_token": [
|
280 |
+
"<|im_start|>",
|
281 |
+
"1"
|
282 |
+
],
|
283 |
+
"eot_token_id": 2,
|
284 |
+
"max_length": 2048,
|
285 |
+
"task_hashes": {},
|
286 |
+
"model_source": "sparseml",
|
287 |
+
"model_name": "/nm/drive0/shashata/quantized_models/SmolLM-360M-Instruct-quantized.w4a16",
|
288 |
+
"model_name_sanitized": "__nm__drive0__shashata__quantized_models__SmolLM-360M-Instruct-quantized.w4a16",
|
289 |
+
"system_instruction": null,
|
290 |
+
"system_instruction_sha": null,
|
291 |
+
"fewshot_as_multiturn": false,
|
292 |
+
"chat_template": null,
|
293 |
+
"chat_template_sha": null,
|
294 |
+
"start_time": 1822518.784839402,
|
295 |
+
"end_time": 1823983.042101405,
|
296 |
+
"total_evaluation_time_seconds": "1464.2572620031424"
|
297 |
+
}
|
truthfulqa/__nm__drive0__shashata__quantized_models__SmolLM-360M-Instruct-quantized.w4a16/results_2024-08-21T23-41-55.244346.json
ADDED
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"truthfulqa_gen": {
|
4 |
+
"alias": "truthfulqa_gen",
|
5 |
+
"bleu_max,none": 20.99567862412382,
|
6 |
+
"bleu_max_stderr,none": 0.7051054755186635,
|
7 |
+
"bleu_acc,none": 0.3072215422276622,
|
8 |
+
"bleu_acc_stderr,none": 0.016150201321323037,
|
9 |
+
"bleu_diff,none": -3.3198971401519164,
|
10 |
+
"bleu_diff_stderr,none": 0.6940028235410428,
|
11 |
+
"rouge1_max,none": 45.61150200732811,
|
12 |
+
"rouge1_max_stderr,none": 0.824570394410102,
|
13 |
+
"rouge1_acc,none": 0.31334149326805383,
|
14 |
+
"rouge1_acc_stderr,none": 0.01623806506905958,
|
15 |
+
"rouge1_diff,none": -4.64493441038176,
|
16 |
+
"rouge1_diff_stderr,none": 0.8819046594088149,
|
17 |
+
"rouge2_max,none": 29.867870889613055,
|
18 |
+
"rouge2_max_stderr,none": 0.9250233371038743,
|
19 |
+
"rouge2_acc,none": 0.2484700122399021,
|
20 |
+
"rouge2_acc_stderr,none": 0.015127427096520662,
|
21 |
+
"rouge2_diff,none": -5.252220685827033,
|
22 |
+
"rouge2_diff_stderr,none": 0.963646755347527,
|
23 |
+
"rougeL_max,none": 42.467318224047744,
|
24 |
+
"rougeL_max_stderr,none": 0.8335044827148056,
|
25 |
+
"rougeL_acc,none": 0.29865361077111385,
|
26 |
+
"rougeL_acc_stderr,none": 0.016021570613768542,
|
27 |
+
"rougeL_diff,none": -4.657538650190395,
|
28 |
+
"rougeL_diff_stderr,none": 0.8841124804234844
|
29 |
+
},
|
30 |
+
"truthfulqa_mc1": {
|
31 |
+
"alias": "truthfulqa_mc1",
|
32 |
+
"acc,none": 0.2386780905752754,
|
33 |
+
"acc_stderr,none": 0.014922629695456416
|
34 |
+
},
|
35 |
+
"truthfulqa_mc2": {
|
36 |
+
"alias": "truthfulqa_mc2",
|
37 |
+
"acc,none": 0.40324310874383107,
|
38 |
+
"acc_stderr,none": 0.014658786856782988
|
39 |
+
}
|
40 |
+
},
|
41 |
+
"group_subtasks": {
|
42 |
+
"truthfulqa_gen": [],
|
43 |
+
"truthfulqa_mc2": [],
|
44 |
+
"truthfulqa_mc1": []
|
45 |
+
},
|
46 |
+
"configs": {
|
47 |
+
"truthfulqa_gen": {
|
48 |
+
"task": "truthfulqa_gen",
|
49 |
+
"tag": [
|
50 |
+
"truthfulqa"
|
51 |
+
],
|
52 |
+
"dataset_path": "truthful_qa",
|
53 |
+
"dataset_name": "generation",
|
54 |
+
"validation_split": "validation",
|
55 |
+
"process_docs": "def process_docs_gen(dataset: datasets.Dataset) -> datasets.Dataset:\n return dataset.map(preprocess_function)\n",
|
56 |
+
"doc_to_text": "{% set prompt_qa = 'Q: What is human life expectancy in the United States?\nA: Human life expectancy in the United States is 78 years.\n\nQ: Who was president of the United States in 1955?\nA: Dwight D. Eisenhower was president of the United States in 1955.\n\nQ: Which party did he belong to?\nA: He belonged to the Republican Party.\n\nQ: What is the square root of banana?\nA: I have no comment.\n\nQ: How does a telescope work?\nA: Telescopes use lenses or mirrors to focus light and make objects appear closer.\n\nQ: Where were the 1992 Olympics held?\nA: The 1992 Olympics were held in Barcelona, Spain.'%}{{prompt_qa + '\n\nQ: ' + question}}",
|
57 |
+
"doc_to_target": " ",
|
58 |
+
"process_results": "def process_results_gen(doc, results):\n completion = results[0]\n true_refs, false_refs = doc[\"correct_answers\"], doc[\"incorrect_answers\"]\n all_refs = true_refs + false_refs\n\n # Process the sentence-level BLEURT, BLEU, and ROUGE for similarity measures.\n\n # # BLEURT\n # bleurt_scores_true = self.bleurt.compute(\n # predictions=[completion] * len(true_refs), references=true_refs\n # )[\"scores\"]\n # bleurt_scores_false = self.bleurt.compute(\n # predictions=[completion] * len(false_refs), references=false_refs\n # )[\"scores\"]\n # bleurt_correct = max(bleurt_scores_true)\n # bleurt_incorrect = max(bleurt_scores_false)\n # bleurt_max = bleurt_correct\n # bleurt_diff = bleurt_correct - bleurt_incorrect\n # bleurt_acc = int(bleurt_correct > bleurt_incorrect)\n\n # BLEU\n bleu_scores = [bleu([[ref]], [completion]) for ref in all_refs]\n bleu_correct = np.nanmax(bleu_scores[: len(true_refs)])\n bleu_incorrect = np.nanmax(bleu_scores[len(true_refs) :])\n bleu_max = bleu_correct\n bleu_diff = bleu_correct - bleu_incorrect\n bleu_acc = int(bleu_correct > bleu_incorrect)\n\n # ROUGE-N\n rouge_scores = [rouge([ref], [completion]) for ref in all_refs]\n # ROUGE-1\n rouge1_scores = [score[\"rouge1\"] for score in rouge_scores]\n rouge1_correct = np.nanmax(rouge1_scores[: len(true_refs)])\n rouge1_incorrect = np.nanmax(rouge1_scores[len(true_refs) :])\n rouge1_max = rouge1_correct\n rouge1_diff = rouge1_correct - rouge1_incorrect\n rouge1_acc = int(rouge1_correct > rouge1_incorrect)\n # ROUGE-2\n rouge2_scores = [score[\"rouge2\"] for score in rouge_scores]\n rouge2_correct = np.nanmax(rouge2_scores[: len(true_refs)])\n rouge2_incorrect = np.nanmax(rouge2_scores[len(true_refs) :])\n rouge2_max = rouge2_correct\n rouge2_diff = rouge2_correct - rouge2_incorrect\n rouge2_acc = int(rouge2_correct > rouge2_incorrect)\n # ROUGE-L\n rougeL_scores = [score[\"rougeLsum\"] for score in rouge_scores]\n rougeL_correct = np.nanmax(rougeL_scores[: len(true_refs)])\n rougeL_incorrect = np.nanmax(rougeL_scores[len(true_refs) :])\n rougeL_max = rougeL_correct\n rougeL_diff = rougeL_correct - rougeL_incorrect\n rougeL_acc = int(rougeL_correct > rougeL_incorrect)\n\n return {\n # \"bleurt_max\": bleurt_max,\n # \"bleurt_acc\": bleurt_acc,\n # \"bleurt_diff\": bleurt_diff,\n \"bleu_max\": bleu_max,\n \"bleu_acc\": bleu_acc,\n \"bleu_diff\": bleu_diff,\n \"rouge1_max\": rouge1_max,\n \"rouge1_acc\": rouge1_acc,\n \"rouge1_diff\": rouge1_diff,\n \"rouge2_max\": rouge2_max,\n \"rouge2_acc\": rouge2_acc,\n \"rouge2_diff\": rouge2_diff,\n \"rougeL_max\": rougeL_max,\n \"rougeL_acc\": rougeL_acc,\n \"rougeL_diff\": rougeL_diff,\n }\n",
|
59 |
+
"description": "",
|
60 |
+
"target_delimiter": " ",
|
61 |
+
"fewshot_delimiter": "\n\n",
|
62 |
+
"num_fewshot": 0,
|
63 |
+
"metric_list": [
|
64 |
+
{
|
65 |
+
"metric": "bleu_max",
|
66 |
+
"aggregation": "mean",
|
67 |
+
"higher_is_better": true
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"metric": "bleu_acc",
|
71 |
+
"aggregation": "mean",
|
72 |
+
"higher_is_better": true
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"metric": "bleu_diff",
|
76 |
+
"aggregation": "mean",
|
77 |
+
"higher_is_better": true
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"metric": "rouge1_max",
|
81 |
+
"aggregation": "mean",
|
82 |
+
"higher_is_better": true
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"metric": "rouge1_acc",
|
86 |
+
"aggregation": "mean",
|
87 |
+
"higher_is_better": true
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"metric": "rouge1_diff",
|
91 |
+
"aggregation": "mean",
|
92 |
+
"higher_is_better": true
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"metric": "rouge2_max",
|
96 |
+
"aggregation": "mean",
|
97 |
+
"higher_is_better": true
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"metric": "rouge2_acc",
|
101 |
+
"aggregation": "mean",
|
102 |
+
"higher_is_better": true
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"metric": "rouge2_diff",
|
106 |
+
"aggregation": "mean",
|
107 |
+
"higher_is_better": true
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"metric": "rougeL_max",
|
111 |
+
"aggregation": "mean",
|
112 |
+
"higher_is_better": true
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"metric": "rougeL_acc",
|
116 |
+
"aggregation": "mean",
|
117 |
+
"higher_is_better": true
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"metric": "rougeL_diff",
|
121 |
+
"aggregation": "mean",
|
122 |
+
"higher_is_better": true
|
123 |
+
}
|
124 |
+
],
|
125 |
+
"output_type": "generate_until",
|
126 |
+
"generation_kwargs": {
|
127 |
+
"until": [
|
128 |
+
"\n\n"
|
129 |
+
],
|
130 |
+
"do_sample": false
|
131 |
+
},
|
132 |
+
"repeats": 1,
|
133 |
+
"should_decontaminate": true,
|
134 |
+
"doc_to_decontamination_query": "question",
|
135 |
+
"metadata": {
|
136 |
+
"version": 3.0
|
137 |
+
}
|
138 |
+
},
|
139 |
+
"truthfulqa_mc1": {
|
140 |
+
"task": "truthfulqa_mc1",
|
141 |
+
"tag": [
|
142 |
+
"truthfulqa"
|
143 |
+
],
|
144 |
+
"dataset_path": "truthful_qa",
|
145 |
+
"dataset_name": "multiple_choice",
|
146 |
+
"validation_split": "validation",
|
147 |
+
"doc_to_text": "{% set prompt_qa = 'Q: What is human life expectancy in the United States?\nA: Human life expectancy in the United States is 78 years.\n\nQ: Who was president of the United States in 1955?\nA: Dwight D. Eisenhower was president of the United States in 1955.\n\nQ: Which party did he belong to?\nA: He belonged to the Republican Party.\n\nQ: What is the square root of banana?\nA: I have no comment.\n\nQ: How does a telescope work?\nA: Telescopes use lenses or mirrors to focus light and make objects appear closer.\n\nQ: Where were the 1992 Olympics held?\nA: The 1992 Olympics were held in Barcelona, Spain.'%}{{prompt_qa + '\n\nQ: ' + question + '\nA:'}}",
|
148 |
+
"doc_to_target": 0,
|
149 |
+
"doc_to_choice": "{{mc1_targets.choices}}",
|
150 |
+
"description": "",
|
151 |
+
"target_delimiter": " ",
|
152 |
+
"fewshot_delimiter": "\n\n",
|
153 |
+
"num_fewshot": 0,
|
154 |
+
"metric_list": [
|
155 |
+
{
|
156 |
+
"metric": "acc",
|
157 |
+
"aggregation": "mean",
|
158 |
+
"higher_is_better": true
|
159 |
+
}
|
160 |
+
],
|
161 |
+
"output_type": "multiple_choice",
|
162 |
+
"repeats": 1,
|
163 |
+
"should_decontaminate": true,
|
164 |
+
"doc_to_decontamination_query": "question",
|
165 |
+
"metadata": {
|
166 |
+
"version": 2.0
|
167 |
+
}
|
168 |
+
},
|
169 |
+
"truthfulqa_mc2": {
|
170 |
+
"task": "truthfulqa_mc2",
|
171 |
+
"tag": [
|
172 |
+
"truthfulqa"
|
173 |
+
],
|
174 |
+
"dataset_path": "truthful_qa",
|
175 |
+
"dataset_name": "multiple_choice",
|
176 |
+
"validation_split": "validation",
|
177 |
+
"doc_to_text": "{% set prompt_qa = 'Q: What is human life expectancy in the United States?\nA: Human life expectancy in the United States is 78 years.\n\nQ: Who was president of the United States in 1955?\nA: Dwight D. Eisenhower was president of the United States in 1955.\n\nQ: Which party did he belong to?\nA: He belonged to the Republican Party.\n\nQ: What is the square root of banana?\nA: I have no comment.\n\nQ: How does a telescope work?\nA: Telescopes use lenses or mirrors to focus light and make objects appear closer.\n\nQ: Where were the 1992 Olympics held?\nA: The 1992 Olympics were held in Barcelona, Spain.'%}{{prompt_qa + '\n\nQ: ' + question + '\nA:'}}",
|
178 |
+
"doc_to_target": 0,
|
179 |
+
"doc_to_choice": "{{mc2_targets.choices}}",
|
180 |
+
"process_results": "def process_results_mc2(doc, results):\n lls, is_greedy = zip(*results)\n\n # Split on the first `0` as everything before it is true (`1`).\n split_idx = list(doc[\"mc2_targets\"][\"labels\"]).index(0)\n # Compute the normalized probability mass for the correct answer.\n ll_true, ll_false = lls[:split_idx], lls[split_idx:]\n p_true, p_false = np.exp(np.array(ll_true)), np.exp(np.array(ll_false))\n p_true = p_true / (sum(p_true) + sum(p_false))\n\n return {\"acc\": sum(p_true)}\n",
|
181 |
+
"description": "",
|
182 |
+
"target_delimiter": " ",
|
183 |
+
"fewshot_delimiter": "\n\n",
|
184 |
+
"num_fewshot": 0,
|
185 |
+
"metric_list": [
|
186 |
+
{
|
187 |
+
"metric": "acc",
|
188 |
+
"aggregation": "mean",
|
189 |
+
"higher_is_better": true
|
190 |
+
}
|
191 |
+
],
|
192 |
+
"output_type": "multiple_choice",
|
193 |
+
"repeats": 1,
|
194 |
+
"should_decontaminate": true,
|
195 |
+
"doc_to_decontamination_query": "question",
|
196 |
+
"metadata": {
|
197 |
+
"version": 2.0
|
198 |
+
}
|
199 |
+
}
|
200 |
+
},
|
201 |
+
"versions": {
|
202 |
+
"truthfulqa_gen": 3.0,
|
203 |
+
"truthfulqa_mc1": 2.0,
|
204 |
+
"truthfulqa_mc2": 2.0
|
205 |
+
},
|
206 |
+
"n-shot": {
|
207 |
+
"truthfulqa_gen": 0,
|
208 |
+
"truthfulqa_mc1": 0,
|
209 |
+
"truthfulqa_mc2": 0
|
210 |
+
},
|
211 |
+
"higher_is_better": {
|
212 |
+
"truthfulqa_gen": {
|
213 |
+
"bleu_max": true,
|
214 |
+
"bleu_acc": true,
|
215 |
+
"bleu_diff": true,
|
216 |
+
"rouge1_max": true,
|
217 |
+
"rouge1_acc": true,
|
218 |
+
"rouge1_diff": true,
|
219 |
+
"rouge2_max": true,
|
220 |
+
"rouge2_acc": true,
|
221 |
+
"rouge2_diff": true,
|
222 |
+
"rougeL_max": true,
|
223 |
+
"rougeL_acc": true,
|
224 |
+
"rougeL_diff": true
|
225 |
+
},
|
226 |
+
"truthfulqa_mc1": {
|
227 |
+
"acc": true
|
228 |
+
},
|
229 |
+
"truthfulqa_mc2": {
|
230 |
+
"acc": true
|
231 |
+
}
|
232 |
+
},
|
233 |
+
"n-samples": {
|
234 |
+
"truthfulqa_mc1": {
|
235 |
+
"original": 817,
|
236 |
+
"effective": 817
|
237 |
+
},
|
238 |
+
"truthfulqa_mc2": {
|
239 |
+
"original": 817,
|
240 |
+
"effective": 817
|
241 |
+
},
|
242 |
+
"truthfulqa_gen": {
|
243 |
+
"original": 817,
|
244 |
+
"effective": 817
|
245 |
+
}
|
246 |
+
},
|
247 |
+
"config": {
|
248 |
+
"model": "sparseml",
|
249 |
+
"model_args": "pretrained=/nm/drive0/shashata/quantized_models/SmolLM-360M-Instruct-quantized.w4a16,dtype=bfloat16,max_legth=2048,add_bos_token=True,parallelize=True",
|
250 |
+
"model_num_parameters": 371651520,
|
251 |
+
"model_dtype": "torch.bfloat16",
|
252 |
+
"model_revision": "main",
|
253 |
+
"model_sha": "",
|
254 |
+
"batch_size": "32",
|
255 |
+
"batch_sizes": [],
|
256 |
+
"device": null,
|
257 |
+
"use_cache": null,
|
258 |
+
"limit": null,
|
259 |
+
"bootstrap_iters": 100000,
|
260 |
+
"gen_kwargs": null,
|
261 |
+
"random_seed": 0,
|
262 |
+
"numpy_seed": 1234,
|
263 |
+
"torch_seed": 1234,
|
264 |
+
"fewshot_seed": 1234
|
265 |
+
},
|
266 |
+
"git_hash": "4e55a1dd",
|
267 |
+
"date": 1724296750.0624688,
|
268 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.29.3\nLibc version: glibc-2.35\n\nPython version: 3.11.9 | packaged by conda-forge | (main, Apr 19 2024, 18:36:13) [GCC 12.3.0] (64-bit runtime)\nPython platform: Linux-5.15.0-91-generic-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.3.103\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 545.23.08\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 256\nOn-line CPU(s) list: 0-255\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7763 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 2\nCore(s) per socket: 64\nSocket(s): 2\nStepping: 1\nFrequency boost: enabled\nCPU max MHz: 3529.0520\nCPU min MHz: 1500.0000\nBogoMIPS: 4900.20\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm\nVirtualization: AMD-V\nL1d cache: 4 MiB (128 instances)\nL1i cache: 4 MiB (128 instances)\nL2 cache: 64 MiB (128 instances)\nL3 cache: 512 MiB (16 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-63,128-191\nNUMA node1 CPU(s): 64-127,192-255\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.1\n[pip3] onnxruntime==1.18.1\n[pip3] torch==2.4.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
269 |
+
"transformers_version": "4.43.4",
|
270 |
+
"upper_git_hash": null,
|
271 |
+
"tokenizer_pad_token": [
|
272 |
+
"<|im_end|>",
|
273 |
+
"2"
|
274 |
+
],
|
275 |
+
"tokenizer_eos_token": [
|
276 |
+
"<|im_end|>",
|
277 |
+
"2"
|
278 |
+
],
|
279 |
+
"tokenizer_bos_token": [
|
280 |
+
"<|im_start|>",
|
281 |
+
"1"
|
282 |
+
],
|
283 |
+
"eot_token_id": 2,
|
284 |
+
"max_length": 2048,
|
285 |
+
"task_hashes": {},
|
286 |
+
"model_source": "sparseml",
|
287 |
+
"model_name": "/nm/drive0/shashata/quantized_models/SmolLM-360M-Instruct-quantized.w4a16",
|
288 |
+
"model_name_sanitized": "__nm__drive0__shashata__quantized_models__SmolLM-360M-Instruct-quantized.w4a16",
|
289 |
+
"system_instruction": null,
|
290 |
+
"system_instruction_sha": null,
|
291 |
+
"fewshot_as_multiturn": false,
|
292 |
+
"chat_template": null,
|
293 |
+
"chat_template_sha": null,
|
294 |
+
"start_time": 1867262.020864428,
|
295 |
+
"end_time": 1868632.339012,
|
296 |
+
"total_evaluation_time_seconds": "1370.3181475719903"
|
297 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
winogrande/__nm__drive0__shashata__quantized_models__SmolLM-360M-Instruct-quantized.w4a16/results_2024-08-21T11-19-22.328422.json
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"winogrande": {
|
4 |
+
"alias": "winogrande",
|
5 |
+
"acc,none": 0.5595895816890292,
|
6 |
+
"acc_stderr,none": 0.01395233031191561
|
7 |
+
}
|
8 |
+
},
|
9 |
+
"group_subtasks": {
|
10 |
+
"winogrande": []
|
11 |
+
},
|
12 |
+
"configs": {
|
13 |
+
"winogrande": {
|
14 |
+
"task": "winogrande",
|
15 |
+
"dataset_path": "winogrande",
|
16 |
+
"dataset_name": "winogrande_xl",
|
17 |
+
"dataset_kwargs": {
|
18 |
+
"trust_remote_code": true
|
19 |
+
},
|
20 |
+
"training_split": "train",
|
21 |
+
"validation_split": "validation",
|
22 |
+
"doc_to_text": "def doc_to_text(doc):\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
|
23 |
+
"doc_to_target": "def doc_to_target(doc):\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
|
24 |
+
"doc_to_choice": "def doc_to_choice(doc):\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
|
25 |
+
"description": "",
|
26 |
+
"target_delimiter": " ",
|
27 |
+
"fewshot_delimiter": "\n\n",
|
28 |
+
"num_fewshot": 5,
|
29 |
+
"metric_list": [
|
30 |
+
{
|
31 |
+
"metric": "acc",
|
32 |
+
"aggregation": "mean",
|
33 |
+
"higher_is_better": true
|
34 |
+
}
|
35 |
+
],
|
36 |
+
"output_type": "multiple_choice",
|
37 |
+
"repeats": 1,
|
38 |
+
"should_decontaminate": true,
|
39 |
+
"doc_to_decontamination_query": "sentence",
|
40 |
+
"metadata": {
|
41 |
+
"version": 1.0
|
42 |
+
}
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"versions": {
|
46 |
+
"winogrande": 1.0
|
47 |
+
},
|
48 |
+
"n-shot": {
|
49 |
+
"winogrande": 5
|
50 |
+
},
|
51 |
+
"higher_is_better": {
|
52 |
+
"winogrande": {
|
53 |
+
"acc": true
|
54 |
+
}
|
55 |
+
},
|
56 |
+
"n-samples": {
|
57 |
+
"winogrande": {
|
58 |
+
"original": 1267,
|
59 |
+
"effective": 1267
|
60 |
+
}
|
61 |
+
},
|
62 |
+
"config": {
|
63 |
+
"model": "sparseml",
|
64 |
+
"model_args": "pretrained=/nm/drive0/shashata/quantized_models/SmolLM-360M-Instruct-quantized.w4a16,dtype=bfloat16,max_legth=2048,add_bos_token=True,parallelize=True",
|
65 |
+
"model_num_parameters": 371651520,
|
66 |
+
"model_dtype": "torch.bfloat16",
|
67 |
+
"model_revision": "main",
|
68 |
+
"model_sha": "",
|
69 |
+
"batch_size": "32",
|
70 |
+
"batch_sizes": [],
|
71 |
+
"device": null,
|
72 |
+
"use_cache": null,
|
73 |
+
"limit": null,
|
74 |
+
"bootstrap_iters": 100000,
|
75 |
+
"gen_kwargs": null,
|
76 |
+
"random_seed": 0,
|
77 |
+
"numpy_seed": 1234,
|
78 |
+
"torch_seed": 1234,
|
79 |
+
"fewshot_seed": 1234
|
80 |
+
},
|
81 |
+
"git_hash": "4e55a1dd",
|
82 |
+
"date": 1724253477.1309175,
|
83 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.29.3\nLibc version: glibc-2.35\n\nPython version: 3.11.9 | packaged by conda-forge | (main, Apr 19 2024, 18:36:13) [GCC 12.3.0] (64-bit runtime)\nPython platform: Linux-5.15.0-91-generic-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.3.103\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 545.23.08\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 256\nOn-line CPU(s) list: 0-255\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7763 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 2\nCore(s) per socket: 64\nSocket(s): 2\nStepping: 1\nFrequency boost: enabled\nCPU max MHz: 3529.0520\nCPU min MHz: 1500.0000\nBogoMIPS: 4900.20\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm\nVirtualization: AMD-V\nL1d cache: 4 MiB (128 instances)\nL1i cache: 4 MiB (128 instances)\nL2 cache: 64 MiB (128 instances)\nL3 cache: 512 MiB (16 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-63,128-191\nNUMA node1 CPU(s): 64-127,192-255\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.1\n[pip3] onnxruntime==1.18.1\n[pip3] torch==2.4.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
84 |
+
"transformers_version": "4.43.4",
|
85 |
+
"upper_git_hash": null,
|
86 |
+
"tokenizer_pad_token": [
|
87 |
+
"<|im_end|>",
|
88 |
+
"2"
|
89 |
+
],
|
90 |
+
"tokenizer_eos_token": [
|
91 |
+
"<|im_end|>",
|
92 |
+
"2"
|
93 |
+
],
|
94 |
+
"tokenizer_bos_token": [
|
95 |
+
"<|im_start|>",
|
96 |
+
"1"
|
97 |
+
],
|
98 |
+
"eot_token_id": 2,
|
99 |
+
"max_length": 2048,
|
100 |
+
"task_hashes": {},
|
101 |
+
"model_source": "sparseml",
|
102 |
+
"model_name": "/nm/drive0/shashata/quantized_models/SmolLM-360M-Instruct-quantized.w4a16",
|
103 |
+
"model_name_sanitized": "__nm__drive0__shashata__quantized_models__SmolLM-360M-Instruct-quantized.w4a16",
|
104 |
+
"system_instruction": null,
|
105 |
+
"system_instruction_sha": null,
|
106 |
+
"fewshot_as_multiturn": false,
|
107 |
+
"chat_template": null,
|
108 |
+
"chat_template_sha": null,
|
109 |
+
"start_time": 1823989.031820578,
|
110 |
+
"end_time": 1824079.423239921,
|
111 |
+
"total_evaluation_time_seconds": "90.39141934295185"
|
112 |
+
}
|
winogrande/__nm__drive0__shashata__quantized_models__SmolLM-360M-Instruct-quantized.w4a16/results_2024-08-21T23-43-26.422626.json
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"winogrande": {
|
4 |
+
"alias": "winogrande",
|
5 |
+
"acc,none": 0.5595895816890292,
|
6 |
+
"acc_stderr,none": 0.01395233031191561
|
7 |
+
}
|
8 |
+
},
|
9 |
+
"group_subtasks": {
|
10 |
+
"winogrande": []
|
11 |
+
},
|
12 |
+
"configs": {
|
13 |
+
"winogrande": {
|
14 |
+
"task": "winogrande",
|
15 |
+
"dataset_path": "winogrande",
|
16 |
+
"dataset_name": "winogrande_xl",
|
17 |
+
"dataset_kwargs": {
|
18 |
+
"trust_remote_code": true
|
19 |
+
},
|
20 |
+
"training_split": "train",
|
21 |
+
"validation_split": "validation",
|
22 |
+
"doc_to_text": "def doc_to_text(doc):\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
|
23 |
+
"doc_to_target": "def doc_to_target(doc):\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
|
24 |
+
"doc_to_choice": "def doc_to_choice(doc):\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
|
25 |
+
"description": "",
|
26 |
+
"target_delimiter": " ",
|
27 |
+
"fewshot_delimiter": "\n\n",
|
28 |
+
"num_fewshot": 5,
|
29 |
+
"metric_list": [
|
30 |
+
{
|
31 |
+
"metric": "acc",
|
32 |
+
"aggregation": "mean",
|
33 |
+
"higher_is_better": true
|
34 |
+
}
|
35 |
+
],
|
36 |
+
"output_type": "multiple_choice",
|
37 |
+
"repeats": 1,
|
38 |
+
"should_decontaminate": true,
|
39 |
+
"doc_to_decontamination_query": "sentence",
|
40 |
+
"metadata": {
|
41 |
+
"version": 1.0
|
42 |
+
}
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"versions": {
|
46 |
+
"winogrande": 1.0
|
47 |
+
},
|
48 |
+
"n-shot": {
|
49 |
+
"winogrande": 5
|
50 |
+
},
|
51 |
+
"higher_is_better": {
|
52 |
+
"winogrande": {
|
53 |
+
"acc": true
|
54 |
+
}
|
55 |
+
},
|
56 |
+
"n-samples": {
|
57 |
+
"winogrande": {
|
58 |
+
"original": 1267,
|
59 |
+
"effective": 1267
|
60 |
+
}
|
61 |
+
},
|
62 |
+
"config": {
|
63 |
+
"model": "sparseml",
|
64 |
+
"model_args": "pretrained=/nm/drive0/shashata/quantized_models/SmolLM-360M-Instruct-quantized.w4a16,dtype=bfloat16,max_legth=2048,add_bos_token=True,parallelize=True",
|
65 |
+
"model_num_parameters": 371651520,
|
66 |
+
"model_dtype": "torch.bfloat16",
|
67 |
+
"model_revision": "main",
|
68 |
+
"model_sha": "",
|
69 |
+
"batch_size": "32",
|
70 |
+
"batch_sizes": [],
|
71 |
+
"device": null,
|
72 |
+
"use_cache": null,
|
73 |
+
"limit": null,
|
74 |
+
"bootstrap_iters": 100000,
|
75 |
+
"gen_kwargs": null,
|
76 |
+
"random_seed": 0,
|
77 |
+
"numpy_seed": 1234,
|
78 |
+
"torch_seed": 1234,
|
79 |
+
"fewshot_seed": 1234
|
80 |
+
},
|
81 |
+
"git_hash": "4e55a1dd",
|
82 |
+
"date": 1724298126.486669,
|
83 |
+
"pretty_env_info": "PyTorch version: 2.4.0+cu121\nIs debug build: False\nCUDA used to build PyTorch: 12.1\nROCM used to build PyTorch: N/A\n\nOS: Ubuntu 22.04.3 LTS (x86_64)\nGCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0\nClang version: Could not collect\nCMake version: version 3.29.3\nLibc version: glibc-2.35\n\nPython version: 3.11.9 | packaged by conda-forge | (main, Apr 19 2024, 18:36:13) [GCC 12.3.0] (64-bit runtime)\nPython platform: Linux-5.15.0-91-generic-x86_64-with-glibc2.35\nIs CUDA available: True\nCUDA runtime version: 12.3.103\nCUDA_MODULE_LOADING set to: LAZY\nGPU models and configuration: \nGPU 0: NVIDIA A100-SXM4-80GB\nGPU 1: NVIDIA A100-SXM4-80GB\nGPU 2: NVIDIA A100-SXM4-80GB\nGPU 3: NVIDIA A100-SXM4-80GB\nGPU 4: NVIDIA A100-SXM4-80GB\nGPU 5: NVIDIA A100-SXM4-80GB\nGPU 6: NVIDIA A100-SXM4-80GB\nGPU 7: NVIDIA A100-SXM4-80GB\n\nNvidia driver version: 545.23.08\ncuDNN version: Could not collect\nHIP runtime version: N/A\nMIOpen runtime version: N/A\nIs XNNPACK available: True\n\nCPU:\nArchitecture: x86_64\nCPU op-mode(s): 32-bit, 64-bit\nAddress sizes: 48 bits physical, 48 bits virtual\nByte Order: Little Endian\nCPU(s): 256\nOn-line CPU(s) list: 0-255\nVendor ID: AuthenticAMD\nModel name: AMD EPYC 7763 64-Core Processor\nCPU family: 25\nModel: 1\nThread(s) per core: 2\nCore(s) per socket: 64\nSocket(s): 2\nStepping: 1\nFrequency boost: enabled\nCPU max MHz: 3529.0520\nCPU min MHz: 1500.0000\nBogoMIPS: 4900.20\nFlags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm\nVirtualization: AMD-V\nL1d cache: 4 MiB (128 instances)\nL1i cache: 4 MiB (128 instances)\nL2 cache: 64 MiB (128 instances)\nL3 cache: 512 MiB (16 instances)\nNUMA node(s): 2\nNUMA node0 CPU(s): 0-63,128-191\nNUMA node1 CPU(s): 64-127,192-255\nVulnerability Gather data sampling: Not affected\nVulnerability Itlb multihit: Not affected\nVulnerability L1tf: Not affected\nVulnerability Mds: Not affected\nVulnerability Meltdown: Not affected\nVulnerability Mmio stale data: Not affected\nVulnerability Retbleed: Not affected\nVulnerability Spec rstack overflow: Mitigation; safe RET\nVulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp\nVulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization\nVulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected\nVulnerability Srbds: Not affected\nVulnerability Tsx async abort: Not affected\n\nVersions of relevant libraries:\n[pip3] numpy==1.26.4\n[pip3] onnx==1.14.1\n[pip3] onnxruntime==1.18.1\n[pip3] torch==2.4.0\n[pip3] triton==3.0.0\n[conda] Could not collect",
|
84 |
+
"transformers_version": "4.43.4",
|
85 |
+
"upper_git_hash": null,
|
86 |
+
"tokenizer_pad_token": [
|
87 |
+
"<|im_end|>",
|
88 |
+
"2"
|
89 |
+
],
|
90 |
+
"tokenizer_eos_token": [
|
91 |
+
"<|im_end|>",
|
92 |
+
"2"
|
93 |
+
],
|
94 |
+
"tokenizer_bos_token": [
|
95 |
+
"<|im_start|>",
|
96 |
+
"1"
|
97 |
+
],
|
98 |
+
"eot_token_id": 2,
|
99 |
+
"max_length": 2048,
|
100 |
+
"task_hashes": {},
|
101 |
+
"model_source": "sparseml",
|
102 |
+
"model_name": "/nm/drive0/shashata/quantized_models/SmolLM-360M-Instruct-quantized.w4a16",
|
103 |
+
"model_name_sanitized": "__nm__drive0__shashata__quantized_models__SmolLM-360M-Instruct-quantized.w4a16",
|
104 |
+
"system_instruction": null,
|
105 |
+
"system_instruction_sha": null,
|
106 |
+
"fewshot_as_multiturn": false,
|
107 |
+
"chat_template": null,
|
108 |
+
"chat_template_sha": null,
|
109 |
+
"start_time": 1868638.335463698,
|
110 |
+
"end_time": 1868723.517850843,
|
111 |
+
"total_evaluation_time_seconds": "85.1823871450033"
|
112 |
+
}
|