|
|
|
|
|
from typing import Optional |
|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
|
|
|
|
|
|
|
class KimiLinearConfig(PretrainedConfig): |
|
|
model_type = "kimi_linear" |
|
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
model_type="kimi_linear", |
|
|
vocab_size=163840, |
|
|
hidden_size=4096, |
|
|
head_dim=None, |
|
|
intermediate_size=11008, |
|
|
num_hidden_layers=32, |
|
|
num_attention_heads=32, |
|
|
num_key_value_heads=None, |
|
|
hidden_act="silu", |
|
|
initializer_range=0.02, |
|
|
rms_norm_eps=1e-6, |
|
|
use_cache=True, |
|
|
pad_token_id=0, |
|
|
bos_token_id=1, |
|
|
eos_token_id=2, |
|
|
rope_theta=10000.0, |
|
|
rope_scaling=None, |
|
|
tie_word_embeddings=False, |
|
|
moe_intermediate_size: Optional[int] = None, |
|
|
moe_renormalize: bool = True, |
|
|
moe_router_activation_func: str = "sigmoid", |
|
|
num_experts: Optional[int] = None, |
|
|
num_experts_per_token: Optional[int] = None, |
|
|
num_shared_experts: int = 0, |
|
|
routed_scaling_factor: float = 1.0, |
|
|
first_k_dense_replace: int = 0, |
|
|
moe_layer_freq: int = 1, |
|
|
use_grouped_topk: bool = True, |
|
|
num_expert_group: int = 1, |
|
|
topk_group: int = 1, |
|
|
q_lora_rank: Optional[int] = None, |
|
|
kv_lora_rank: Optional[int] = None, |
|
|
qk_nope_head_dim: Optional[int] = None, |
|
|
qk_rope_head_dim: Optional[int] = None, |
|
|
v_head_dim: Optional[int] = None, |
|
|
mla_use_nope: Optional[bool] = False, |
|
|
num_nextn_predict_layers: int = 0, |
|
|
linear_attn_config: Optional[dict] = None, |
|
|
**kwargs, |
|
|
): |
|
|
self.model_type = model_type |
|
|
self.vocab_size = vocab_size |
|
|
self.hidden_size = hidden_size |
|
|
self.head_dim = ( |
|
|
head_dim if head_dim is not None else hidden_size // num_attention_heads |
|
|
) |
|
|
self.intermediate_size = intermediate_size |
|
|
self.num_hidden_layers = num_hidden_layers |
|
|
self.num_attention_heads = num_attention_heads |
|
|
|
|
|
|
|
|
if num_key_value_heads is None: |
|
|
num_key_value_heads = num_attention_heads |
|
|
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
|
self.hidden_act = hidden_act |
|
|
self.initializer_range = initializer_range |
|
|
self.rms_norm_eps = rms_norm_eps |
|
|
self.use_cache = use_cache |
|
|
self.rope_theta = rope_theta |
|
|
self.rope_scaling = rope_scaling |
|
|
|
|
|
self.q_lora_rank = q_lora_rank |
|
|
self.kv_lora_rank = kv_lora_rank |
|
|
self.qk_nope_head_dim = qk_nope_head_dim |
|
|
self.qk_rope_head_dim = qk_rope_head_dim |
|
|
self.v_head_dim = v_head_dim |
|
|
self.mla_use_nope = mla_use_nope |
|
|
|
|
|
self.num_experts = num_experts |
|
|
self.num_experts_per_token = num_experts_per_token |
|
|
self.moe_renormalize = moe_renormalize |
|
|
self.num_shared_experts = num_shared_experts |
|
|
self.routed_scaling_factor = routed_scaling_factor |
|
|
self.moe_router_activation_func = moe_router_activation_func |
|
|
assert self.moe_router_activation_func in ("softmax", "sigmoid") |
|
|
self.moe_intermediate_size = moe_intermediate_size |
|
|
self.first_k_dense_replace = first_k_dense_replace |
|
|
self.moe_layer_freq = moe_layer_freq |
|
|
self.use_grouped_topk = use_grouped_topk |
|
|
self.num_expert_group = num_expert_group |
|
|
self.topk_group = topk_group |
|
|
self.num_nextn_predict_layers = num_nextn_predict_layers |
|
|
|
|
|
if linear_attn_config is not None: |
|
|
assert linear_attn_config["kda_layers"] is not None |
|
|
assert linear_attn_config["full_attn_layers"] is not None |
|
|
self.linear_attn_config = linear_attn_config |
|
|
|
|
|
super().__init__( |
|
|
pad_token_id=pad_token_id, |
|
|
bos_token_id=bos_token_id, |
|
|
eos_token_id=eos_token_id, |
|
|
tie_word_embeddings=tie_word_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
@property |
|
|
def is_mla(self): |
|
|
return ( |
|
|
self.q_lora_rank is not None |
|
|
or self.kv_lora_rank is not None |
|
|
or self.qk_nope_head_dim is not None |
|
|
or self.qk_rope_head_dim is not None |
|
|
or self.v_head_dim is not None |
|
|
or self.mla_use_nope is True |
|
|
) |
|
|
|
|
|
@property |
|
|
def is_moe(self): |
|
|
return self.num_experts is not None |
|
|
|
|
|
@property |
|
|
def is_linear_attn(self) -> bool: |
|
|
return not ( |
|
|
self.linear_attn_config is None |
|
|
or ( |
|
|
isinstance(self.linear_attn_config, dict) |
|
|
and self.linear_attn_config["kda_layers"] is not None |
|
|
and len(self.linear_attn_config["kda_layers"]) == 0 |
|
|
) |
|
|
) |
|
|
|
|
|
def is_kda_layer(self, layer_idx: int): |
|
|
return ( |
|
|
self.linear_attn_config is not None |
|
|
and (layer_idx + 1) in self.linear_attn_config["kda_layers"] |
|
|
) |
|
|
|