Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: fr
|
3 |
+
tag: token-classification
|
4 |
+
widget:
|
5 |
+
- text: 'Duflot, loueur de carrosses, r. de Paradis-
505
Poissonnière, 22.'
|
6 |
+
example_title: 'Noisy entry #1'
|
7 |
+
- text: 'Duſour el Besnard, march, de bois à bruler,
quai de la Tournelle, 17. etr. des Fossés-
SBernard. 11.
Dí'
|
8 |
+
example_title: 'Noisy entry #2'
|
9 |
+
- text: 'Dufour (Charles), épicier, r. St-Denis
☞
332'
|
10 |
+
example_title: 'Ground-truth entry #1'
|
11 |
+
---
|
12 |
+
|
13 |
+
# m2_joint_label_ref_ptrn_cmbert_io
|
14 |
+
|
15 |
+
## Introduction
|
16 |
+
|
17 |
+
This model is a fine-tuned verion from [Jean-Baptiste/camembert-ner](https://huggingface.co/nlpso/Jean-Baptiste/camembert-ner) for **nested NER task** on a nested NER Paris trade directories dataset.
|
18 |
+
|
19 |
+
## Dataset
|
20 |
+
|
21 |
+
Abbreviation|Entity group (level)|Description
|
22 |
+
-|-|-
|
23 |
+
O |1 & 2|Outside of a named entity
|
24 |
+
PER |1|Person or company name
|
25 |
+
ACT |1 & 2|Person or company professional activity
|
26 |
+
TITREH |2|Military or civil distinction
|
27 |
+
DESC |1|Entry full description
|
28 |
+
TITREP |2|Professionnal reward
|
29 |
+
SPAT |1|Address
|
30 |
+
LOC |2|Street name
|
31 |
+
CARDINAL |2|Street number
|
32 |
+
FT |2|Geographical feature
|
33 |
+
|
34 |
+
## Experiment parameter
|
35 |
+
|
36 |
+
* Pretrained-model : [Jean-Baptiste/camembert-ner](https://huggingface.co/nlpso/Jean-Baptiste/camembert-ner)
|
37 |
+
* Dataset : ground-truth
|
38 |
+
* Tagging format : IO
|
39 |
+
* Recognised entities : 'All'
|
40 |
+
|
41 |
+
## Load model from the Hugging Face
|
42 |
+
|
43 |
+
```python
|
44 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
45 |
+
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained("m2_joint_label_ref_ptrn_cmbert_io")
|
47 |
+
model = AutoModelForTokenClassification.from_pretrained("m2_joint_label_ref_ptrn_cmbert_io")
|
48 |
+
|
49 |
+
|