njw9722 commited on
Commit
c0b636b
1 Parent(s): 1fbb750

Upload 12 files

Browse files

mxbai-embed-large model fine tuned with software product names, code libraries and developer concepts to improve NER performance in this domain.

1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md CHANGED
@@ -1,3 +1,367 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mixedbread-ai/mxbai-embed-large-v1
3
+ library_name: sentence-transformers
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:504
11
+ - loss:CosineSimilarityLoss
12
+ widget:
13
+ - source_sentence: rust
14
+ sentences:
15
+ - OpenShift
16
+ - React Native
17
+ - Rust
18
+ - source_sentence: GitLab platform
19
+ sentences:
20
+ - Streamlit
21
+ - MySQL
22
+ - GitLab
23
+ - source_sentence: AWS Elastic Container Service
24
+ sentences:
25
+ - IntelliJ IDEA
26
+ - Splunk
27
+ - AWS ECS
28
+ - source_sentence: digitalocean
29
+ sentences:
30
+ - Apache HBase
31
+ - Azure Functions
32
+ - DigitalOcean
33
+ - source_sentence: chef
34
+ sentences:
35
+ - Azure Blob Storage
36
+ - Chef
37
+ - Celery
38
+ ---
39
+
40
+ # SentenceTransformer based on mixedbread-ai/mxbai-embed-large-v1
41
+
42
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1). It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** Sentence Transformer
48
+ - **Base model:** [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) <!-- at revision 526dc52cb738085d87002bf00ca4d3d99fd0029b -->
49
+ - **Maximum Sequence Length:** 512 tokens
50
+ - **Output Dimensionality:** 512 tokens
51
+ - **Similarity Function:** Cosine Similarity
52
+ <!-- - **Training Dataset:** Unknown -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
59
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
60
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
61
+
62
+ ### Full Model Architecture
63
+
64
+ ```
65
+ SentenceTransformer(
66
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
67
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
68
+ )
69
+ ```
70
+
71
+ ## Usage
72
+
73
+ ### Direct Usage (Sentence Transformers)
74
+
75
+ First install the Sentence Transformers library:
76
+
77
+ ```bash
78
+ pip install -U sentence-transformers
79
+ ```
80
+
81
+ Then you can load this model and run inference.
82
+ ```python
83
+ from sentence_transformers import SentenceTransformer
84
+
85
+ # Download from the 🤗 Hub
86
+ model = SentenceTransformer("sentence_transformers_model_id")
87
+ # Run inference
88
+ sentences = [
89
+ 'chef',
90
+ 'Chef',
91
+ 'Celery',
92
+ ]
93
+ embeddings = model.encode(sentences)
94
+ print(embeddings.shape)
95
+ # [3, 512]
96
+
97
+ # Get the similarity scores for the embeddings
98
+ similarities = model.similarity(embeddings, embeddings)
99
+ print(similarities.shape)
100
+ # [3, 3]
101
+ ```
102
+
103
+ <!--
104
+ ### Direct Usage (Transformers)
105
+
106
+ <details><summary>Click to see the direct usage in Transformers</summary>
107
+
108
+ </details>
109
+ -->
110
+
111
+ <!--
112
+ ### Downstream Usage (Sentence Transformers)
113
+
114
+ You can finetune this model on your own dataset.
115
+
116
+ <details><summary>Click to expand</summary>
117
+
118
+ </details>
119
+ -->
120
+
121
+ <!--
122
+ ### Out-of-Scope Use
123
+
124
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
125
+ -->
126
+
127
+ <!--
128
+ ## Bias, Risks and Limitations
129
+
130
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
131
+ -->
132
+
133
+ <!--
134
+ ### Recommendations
135
+
136
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
137
+ -->
138
+
139
+ ## Training Details
140
+
141
+ ### Training Dataset
142
+
143
+ #### Unnamed Dataset
144
+
145
+
146
+ * Size: 504 training samples
147
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>label</code>
148
+ * Approximate statistics based on the first 504 samples:
149
+ | | anchor | positive | label |
150
+ |:--------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:--------------------------------------------------------------|
151
+ | type | string | string | float |
152
+ | details | <ul><li>min: 3 tokens</li><li>mean: 4.83 tokens</li><li>max: 12 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 4.6 tokens</li><li>max: 8 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
153
+ * Samples:
154
+ | anchor | positive | label |
155
+ |:-----------------------------|:-------------------------|:-----------------|
156
+ | <code>informatica</code> | <code>Informatica</code> | <code>1.0</code> |
157
+ | <code>xlsx</code> | <code>Excel</code> | <code>1.0</code> |
158
+ | <code>HashiCorp Vault</code> | <code>Vault</code> | <code>1.0</code> |
159
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
160
+ ```json
161
+ {
162
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
163
+ }
164
+ ```
165
+
166
+ ### Evaluation Dataset
167
+
168
+ #### Unnamed Dataset
169
+
170
+
171
+ * Size: 59 evaluation samples
172
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>label</code>
173
+ * Approximate statistics based on the first 59 samples:
174
+ | | anchor | positive | label |
175
+ |:--------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:--------------------------------------------------------------|
176
+ | type | string | string | float |
177
+ | details | <ul><li>min: 3 tokens</li><li>mean: 4.81 tokens</li><li>max: 8 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 4.53 tokens</li><li>max: 7 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
178
+ * Samples:
179
+ | anchor | positive | label |
180
+ |:-------------------------------------------|:------------------------------|:-----------------|
181
+ | <code>mysql</code> | <code>MySQL</code> | <code>1.0</code> |
182
+ | <code>PowerBI Desktop</code> | <code>Power BI Desktop</code> | <code>1.0</code> |
183
+ | <code>AWS Elastic Container Service</code> | <code>AWS ECS</code> | <code>1.0</code> |
184
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
185
+ ```json
186
+ {
187
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
188
+ }
189
+ ```
190
+
191
+ ### Training Hyperparameters
192
+ #### Non-Default Hyperparameters
193
+
194
+ - `eval_strategy`: steps
195
+ - `per_device_train_batch_size`: 4
196
+ - `per_device_eval_batch_size`: 4
197
+ - `learning_rate`: 2e-05
198
+ - `weight_decay`: 0.01
199
+ - `num_train_epochs`: 1
200
+ - `warmup_ratio`: 0.02
201
+
202
+ #### All Hyperparameters
203
+ <details><summary>Click to expand</summary>
204
+
205
+ - `overwrite_output_dir`: False
206
+ - `do_predict`: False
207
+ - `eval_strategy`: steps
208
+ - `prediction_loss_only`: True
209
+ - `per_device_train_batch_size`: 4
210
+ - `per_device_eval_batch_size`: 4
211
+ - `per_gpu_train_batch_size`: None
212
+ - `per_gpu_eval_batch_size`: None
213
+ - `gradient_accumulation_steps`: 1
214
+ - `eval_accumulation_steps`: None
215
+ - `torch_empty_cache_steps`: None
216
+ - `learning_rate`: 2e-05
217
+ - `weight_decay`: 0.01
218
+ - `adam_beta1`: 0.9
219
+ - `adam_beta2`: 0.999
220
+ - `adam_epsilon`: 1e-08
221
+ - `max_grad_norm`: 1.0
222
+ - `num_train_epochs`: 1
223
+ - `max_steps`: -1
224
+ - `lr_scheduler_type`: linear
225
+ - `lr_scheduler_kwargs`: {}
226
+ - `warmup_ratio`: 0.02
227
+ - `warmup_steps`: 0
228
+ - `log_level`: passive
229
+ - `log_level_replica`: warning
230
+ - `log_on_each_node`: True
231
+ - `logging_nan_inf_filter`: True
232
+ - `save_safetensors`: True
233
+ - `save_on_each_node`: False
234
+ - `save_only_model`: False
235
+ - `restore_callback_states_from_checkpoint`: False
236
+ - `no_cuda`: False
237
+ - `use_cpu`: False
238
+ - `use_mps_device`: False
239
+ - `seed`: 42
240
+ - `data_seed`: None
241
+ - `jit_mode_eval`: False
242
+ - `use_ipex`: False
243
+ - `bf16`: False
244
+ - `fp16`: False
245
+ - `fp16_opt_level`: O1
246
+ - `half_precision_backend`: auto
247
+ - `bf16_full_eval`: False
248
+ - `fp16_full_eval`: False
249
+ - `tf32`: None
250
+ - `local_rank`: 0
251
+ - `ddp_backend`: None
252
+ - `tpu_num_cores`: None
253
+ - `tpu_metrics_debug`: False
254
+ - `debug`: []
255
+ - `dataloader_drop_last`: False
256
+ - `dataloader_num_workers`: 0
257
+ - `dataloader_prefetch_factor`: None
258
+ - `past_index`: -1
259
+ - `disable_tqdm`: False
260
+ - `remove_unused_columns`: True
261
+ - `label_names`: None
262
+ - `load_best_model_at_end`: False
263
+ - `ignore_data_skip`: False
264
+ - `fsdp`: []
265
+ - `fsdp_min_num_params`: 0
266
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
267
+ - `fsdp_transformer_layer_cls_to_wrap`: None
268
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
269
+ - `deepspeed`: None
270
+ - `label_smoothing_factor`: 0.0
271
+ - `optim`: adamw_torch
272
+ - `optim_args`: None
273
+ - `adafactor`: False
274
+ - `group_by_length`: False
275
+ - `length_column_name`: length
276
+ - `ddp_find_unused_parameters`: None
277
+ - `ddp_bucket_cap_mb`: None
278
+ - `ddp_broadcast_buffers`: False
279
+ - `dataloader_pin_memory`: True
280
+ - `dataloader_persistent_workers`: False
281
+ - `skip_memory_metrics`: True
282
+ - `use_legacy_prediction_loop`: False
283
+ - `push_to_hub`: False
284
+ - `resume_from_checkpoint`: None
285
+ - `hub_model_id`: None
286
+ - `hub_strategy`: every_save
287
+ - `hub_private_repo`: False
288
+ - `hub_always_push`: False
289
+ - `gradient_checkpointing`: False
290
+ - `gradient_checkpointing_kwargs`: None
291
+ - `include_inputs_for_metrics`: False
292
+ - `eval_do_concat_batches`: True
293
+ - `fp16_backend`: auto
294
+ - `push_to_hub_model_id`: None
295
+ - `push_to_hub_organization`: None
296
+ - `mp_parameters`:
297
+ - `auto_find_batch_size`: False
298
+ - `full_determinism`: False
299
+ - `torchdynamo`: None
300
+ - `ray_scope`: last
301
+ - `ddp_timeout`: 1800
302
+ - `torch_compile`: False
303
+ - `torch_compile_backend`: None
304
+ - `torch_compile_mode`: None
305
+ - `dispatch_batches`: None
306
+ - `split_batches`: None
307
+ - `include_tokens_per_second`: False
308
+ - `include_num_input_tokens_seen`: False
309
+ - `neftune_noise_alpha`: None
310
+ - `optim_target_modules`: None
311
+ - `batch_eval_metrics`: False
312
+ - `eval_on_start`: False
313
+ - `eval_use_gather_object`: False
314
+ - `batch_sampler`: batch_sampler
315
+ - `multi_dataset_batch_sampler`: proportional
316
+
317
+ </details>
318
+
319
+ ### Training Logs
320
+ | Epoch | Step | Training Loss | Validation Loss |
321
+ |:------:|:----:|:-------------:|:---------------:|
322
+ | 0.7937 | 100 | 0.0062 | 0.0000 |
323
+
324
+
325
+ ### Framework Versions
326
+ - Python: 3.10.12
327
+ - Sentence Transformers: 3.2.1
328
+ - Transformers: 4.44.2
329
+ - PyTorch: 2.5.0+cu121
330
+ - Accelerate: 0.34.2
331
+ - Datasets: 3.0.2
332
+ - Tokenizers: 0.19.1
333
+
334
+ ## Citation
335
+
336
+ ### BibTeX
337
+
338
+ #### Sentence Transformers
339
+ ```bibtex
340
+ @inproceedings{reimers-2019-sentence-bert,
341
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
342
+ author = "Reimers, Nils and Gurevych, Iryna",
343
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
344
+ month = "11",
345
+ year = "2019",
346
+ publisher = "Association for Computational Linguistics",
347
+ url = "https://arxiv.org/abs/1908.10084",
348
+ }
349
+ ```
350
+
351
+ <!--
352
+ ## Glossary
353
+
354
+ *Clearly define terms in order to be accessible across audiences.*
355
+ -->
356
+
357
+ <!--
358
+ ## Model Card Authors
359
+
360
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
361
+ -->
362
+
363
+ <!--
364
+ ## Model Card Contact
365
+
366
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
367
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mixedbread-ai/mxbai-embed-large-v1",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 4096,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 16,
18
+ "num_hidden_layers": 24,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": false,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.2.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.5.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d96212091733c439bc71d92a58e9d8916aaa983576a8dfdefc738f249ed9c11
3
+ size 1340612432
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1407435b4342dd586817be5ad1242a83c82f62233c789f54b55c790ea3c1871
3
+ size 5368
vocab.txt ADDED
The diff for this file is too large to render. See raw diff