Upload model
Browse files- README.md +199 -0
- config.json +20 -0
- configuration_moonshine.py +32 -0
- model.safetensors +3 -0
- modeling_moonshine.py +508 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"MoonshineModel"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_moonshine.MoonshineConfig",
|
7 |
+
"AutoModelForCausalLM": "modeling_moonshine.MoonshineModel"
|
8 |
+
},
|
9 |
+
"dec_depth": 6,
|
10 |
+
"dec_ff_swiglu": true,
|
11 |
+
"dec_voc_size": 32768,
|
12 |
+
"dim": 288,
|
13 |
+
"enc_depth": 6,
|
14 |
+
"enc_ff_swiglu": false,
|
15 |
+
"inner_dim": 288,
|
16 |
+
"model_type": "moonshine",
|
17 |
+
"n_head": 8,
|
18 |
+
"torch_dtype": "float32",
|
19 |
+
"transformers_version": "4.47.0.dev0"
|
20 |
+
}
|
configuration_moonshine.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
|
5 |
+
class MoonshineConfig(PretrainedConfig):
|
6 |
+
model_type = "moonshine"
|
7 |
+
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
dim: int = 288,
|
11 |
+
inner_dim: int = None,
|
12 |
+
enc_depth: int = 8,
|
13 |
+
dec_depth: int = 8,
|
14 |
+
n_head: int = 8,
|
15 |
+
dec_voc_size: int = 32768,
|
16 |
+
enc_ff_swiglu: bool = False,
|
17 |
+
dec_ff_swiglu: bool = True,
|
18 |
+
**kwargs
|
19 |
+
):
|
20 |
+
if inner_dim is None:
|
21 |
+
inner_dim = dim
|
22 |
+
if inner_dim % n_head != 0:
|
23 |
+
raise ValueError("`inner dim` must be divisible by `n_head`")
|
24 |
+
self.dim = dim
|
25 |
+
self.inner_dim = inner_dim
|
26 |
+
self.enc_depth = enc_depth
|
27 |
+
self.dec_depth = dec_depth
|
28 |
+
self.n_head = n_head
|
29 |
+
self.dec_voc_size = dec_voc_size
|
30 |
+
self.enc_ff_swiglu = enc_ff_swiglu
|
31 |
+
self.dec_ff_swiglu = dec_ff_swiglu
|
32 |
+
super().__init__(**kwargs)
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f46496c082ab898f5414e31bae398953aa205fb5fc614eb8be7f0d8d8ddd0aa
|
3 |
+
size 186049168
|
modeling_moonshine.py
ADDED
@@ -0,0 +1,508 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from einops import rearrange
|
2 |
+
from einops.layers.torch import Rearrange
|
3 |
+
from torch import nn
|
4 |
+
import math
|
5 |
+
import torch
|
6 |
+
|
7 |
+
|
8 |
+
class RotaryEmbedding(nn.Module):
|
9 |
+
def __init__(self, dim, base=10000):
|
10 |
+
super().__init__()
|
11 |
+
|
12 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
|
13 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
14 |
+
|
15 |
+
def forward(self, t):
|
16 |
+
freqs = torch.einsum("i , j -> i j", t.type_as(self.inv_freq), self.inv_freq)
|
17 |
+
freqs = torch.stack((freqs, freqs), dim=-1)
|
18 |
+
return rearrange(freqs, "... d r -> ... (d r)")
|
19 |
+
|
20 |
+
|
21 |
+
def rotate_half(x):
|
22 |
+
x = rearrange(x, "... (d r) -> ... d r", r=2)
|
23 |
+
x1, x2 = x.unbind(dim=-1)
|
24 |
+
x = torch.stack((-x2, x1), dim=-1)
|
25 |
+
return rearrange(x, "... d r -> ... (d r)")
|
26 |
+
|
27 |
+
|
28 |
+
def apply_rotary_pos_emb(t, freqs):
|
29 |
+
rot_dim, seq_len, orig_dtype = freqs.shape[-1], t.shape[-2], t.dtype
|
30 |
+
|
31 |
+
freqs = freqs[-seq_len:, :]
|
32 |
+
|
33 |
+
# partial rotary embeddings, Wang et al. GPT-J
|
34 |
+
t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:]
|
35 |
+
t = t * freqs.cos() + rotate_half(t) * freqs.sin()
|
36 |
+
out = torch.cat((t, t_unrotated), dim=-1)
|
37 |
+
|
38 |
+
return out.type(orig_dtype)
|
39 |
+
|
40 |
+
|
41 |
+
class MultiHeadAttention(nn.Module):
|
42 |
+
def __init__(self, dim, inner_dim, n_head):
|
43 |
+
super().__init__()
|
44 |
+
self.n_head = n_head
|
45 |
+
self.to_q = nn.Linear(dim, inner_dim, bias=False)
|
46 |
+
self.to_k = nn.Linear(dim, inner_dim, bias=False)
|
47 |
+
self.to_v = nn.Linear(dim, inner_dim, bias=False)
|
48 |
+
self.to_out = nn.Linear(inner_dim, dim, bias=False)
|
49 |
+
self.softmax = nn.Softmax(dim=-1)
|
50 |
+
|
51 |
+
# Scaled dot product attention
|
52 |
+
def sdp_attention(self, q, k_t, v, mask=None):
|
53 |
+
d_tensor = v.shape[3]
|
54 |
+
|
55 |
+
op = (q @ k_t) / math.sqrt(d_tensor)
|
56 |
+
if mask is not None:
|
57 |
+
op = op.masked_fill(mask, -torch.finfo(op.dtype).max)
|
58 |
+
score = self.softmax(op)
|
59 |
+
out = score @ v
|
60 |
+
|
61 |
+
# concat and pass to linear layer
|
62 |
+
out = rearrange(out, "b h n d -> b n (h d)")
|
63 |
+
return self.to_out(out)
|
64 |
+
|
65 |
+
def forward(self, q, k, v, rot_pos_emb=None, mask=None):
|
66 |
+
# dot product with weight matrices
|
67 |
+
q, k, v = self.to_q(q), self.to_k(k), self.to_v(v)
|
68 |
+
|
69 |
+
q = rearrange(q, "b n (h d) -> b h n d", h=self.n_head)
|
70 |
+
k = rearrange(k, "b n (h d) -> b h n d", h=self.n_head)
|
71 |
+
v = rearrange(v, "b n (h d) -> b h n d", h=self.n_head)
|
72 |
+
|
73 |
+
# apply RoPE
|
74 |
+
if rot_pos_emb is not None:
|
75 |
+
q = apply_rotary_pos_emb(q, rot_pos_emb)
|
76 |
+
k = apply_rotary_pos_emb(k, rot_pos_emb)
|
77 |
+
|
78 |
+
k_t = k.transpose(2, 3)
|
79 |
+
|
80 |
+
return self.sdp_attention(q, k_t, v, mask), k_t, v
|
81 |
+
|
82 |
+
|
83 |
+
class MultiHeadCausalSelfAttentionWithKVCache(MultiHeadAttention):
|
84 |
+
def __init__(self, dim, inner_dim, n_head):
|
85 |
+
super().__init__(dim, inner_dim, n_head)
|
86 |
+
|
87 |
+
def forward(self, q, k, v, k_cache, v_cache, rot_pos_emb, mask):
|
88 |
+
# dot product with weight matrices
|
89 |
+
q, k, v = self.to_q(q), self.to_k(k), self.to_v(v)
|
90 |
+
|
91 |
+
q = rearrange(q, "b n (h d) -> b h n d", h=self.n_head)
|
92 |
+
k = rearrange(k, "b n (h d) -> b h n d", h=self.n_head)
|
93 |
+
v = rearrange(v, "b n (h d) -> b h n d", h=self.n_head)
|
94 |
+
|
95 |
+
# apply RoPE
|
96 |
+
q = apply_rotary_pos_emb(q, rot_pos_emb)
|
97 |
+
k = apply_rotary_pos_emb(k, rot_pos_emb)
|
98 |
+
|
99 |
+
k_t = k.transpose(2, 3)
|
100 |
+
|
101 |
+
# Append new rows to K and V caches.
|
102 |
+
k_t = torch.concat((k_cache, k_t), dim=3)
|
103 |
+
v = torch.concat((v_cache, v), dim=2)
|
104 |
+
|
105 |
+
return super().sdp_attention(q, k_t, v, mask=mask), k_t, v
|
106 |
+
|
107 |
+
|
108 |
+
class MultiHeadCrossAttentionWithKVCache(MultiHeadAttention):
|
109 |
+
def __init__(self, dim, inner_dim, n_head):
|
110 |
+
super().__init__(dim, inner_dim, n_head)
|
111 |
+
|
112 |
+
def forward(self, q, k_cache, v_cache):
|
113 |
+
q = self.to_q(q)
|
114 |
+
q = rearrange(q, "b n (h d) -> b h n d", h=self.n_head)
|
115 |
+
|
116 |
+
return super().sdp_attention(q, k_cache, v_cache)
|
117 |
+
|
118 |
+
|
119 |
+
class FFLinearGelu(nn.Module):
|
120 |
+
def __init__(self, dim, ff_mult=4):
|
121 |
+
super().__init__()
|
122 |
+
|
123 |
+
self.ff = nn.Sequential(
|
124 |
+
nn.Linear(dim, dim * ff_mult, bias=True),
|
125 |
+
nn.GELU(),
|
126 |
+
nn.Linear(dim * ff_mult, dim, bias=True),
|
127 |
+
)
|
128 |
+
|
129 |
+
def forward(self, x):
|
130 |
+
return self.ff(x)
|
131 |
+
|
132 |
+
|
133 |
+
class FFSwiGLU(nn.Module):
|
134 |
+
def __init__(self, dim, ff_mult=4):
|
135 |
+
super().__init__()
|
136 |
+
|
137 |
+
self.ff_proj = nn.Linear(dim, dim * ff_mult, bias=True)
|
138 |
+
self.ff_noact = nn.Linear(dim, dim * ff_mult, bias=True)
|
139 |
+
self.ff_act = nn.SiLU()
|
140 |
+
self.ff_out = nn.Linear(dim * ff_mult, dim, bias=True)
|
141 |
+
|
142 |
+
def forward(self, x):
|
143 |
+
gate = self.ff_act(self.ff_proj(x))
|
144 |
+
x_noact = self.ff_noact(x)
|
145 |
+
x = x_noact * gate
|
146 |
+
return self.ff_out(x)
|
147 |
+
|
148 |
+
|
149 |
+
class EncoderLayer(nn.Module):
|
150 |
+
def __init__(self, dim, inner_dim, n_head, ff_swiglu, ff_mult=4):
|
151 |
+
super().__init__()
|
152 |
+
|
153 |
+
self.norm1 = nn.LayerNorm(dim, bias=False)
|
154 |
+
|
155 |
+
self.attention = MultiHeadAttention(dim, inner_dim=inner_dim, n_head=n_head)
|
156 |
+
|
157 |
+
self.norm2 = nn.LayerNorm(dim, bias=False)
|
158 |
+
|
159 |
+
self.ff = FFSwiGLU(dim, ff_mult) if ff_swiglu else FFLinearGelu(dim, ff_mult)
|
160 |
+
|
161 |
+
def forward(self, x, rot_pos_emb):
|
162 |
+
_x = x
|
163 |
+
x = self.norm1(x)
|
164 |
+
x, _, _ = self.attention(q=x, k=x, v=x, rot_pos_emb=rot_pos_emb)
|
165 |
+
x = x + _x
|
166 |
+
|
167 |
+
_x = x
|
168 |
+
x = self.norm2(x)
|
169 |
+
x = self.ff(x)
|
170 |
+
|
171 |
+
x = x + _x
|
172 |
+
return x
|
173 |
+
|
174 |
+
|
175 |
+
class Encoder(nn.Module):
|
176 |
+
def __init__(self, dim, inner_dim, n_head, n_layers, ff_swiglu):
|
177 |
+
super().__init__()
|
178 |
+
rot_embed_dim = max(inner_dim / n_head / 2, 32)
|
179 |
+
self.rot_pos_emb = RotaryEmbedding(rot_embed_dim)
|
180 |
+
|
181 |
+
self.layers = nn.ModuleList(
|
182 |
+
[EncoderLayer(dim, inner_dim, n_head, ff_swiglu) for _ in range(n_layers)]
|
183 |
+
)
|
184 |
+
self.post_norm = nn.LayerNorm(dim, bias=False)
|
185 |
+
|
186 |
+
def forward(self, x):
|
187 |
+
pos = torch.arange(x.shape[1], device=x.device)
|
188 |
+
rot_pos_emb = self.rot_pos_emb(pos)
|
189 |
+
|
190 |
+
for layer in self.layers:
|
191 |
+
x = layer(x, rot_pos_emb=rot_pos_emb)
|
192 |
+
return self.post_norm(x)
|
193 |
+
|
194 |
+
|
195 |
+
class DecoderLayer(nn.Module):
|
196 |
+
def __init__(self, dim, inner_dim, n_head, ff_swiglu, ff_mult=4):
|
197 |
+
super().__init__()
|
198 |
+
|
199 |
+
self.norm1 = nn.LayerNorm(dim, bias=False)
|
200 |
+
|
201 |
+
self.self_attention = MultiHeadCausalSelfAttentionWithKVCache(
|
202 |
+
dim, inner_dim=inner_dim, n_head=n_head
|
203 |
+
)
|
204 |
+
|
205 |
+
self.norm2 = nn.LayerNorm(dim, bias=False)
|
206 |
+
self.cross_attention = MultiHeadCrossAttentionWithKVCache(
|
207 |
+
dim, inner_dim=inner_dim, n_head=n_head
|
208 |
+
)
|
209 |
+
|
210 |
+
self.norm3 = nn.LayerNorm(dim, bias=False)
|
211 |
+
self.ff = FFSwiGLU(dim, ff_mult) if ff_swiglu else FFLinearGelu(dim, ff_mult)
|
212 |
+
|
213 |
+
def forward(self, x, k_cache, v_cache, x_attn_k_cache, x_attn_v_cache, rot_pos_emb):
|
214 |
+
dim = x.size()[1]
|
215 |
+
causal_mask = torch.ones((dim, dim), dtype=torch.bool).triu(1).to(x.device)
|
216 |
+
_x = x
|
217 |
+
x = self.norm1(x)
|
218 |
+
x, new_k_cache, new_v_cache = self.self_attention(
|
219 |
+
q=x,
|
220 |
+
k=x,
|
221 |
+
v=x,
|
222 |
+
k_cache=k_cache,
|
223 |
+
v_cache=v_cache,
|
224 |
+
rot_pos_emb=rot_pos_emb,
|
225 |
+
mask=causal_mask,
|
226 |
+
)
|
227 |
+
x = x + _x
|
228 |
+
|
229 |
+
_x = x
|
230 |
+
x = self.norm2(x)
|
231 |
+
x = self.cross_attention(q=x, k_cache=x_attn_k_cache, v_cache=x_attn_v_cache)
|
232 |
+
x = x + _x
|
233 |
+
|
234 |
+
_x = x
|
235 |
+
x = self.norm3(x)
|
236 |
+
x = self.ff(x)
|
237 |
+
x = x + _x
|
238 |
+
|
239 |
+
return x, new_k_cache, new_v_cache
|
240 |
+
|
241 |
+
|
242 |
+
class Decoder(nn.Module):
|
243 |
+
def __init__(self, dim, inner_dim, n_head, n_layers, dec_voc_size, ff_swiglu):
|
244 |
+
super().__init__()
|
245 |
+
|
246 |
+
self.n_head = n_head
|
247 |
+
self.d_head = inner_dim // n_head
|
248 |
+
|
249 |
+
rot_embed_dim = max(inner_dim / n_head / 2, 32)
|
250 |
+
self.rot_pos_emb = RotaryEmbedding(rot_embed_dim)
|
251 |
+
|
252 |
+
self.layers = nn.ModuleList(
|
253 |
+
[DecoderLayer(dim, inner_dim, n_head, ff_swiglu) for _ in range(n_layers)]
|
254 |
+
)
|
255 |
+
self.final_norm = nn.LayerNorm(dim, bias=False)
|
256 |
+
self.token_embedding = nn.Embedding(dec_voc_size, dim)
|
257 |
+
|
258 |
+
def forward(self, x, *args):
|
259 |
+
pos = torch.arange(x.shape[1], device=x.device)
|
260 |
+
rot_pos_emb = self.rot_pos_emb(pos)
|
261 |
+
x = self.token_embedding(x)
|
262 |
+
|
263 |
+
k_cache_new = []
|
264 |
+
v_cache_new = []
|
265 |
+
|
266 |
+
n_layer = len(self.layers)
|
267 |
+
k_cache, v_cache, x_attn_k_cache, x_attn_v_cache = [
|
268 |
+
args[i : i + n_layer] for i in range(0, 4 * n_layer, n_layer)
|
269 |
+
]
|
270 |
+
for idx, layer in enumerate(self.layers):
|
271 |
+
x, new_k_line, new_v_line = layer(
|
272 |
+
x[:, -1:],
|
273 |
+
k_cache=k_cache[idx],
|
274 |
+
v_cache=v_cache[idx],
|
275 |
+
x_attn_k_cache=x_attn_k_cache[idx],
|
276 |
+
x_attn_v_cache=x_attn_v_cache[idx],
|
277 |
+
rot_pos_emb=rot_pos_emb,
|
278 |
+
)
|
279 |
+
k_cache_new.append(new_k_line)
|
280 |
+
v_cache_new.append(new_v_line)
|
281 |
+
|
282 |
+
x = self.final_norm(x)
|
283 |
+
|
284 |
+
return x @ self.token_embedding.weight.t(), *k_cache_new, *v_cache_new
|
285 |
+
|
286 |
+
|
287 |
+
class InitialDecoderLayer(nn.Module):
|
288 |
+
def __init__(self, dim, inner_dim, n_head, ff_swiglu, ff_mult=4):
|
289 |
+
super().__init__()
|
290 |
+
|
291 |
+
self.norm1 = nn.LayerNorm(dim, bias=False)
|
292 |
+
|
293 |
+
self.self_attention = MultiHeadAttention(
|
294 |
+
dim, inner_dim=inner_dim, n_head=n_head
|
295 |
+
)
|
296 |
+
|
297 |
+
self.norm2 = nn.LayerNorm(dim, bias=False)
|
298 |
+
self.cross_attention = MultiHeadAttention(
|
299 |
+
dim, inner_dim=inner_dim, n_head=n_head
|
300 |
+
)
|
301 |
+
|
302 |
+
self.norm3 = nn.LayerNorm(dim, bias=False)
|
303 |
+
self.ff = FFSwiGLU(dim, ff_mult) if ff_swiglu else FFLinearGelu(dim, ff_mult)
|
304 |
+
|
305 |
+
def forward(self, x, context, rot_pos_emb):
|
306 |
+
dim = x.size()[1]
|
307 |
+
causal_mask = torch.ones((dim, dim), dtype=torch.bool).triu(1).to(x.device)
|
308 |
+
_x = x
|
309 |
+
x = self.norm1(x)
|
310 |
+
x, new_k_cache, new_v_cache = self.self_attention(
|
311 |
+
q=x,
|
312 |
+
k=x,
|
313 |
+
v=x,
|
314 |
+
rot_pos_emb=rot_pos_emb,
|
315 |
+
mask=causal_mask,
|
316 |
+
)
|
317 |
+
x = x + _x
|
318 |
+
|
319 |
+
_x = x
|
320 |
+
x = self.norm2(x)
|
321 |
+
x, x_attn_k_cache, x_attn_v_cache = self.cross_attention(
|
322 |
+
q=x, k=context, v=context
|
323 |
+
)
|
324 |
+
x = x + _x
|
325 |
+
|
326 |
+
_x = x
|
327 |
+
x = self.norm3(x)
|
328 |
+
x = self.ff(x)
|
329 |
+
x = x + _x
|
330 |
+
|
331 |
+
return x, new_k_cache, new_v_cache, x_attn_k_cache, x_attn_v_cache
|
332 |
+
|
333 |
+
|
334 |
+
class DecoderInitial(Decoder):
|
335 |
+
def __init__(self, dim, inner_dim, n_head, n_layers, dec_voc_size, ff_swiglu):
|
336 |
+
super().__init__(dim, inner_dim, n_head, n_layers, dec_voc_size, ff_swiglu)
|
337 |
+
self.layers = nn.ModuleList(
|
338 |
+
[
|
339 |
+
InitialDecoderLayer(dim, inner_dim, n_head, ff_swiglu)
|
340 |
+
for _ in range(n_layers)
|
341 |
+
]
|
342 |
+
)
|
343 |
+
|
344 |
+
def forward(self, x, enc_src):
|
345 |
+
pos = torch.arange(x.shape[1], device=x.device)
|
346 |
+
rot_pos_emb = self.rot_pos_emb(pos)
|
347 |
+
x = self.token_embedding(x)
|
348 |
+
|
349 |
+
# Shape [n_layers, batch_size, n_head, seq_len, inner_dim]. Cache K transposed.
|
350 |
+
n_layer = len(self.layers)
|
351 |
+
k_cache = []
|
352 |
+
v_cache = []
|
353 |
+
x_attn_k_cache = []
|
354 |
+
x_attn_v_cache = []
|
355 |
+
|
356 |
+
for idx, layer in enumerate(self.layers):
|
357 |
+
x, new_k_line, new_v_line, new_x_attn_k_line, new_x_attn_v_line = layer(
|
358 |
+
x,
|
359 |
+
enc_src,
|
360 |
+
rot_pos_emb,
|
361 |
+
)
|
362 |
+
|
363 |
+
k_cache.append(new_k_line)
|
364 |
+
v_cache.append(new_v_line)
|
365 |
+
x_attn_k_cache.append(new_x_attn_k_line)
|
366 |
+
x_attn_v_cache.append(new_x_attn_v_line)
|
367 |
+
|
368 |
+
x = self.final_norm(x)
|
369 |
+
|
370 |
+
return (
|
371 |
+
x @ self.token_embedding.weight.t(),
|
372 |
+
*k_cache,
|
373 |
+
*v_cache,
|
374 |
+
*x_attn_k_cache,
|
375 |
+
*x_attn_v_cache,
|
376 |
+
)
|
377 |
+
|
378 |
+
|
379 |
+
class AudioPreprocessor(nn.Module):
|
380 |
+
def __init__(self, dim):
|
381 |
+
super().__init__()
|
382 |
+
self.audio_preprocess = nn.Sequential(
|
383 |
+
nn.Conv1d(1, dim, 127, 64, bias=False),
|
384 |
+
nn.Tanh(),
|
385 |
+
nn.GroupNorm(1, dim),
|
386 |
+
nn.Conv1d(dim, 2 * dim, 7, 3),
|
387 |
+
nn.GELU(),
|
388 |
+
nn.Conv1d(2 * dim, dim, 3, 2),
|
389 |
+
nn.GELU(),
|
390 |
+
Rearrange("... c s -> ... s c"),
|
391 |
+
)
|
392 |
+
|
393 |
+
def forward(self, src):
|
394 |
+
assert (
|
395 |
+
src.shape[-1] >= 1023
|
396 |
+
), f"src shape[-1] {src.shape[-1]} should be at least 1023"
|
397 |
+
src = src.unsqueeze(-2)
|
398 |
+
return self.audio_preprocess(src)
|
399 |
+
|
400 |
+
|
401 |
+
class MoonshineModelTorch(nn.Module):
|
402 |
+
def __init__(
|
403 |
+
self,
|
404 |
+
dim,
|
405 |
+
inner_dim,
|
406 |
+
enc_depth,
|
407 |
+
dec_depth,
|
408 |
+
n_head=8,
|
409 |
+
dec_voc_size=32768,
|
410 |
+
enc_ff_swiglu=False,
|
411 |
+
dec_ff_swiglu=False,
|
412 |
+
):
|
413 |
+
super().__init__()
|
414 |
+
self.preprocessor = AudioPreprocessor(dim)
|
415 |
+
self.encoder = Encoder(
|
416 |
+
dim, inner_dim, n_head, enc_depth, ff_swiglu=enc_ff_swiglu
|
417 |
+
)
|
418 |
+
self.decoder_initial = DecoderInitial(
|
419 |
+
dim, inner_dim, n_head, dec_depth, dec_voc_size, ff_swiglu=dec_ff_swiglu
|
420 |
+
)
|
421 |
+
self.decoder = Decoder(
|
422 |
+
dim, inner_dim, n_head, dec_depth, dec_voc_size, ff_swiglu=dec_ff_swiglu
|
423 |
+
)
|
424 |
+
self.dec_depth = dec_depth
|
425 |
+
self.n_head = n_head
|
426 |
+
self.d_head = inner_dim // n_head
|
427 |
+
|
428 |
+
def generate(self, src):
|
429 |
+
start = time.time()
|
430 |
+
preprocessed = self.preprocessor(src)
|
431 |
+
start = time.time()
|
432 |
+
enc = self.encoder(preprocessed)
|
433 |
+
start = time.time()
|
434 |
+
sot_token = 1
|
435 |
+
eot_token = 2
|
436 |
+
|
437 |
+
seq = torch.as_tensor([[sot_token]]).to(src.device)
|
438 |
+
|
439 |
+
vals = self.decoder_initial(x=seq, enc_src=enc)
|
440 |
+
logits = vals[0]
|
441 |
+
k_cache, v_cache, x_attn_k_cache, x_attn_v_cache = [
|
442 |
+
vals[i : i + self.dec_depth]
|
443 |
+
for i in range(1, 1 + self.dec_depth * 4, self.dec_depth)
|
444 |
+
]
|
445 |
+
|
446 |
+
start = time.time()
|
447 |
+
|
448 |
+
sample = logits[:, -1].argmax(dim=-1, keepdim=True)
|
449 |
+
seq = torch.cat((seq, sample), dim=-1)
|
450 |
+
|
451 |
+
seq_len = int(src.shape[-1] * 6 / 16000)
|
452 |
+
while sample != eot_token and len(seq.flatten()) <= seq_len:
|
453 |
+
vals = self.decoder(
|
454 |
+
seq,
|
455 |
+
*k_cache,
|
456 |
+
*v_cache,
|
457 |
+
*x_attn_k_cache,
|
458 |
+
*x_attn_v_cache,
|
459 |
+
)
|
460 |
+
logits = vals[0]
|
461 |
+
k_cache = vals[1 : self.dec_depth + 1]
|
462 |
+
v_cache = vals[self.dec_depth + 1 :]
|
463 |
+
logits = logits[:, -1] # get last token
|
464 |
+
sample = logits.argmax(dim=-1, keepdim=True)
|
465 |
+
seq = torch.cat((seq, sample), dim=-1)
|
466 |
+
|
467 |
+
return seq
|
468 |
+
|
469 |
+
from transformers import PreTrainedModel
|
470 |
+
from configuration_moonshine import MoonshineConfig
|
471 |
+
|
472 |
+
class MoonshineModel(PreTrainedModel):
|
473 |
+
config_class = MoonshineConfig
|
474 |
+
|
475 |
+
def __init__(self, config):
|
476 |
+
super().__init__(config)
|
477 |
+
self.model = MoonshineModelTorch(
|
478 |
+
dim = config.dim,
|
479 |
+
inner_dim = config.inner_dim,
|
480 |
+
enc_depth = config.enc_depth,
|
481 |
+
dec_depth = config.dec_depth,
|
482 |
+
n_head = config.n_head,
|
483 |
+
dec_voc_size = config.dec_voc_size,
|
484 |
+
enc_ff_swiglu = config.enc_ff_swiglu,
|
485 |
+
dec_ff_swiglu = config.dec_ff_swiglu,
|
486 |
+
)
|
487 |
+
|
488 |
+
def forward(self, tensor):
|
489 |
+
return self.model.generate(tensor)
|
490 |
+
|
491 |
+
class MoonshineForConditionalGeneration(PreTrainedModel):
|
492 |
+
config_class = MoonshineConfig
|
493 |
+
|
494 |
+
def __init__(self, config):
|
495 |
+
super().__init__(config)
|
496 |
+
self.model = MoonshineModelTorch(
|
497 |
+
dim = config.dim,
|
498 |
+
inner_dim = config.inner_dim,
|
499 |
+
enc_depth = config.enc_depth,
|
500 |
+
dec_depth = config.dec_depth,
|
501 |
+
n_head = config.n_head,
|
502 |
+
dec_voc_size = config.dec_voc_size,
|
503 |
+
enc_ff_swiglu = config.enc_ff_swiglu,
|
504 |
+
dec_ff_swiglu = config.dec_ff_swiglu,
|
505 |
+
)
|
506 |
+
|
507 |
+
def forward(self, tensor):
|
508 |
+
return self.model.generate(tensor)
|