Gluformer-tiny / modeling_gluformer.py
njeffrie's picture
Upload 3 files
c9b2304 verified
import torch
import os
from transformers import PreTrainedModel, PretrainedConfig
#from gluformer.model import Gluformer
# coding: utf-8
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import numpy as np
from math import sqrt
from datetime import timedelta
# === Embedding Modules ===
class PositionalEmbedding(nn.Module):
def __init__(self, d_model, max_len=5000):
super(PositionalEmbedding, self).__init__()
pos_emb = torch.zeros(max_len, d_model).float()
pos_emb.require_grad = False
position = torch.arange(0, max_len).float().unsqueeze(1)
div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp()
pos_emb[:, 0::2] = torch.sin(position * div_term)
pos_emb[:, 1::2] = torch.cos(position * div_term)
pos_emb = pos_emb.unsqueeze(0)
self.register_buffer('pos_emb', pos_emb)
def forward(self, x):
return self.pos_emb[:, :x.size(1)]
class TokenEmbedding(nn.Module):
def __init__(self, d_model):
super(TokenEmbedding, self).__init__()
D_INP = 1
self.conv = nn.Conv1d(in_channels=D_INP, out_channels=d_model, kernel_size=3, padding=1, padding_mode='circular')
def forward(self, x):
x = self.conv(x.transpose(-1, 1)).transpose(-1, 1)
return x
class TemporalEmbedding(nn.Module):
def __init__(self, d_model, num_features):
super(TemporalEmbedding, self).__init__()
self.embed = nn.Linear(num_features, d_model)
def forward(self, x):
x = x.float()
return self.embed(x)
class SubjectEmbedding(nn.Module):
def __init__(self, d_model):
super(SubjectEmbedding, self).__init__()
self.id_embedding = nn.Linear(1, d_model)
def forward(self, x):
x = x.float().unsqueeze(1)
embed_x = self.id_embedding(x)
return embed_x
class DataEmbedding(nn.Module):
def __init__(self, d_model, r_drop, num_features):
super(DataEmbedding, self).__init__()
self.value_embedding = TokenEmbedding(d_model)
self.time_embedding = TemporalEmbedding(d_model, num_features)
self.positional_embedding = PositionalEmbedding(d_model)
self.subject_embedding = SubjectEmbedding(d_model)
self.dropout = nn.Dropout(r_drop)
def forward(self, x_id, x, x_mark):
x = self.value_embedding(x) + self.positional_embedding(x) + self.time_embedding(x_mark)
x = torch.cat((self.subject_embedding(x_id).unsqueeze(1), x), dim=1)
return self.dropout(x)
# === Attention Modules ===
class CausalConv1d(torch.nn.Conv1d):
def __init__(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, groups=1, bias=True):
self.__padding = (kernel_size - 1) * dilation
super(CausalConv1d, self).__init__(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=self.__padding, dilation=dilation, groups=groups, bias=bias)
def forward(self, input):
result = super(CausalConv1d, self).forward(input)
if self.__padding != 0:
return result[:, :, :-self.__padding]
return result
class TriangularCausalMask():
def __init__(self, b, n, device="cpu"):
mask_shape = [b, 1, n, n]
with torch.no_grad():
self._mask = torch.triu(torch.ones(mask_shape, dtype=torch.bool), diagonal=1).to(device)
@property
def mask(self):
return self._mask
class MultiheadAttention(nn.Module):
def __init__(self, d_model, n_heads, d_keys, mask_flag, r_att_drop=0.1):
super(MultiheadAttention, self).__init__()
self.h, self.d, self.mask_flag = n_heads, d_keys, mask_flag
self.proj_q = nn.Linear(d_model, self.h * self.d)
self.proj_k = nn.Linear(d_model, self.h * self.d)
self.proj_v = nn.Linear(d_model, self.h * self.d)
self.proj_out = nn.Linear(self.h * self.d, d_model)
self.dropout = nn.Dropout(r_att_drop)
def forward(self, q, k, v):
b, n_q, n_k, h, d = q.size(0), q.size(1), k.size(1), self.h, self.d
q, k, v = self.proj_q(q), self.proj_k(k), self.proj_v(v)
q, k, v = map(lambda x: x.reshape(b, -1, h, d), [q, k, v])
scores = torch.einsum('bnhd,bmhd->bhnm', (q, k))
if self.mask_flag:
att_mask = TriangularCausalMask(b, n_q, device=q.device)
scores.masked_fill_(att_mask.mask, -np.inf)
att = F.softmax(scores / (self.d ** .5), dim=-1)
att = self.dropout(att)
att_out = torch.einsum('bhnm,bmhd->bnhd', (att, v))
att_out = att_out.reshape(b, -1, h * d)
out = self.proj_out(att_out)
return out
# === Encoder Modules ===
class ConvLayer(nn.Module):
def __init__(self, d_model):
super(ConvLayer, self).__init__()
self.downConv = nn.Conv1d(in_channels=d_model, out_channels=d_model, kernel_size=3, padding=1, padding_mode='circular')
self.norm = nn.BatchNorm1d(d_model)
self.activ = nn.ELU()
self.maxPool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1)
def forward(self, x):
x = self.downConv(x.transpose(-1, 1))
x = self.norm(x)
x = self.activ(x)
x = self.maxPool(x)
x = x.transpose(-1, 1)
return x
class EncoderLayer(nn.Module):
def __init__(self, att, d_model, d_fcn, r_drop, activ="relu"):
super(EncoderLayer, self).__init__()
self.att = att
self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_fcn, kernel_size=1)
self.conv2 = nn.Conv1d(in_channels=d_fcn, out_channels=d_model, kernel_size=1)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(r_drop)
self.activ = F.relu if activ == "relu" else F.gelu
def forward(self, x):
new_x = self.att(x, x, x)
x = x + self.dropout(new_x)
res = x = self.norm1(x)
res = self.dropout(self.activ(self.conv1(res.transpose(-1, 1))))
res = self.dropout(self.conv2(res).transpose(-1, 1))
return self.norm2(x + res)
class Encoder(nn.Module):
def __init__(self, enc_layers, conv_layers=None, norm_layer=None):
super(Encoder, self).__init__()
self.enc_layers = nn.ModuleList(enc_layers)
self.conv_layers = nn.ModuleList(conv_layers) if conv_layers is not None else None
self.norm = norm_layer
def forward(self, x):
if self.conv_layers is not None:
for enc_layer, conv_layer in zip(self.enc_layers, self.conv_layers):
x = enc_layer(x)
x = conv_layer(x)
x = self.enc_layers[-1](x)
else:
for enc_layer in self.enc_layers:
x = enc_layer(x)
if self.norm is not None:
x = self.norm(x)
return x
# === Decoder Modules ===
class DecoderLayer(nn.Module):
def __init__(self, self_att, cross_att, d_model, d_fcn, r_drop, activ="relu"):
super(DecoderLayer, self).__init__()
self.self_att = self_att
self.cross_att = cross_att
self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_fcn, kernel_size=1)
self.conv2 = nn.Conv1d(in_channels=d_fcn, out_channels=d_model, kernel_size=1)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(r_drop)
self.activ = F.relu if activ == "relu" else F.gelu
def forward(self, x_dec, x_enc):
x_dec = x_dec + self.self_att(x_dec, x_dec, x_dec)
x_dec = self.norm1(x_dec)
x_dec = x_dec + self.cross_att(x_dec, x_enc, x_enc)
res = x_dec = self.norm2(x_dec)
res = self.dropout(self.activ(self.conv1(res.transpose(-1, 1))))
res = self.dropout(self.conv2(res).transpose(-1, 1))
return self.norm3(x_dec + res)
class Decoder(nn.Module):
def __init__(self, layers, norm_layer=None):
super(Decoder, self).__init__()
self.layers = nn.ModuleList(layers)
self.norm = norm_layer
def forward(self, x_dec, x_enc):
for layer in self.layers:
x_dec = layer(x_dec, x_enc)
if self.norm is not None:
x_dec = self.norm(x_dec)
return x_dec
# === Variance Module ===
class Variance(nn.Module):
def __init__(self, d_model, r_drop, len_seq):
super(Variance, self).__init__()
self.proj1 = nn.Linear(d_model, 1)
self.dropout = nn.Dropout(r_drop)
self.activ1 = nn.ReLU()
self.proj2 = nn.Linear(len_seq + 1, 1)
self.activ2 = nn.Tanh()
def forward(self, x):
x = self.proj1(x)
x = self.activ1(x)
x = self.dropout(x)
x = x.transpose(-1, 1)
x = self.proj2(x)
x = 10 * self.activ2(x)
return x
# === Gluformer Model ===
class Gluformer(nn.Module):
def __init__(self, d_model, n_heads, d_fcn, r_drop, activ, num_enc_layers, num_dec_layers, distil, len_seq, len_pred, num_features=5):
super(Gluformer, self).__init__()
self.len_pred = len_pred
self.enc_embedding = DataEmbedding(d_model, r_drop, num_features)
self.dec_embedding = DataEmbedding(d_model, r_drop, num_features)
self.encoder = Encoder(
[
EncoderLayer(
att=MultiheadAttention(d_model=d_model, n_heads=n_heads, d_keys=d_model // n_heads, mask_flag=False, r_att_drop=r_drop),
d_model=d_model,
d_fcn=d_fcn,
r_drop=r_drop,
activ=activ) for l in range(num_enc_layers)
],
[
ConvLayer(d_model) for l in range(num_enc_layers - 1)
] if distil else None,
norm_layer=torch.nn.LayerNorm(d_model)
)
self.decoder = Decoder(
[
DecoderLayer(
self_att=MultiheadAttention(d_model=d_model, n_heads=n_heads, d_keys=d_model // n_heads, mask_flag=True, r_att_drop=r_drop),
cross_att=MultiheadAttention(d_model=d_model, n_heads=n_heads, d_keys=d_model // n_heads, mask_flag=False, r_att_drop=r_drop),
d_model=d_model,
d_fcn=d_fcn,
r_drop=r_drop,
activ=activ) for l in range(num_dec_layers)
],
norm_layer=torch.nn.LayerNorm(d_model)
)
D_OUT = 1
self.projection = nn.Linear(d_model, D_OUT, bias=True)
self.var = Variance(d_model, r_drop, len_seq)
def forward(self, x_id, x_enc, x_mark_enc, x_dec, x_mark_dec):
enc_out = self.enc_embedding(x_id, x_enc, x_mark_enc)
var_out = self.var(enc_out)
enc_out = self.encoder(enc_out)
dec_out = self.dec_embedding(x_id, x_dec, x_mark_dec)
dec_out = self.decoder(dec_out, enc_out)
dec_out = self.projection(dec_out)
return dec_out[:, -self.len_pred:, :], var_out
class GluformerConfig(PretrainedConfig):
model_type = "gluformer"
def __init__(self, d_model=64, n_heads=4, d_fcn=128, r_drop=0.1, activ="relu", num_enc_layers=2, num_dec_layers=2, distil=False, len_seq=48, len_pred=12, num_features=5, **kwargs):
super().__init__(**kwargs)
self.d_model = d_model
self.n_heads = n_heads
self.d_fcn = d_fcn
self.r_drop = r_drop
self.activ = activ
self.num_enc_layers = num_enc_layers
self.num_dec_layers = num_dec_layers
self.distil = distil
self.len_seq = len_seq
self.len_pred = len_pred
self.num_features = num_features
# Preprocessor for Gluformer model.
#
# - Normalizes input glucose
# - Converts timestamps to normalized floats
# - Slices input glucose and timestamps to provide to decoder.
class Preprocessor:
UPPER = 402
LOWER = 38
SCALE_1 = 5
SCALE_2 = 2
def __init__(self, len_seq, len_pred, len_label):
self.len_seq = len_seq
self.len_pred = len_pred
self.len_label = len_label
def normalize_glucose(self, glucose):
return (glucose - self.LOWER) / (self.UPPER - self.LOWER) * (self.SCALE_1 * self.SCALE_2) - self.SCALE_1
def unnormalize_glucose(self, glucose):
return (glucose + self.SCALE_1) / (self.SCALE_1 * self.SCALE_2) * (self.UPPER - self.LOWER) + self.LOWER
def normalize_datetime(self, date):
DAYS_YEAR = 182.5
DAYS_MONTH = 15.5
DAYS_WEEK = 3.5
HOURS_DAY = 12.0
MINUTES_HOUR = 30.0
OFFSET = 1
return np.array([date.timetuple().tm_yday / DAYS_YEAR - OFFSET,
date.day / DAYS_MONTH - OFFSET,
date.weekday() / DAYS_WEEK - OFFSET,
date.hour / HOURS_DAY - OFFSET,
date.minute / MINUTES_HOUR - OFFSET], dtype = float)
def __call__(self, subject_id, timestamps, glucose_values):
subject_id = torch.tensor([subject_id]).float()
glucose_values = torch.tensor(glucose_values).reshape(1, self.len_seq, 1).float()
glucose_values = self.normalize_glucose(glucose_values)
# Model takes any number of inputs to encoder.
# Decoder takes exactly 60 (5 hours of history) previous values with 12 (1 hour) of zeros.
# Timestamps for y are the corresponding timestamp for the 60 values passed into the decoder with 12 future values separated by 5 minutes.
y_timestamps = timestamps[-self.len_label:] + [timestamps[-1] + timedelta(minutes=5 * i) for i in range(self.len_pred)]
decoder_input = torch.cat([glucose_values[:,-self.len_label:,:], torch.zeros(1, self.len_pred, 1).float()], dim=1)
x_ts = torch.tensor(np.vstack([self.normalize_datetime(date) for date in timestamps])).float().unsqueeze(0)
y_ts = torch.tensor(np.vstack([self.normalize_datetime(date) for date in y_timestamps])).float().unsqueeze(0)
return subject_id, glucose_values, decoder_input, x_ts, y_ts
class GluformerForTimeSeries(PreTrainedModel):
config_class = GluformerConfig
base_model_prefix = "gluformer"
def __init__(self, config: GluformerConfig):
super().__init__(config)
self.model = Gluformer(
d_model=config.d_model,
n_heads=config.n_heads,
d_fcn=config.d_fcn,
r_drop=config.r_drop,
activ=config.activ,
num_enc_layers=config.num_enc_layers,
num_dec_layers=config.num_dec_layers,
distil=config.distil,
len_seq=config.len_seq,
len_pred=config.len_pred,
num_features=config.num_features
)
self.preprocessor = Preprocessor(config.len_seq, config.len_pred, config.len_label)
def forward(self, subject_id, timestamps, glucose_values):
x_id, x_enc, x_dec, x_mark_enc, y_mark_dec = self.preprocessor(subject_id, timestamps, glucose_values)
output, log_var = self.model(x_id, x_enc, x_mark_enc, x_dec, y_mark_dec)
return self.preprocessor.unnormalize_glucose(output), log_var