nitikaverma26 commited on
Commit
c87bffd
1 Parent(s): efaf523

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.24 +/- 0.04
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d9531600919005b89ebb21ee2384fa4167b012294e42b179b2c6564c2e1bed2
3
+ size 106831
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c71e517f910>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7c71e5176080>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1694299626434282273,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAO4ONPu4cIbxsXNY+oSVIPgoY8L4wjES+p0xsv0wauL8ESrO/17PFPlZT5j7Louu9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAM4AkP5G6nL8JGlY//8bnPgoZnb9mepG/t203v3Mdh7/1NFa/3sI9P3IsAz9LQCW/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA7g40+7hwhvGxc1j5Rk/I+AmhIuxooxD6hJUg+ChjwvjCMRL5QHay+vsLSvyFPqr+nTGy/TBq4vwRKs79bbj+/nNp5v7Wzcb/Xs8U+VlPmPsui671wUQy+MBPTP4LOvL+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[ 0.27639183 -0.00983356 0.41867387]\n [ 0.19545604 -0.4689334 -0.19194102]\n [-0.9230446 -1.4383025 -1.4006963 ]\n [ 0.3861377 0.44985455 -0.1150566 ]]",
34
+ "desired_goal": "[[ 0.64258116 -1.2244436 0.83633476]\n [ 0.4526901 -1.2273266 -1.1365478 ]\n [-0.71651787 -1.0555862 -0.83674556]\n [ 0.7412547 0.51239693 -0.6455123 ]]",
35
+ "observation": "[[ 0.27639183 -0.00983356 0.41867387 0.47378018 -0.00305796 0.38311845]\n [ 0.19545604 -0.4689334 -0.19194102 -0.33616114 -1.6465681 -1.3305398 ]\n [-0.9230446 -1.4383025 -1.4006963 -0.74777764 -0.97599196 -0.94414836]\n [ 0.3861377 0.44985455 -0.1150566 -0.13702941 1.649023 -1.4750521 ]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAe+unPDIxKz0kx449ZONtPcHmGbzJgoA9rb2cPWP1Ar29cAw+1b/ZPX0ouL3ppgY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[ 0.02049803 0.04179496 0.06971577]\n [ 0.05807818 -0.00939339 0.06274945]\n [ 0.07653365 -0.0319723 0.13714881]\n [ 0.10632292 -0.08992098 0.13149609]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7Xvttygf2eMAWyUSwKMAXSUR0CkT8Ig/1QJdX2UKGgGR7/OwTufEn9faAdLA2gIR0CkTwAnc+JQdX2UKGgGR7/QfYjB2wFDaAdLBGgIR0CkT0BZZB9kdX2UKGgGR7+4/2TPjXFtaAdLAmgIR0CkTwgvlEJCdX2UKGgGR7/P1DBuXNTtaAdLA2gIR0CkT9CF0xM4dX2UKGgGR7/P+OOsDGLlaAdLA2gIR0CkT09OZb6hdX2UKGgGR7/L8iwB5ooNaAdLA2gIR0CkT92JBPbgdX2UKGgGR7/b3Ytg8bJfaAdLBGgIR0CkTxv2f02+dX2UKGgGR7/iLyc0+C9RaAdLCGgIR0CkT5+DFqBVdX2UKGgGR7/OEal1r6+GaAdLA2gIR0CkT1zcZccEdX2UKGgGR7/SqZML4N7TaAdLA2gIR0CkT+0zj3mFdX2UKGgGR7+2OPvKEFnqaAdLAmgIR0CkT6qAavRrdX2UKGgGR7/QE/jbSJCTaAdLA2gIR0CkTyt2C/XYdX2UKGgGR7+/5YYBNmDlaAdLAmgIR0CkT7Jkf9xZdX2UKGgGR7/Yy4nWrfcfaAdLBGgIR0CkT2+23KB/dX2UKGgGR7/CQDFId2gWaAdLAmgIR0CkTzOLaVUudX2UKGgGR7+EH6dlNDc/aAdLAWgIR0CkT7bsniNsdX2UKGgGR7/WWilBQemvaAdLBGgIR0CkUABFVktmdX2UKGgGR7+64x1xKg7HaAdLAmgIR0CkT3r876pHdX2UKGgGR7+olWwNb1RMaAdLAWgIR0CkUATsQd0adX2UKGgGR7/VZqmCROk+aAdLA2gIR0CkT0MiKR+0dX2UKGgGR7/c9FF2FFlTaAdLBGgIR0CkT4wkxASndX2UKGgGR7/R3ocJdB0IaAdLA2gIR0CkT1AVwgkkdX2UKGgGR7/XrrPdEb5uaAdLBGgIR0CkUBkKeCkHdX2UKGgGR7+3depn6EamaAdLAmgIR0CkT5fJvHcUdX2UKGgGR7/DCaZx7zClaAdLAmgIR0CkT1utOmBOdX2UKGgGR7/CSoOx0MgEaAdLAmgIR0CkUCHyEtdzdX2UKGgGR7+u/gzguRLcaAdLAmgIR0CkT6Dcdo38dX2UKGgGR7+/YBeXzDoAaAdLAmgIR0CkT2SWRigCdX2UKGgGR7/lKcEvCdjHaAdLCmgIR0CkT+fcWTHKdX2UKGgGR7/NBnjABT4taAdLA2gIR0CkUDFTWGypdX2UKGgGR7+SgPEsJ6Y3aAdLAWgIR0CkT+6d+XqrdX2UKGgGR7/Ce+VTrE9/aAdLAmgIR0CkT2+o99tudX2UKGgGR7/UUAksz2vjaAdLA2gIR0CkT7A6dUbUdX2UKGgGR7+m6NEPUaybaAdLAWgIR0CkT3QUQCjldX2UKGgGR7+l3ljmSyMUaAdLAWgIR0CkT7SSFGoadX2UKGgGR7/JXEIgNgBtaAdLA2gIR0CkUD6iCaqkdX2UKGgGR7/MAMlTm4iHaAdLA2gIR0CkT/vo3aSLdX2UKGgGR7/AWTot+TePaAdLAmgIR0CkT7z0QK8ddX2UKGgGR7/NRjz7MxGlaAdLA2gIR0CkT4DBVMmGdX2UKGgGR7++VeKKpDNRaAdLAmgIR0CkUAYPPLPldX2UKGgGR7/RmQr+YMOPaAdLA2gIR0CkUE0daMaTdX2UKGgGR7/Fpdrwe/5+aAdLA2gIR0CkT8t7a7EpdX2UKGgGR7/R9NN8E3bVaAdLA2gIR0CkT49JBgNPdX2UKGgGR7/R2itaIN3GaAdLA2gIR0CkUBL4WUKRdX2UKGgGR7/UWAwwj+rEaAdLA2gIR0CkUFoaDPGAdX2UKGgGR7+k3sHB1s+FaAdLAWgIR0CkUGGw7kn1dX2UKGgGR7/MAsCkoF3ZaAdLA2gIR0CkT6B6KLsKdX2UKGgGR7/JKEnLJSzgaAdLA2gIR0CkUCRjjJdTdX2UKGgGR7/VO32EkB0ZaAdLBGgIR0CkT+GzByjpdX2UKGgGR7/SY3eenQ6ZaAdLA2gIR0CkUG8ZLqUvdX2UKGgGR7/MuHN5dGAkaAdLA2gIR0CkT60mlZX/dX2UKGgGR7+MAiml67d0aAdLAWgIR0CkUHNMoMKDdX2UKGgGR7/VxkNFz+3paAdLA2gIR0CkUDCj+JgtdX2UKGgGR7/OnqFAVwglaAdLA2gIR0CkT+3ztkWidX2UKGgGR7+5LUTcqOLjaAdLAmgIR0CkT7eHSF4+dX2UKGgGR7/Be4TbnHNpaAdLAmgIR0CkUDq8L8aXdX2UKGgGR7+dSEUTL4etaAdLAWgIR0CkT7vJRwZPdX2UKGgGR7/PI6r/82rGaAdLA2gIR0CkUIISDh99dX2UKGgGR7/C9B8hLXcyaAdLA2gIR0CkT/x8+iaidX2UKGgGR7+g3FUADJU6aAdLAWgIR0CkT8CW/rSmdX2UKGgGR7+6/ag2606YaAdLAmgIR0CkUEUu14PgdX2UKGgGR7+4bn5i3G4raAdLAmgIR0CkUIyeI2wWdX2UKGgGR7/CidJ8OTaCaAdLAmgIR0CkUFELH+6zdX2UKGgGR7++CkGiYb84aAdLAmgIR0CkUJh2GIsRdX2UKGgGR7/eVLi++M6zaAdLBGgIR0CkUBLronrqdX2UKGgGR7/TxUvPC2tuaAdLBGgIR0CkT9a11GLDdX2UKGgGR7/At5D7ZWaMaAdLAmgIR0CkUFs/yGzsdX2UKGgGR7+7ixVyWAwxaAdLAmgIR0CkUBylFc6edX2UKGgGR7/HJEH+qBEsaAdLA2gIR0CkUKZeJHiFdX2UKGgGR7/QILgGbCrMaAdLA2gIR0CkT+STyJ9BdX2UKGgGR7+eQlruYx+KaAdLAWgIR0CkUKzOgQHzdX2UKGgGR7/Rz7di2DxtaAdLA2gIR0CkUGosqaw2dX2UKGgGR7+7FMqSX+l1aAdLAmgIR0CkUCdxp+MIdX2UKGgGR7/NKwIMSbpeaAdLA2gIR0CkT/OrhisodX2UKGgGR7/QZrYXfqHHaAdLA2gIR0CkULnIyTIOdX2UKGgGR7/XX2M85jpcaAdLA2gIR0CkUHdnCfpVdX2UKGgGR7/SbTtsvZh8aAdLA2gIR0CkUDTKs+3ZdX2UKGgGR7/VJkXk5p8GaAdLA2gIR0CkUASZa3ZxdX2UKGgGR7/QvRqoIfKZaAdLA2gIR0CkUMqxLTQWdX2UKGgGR7/XA7xNIsiCaAdLBGgIR0CkUIxcu8K5dX2UKGgGR7/U/1QIldC3aAdLBGgIR0CkUEm65Gz9dX2UKGgGR7/Sl9Brvb48aAdLA2gIR0CkUBG34Kx+dX2UKGgGR7/Q5iExqO94aAdLA2gIR0CkUNfaQFLWdX2UKGgGR7/IgW8AaNuMaAdLA2gIR0CkUJtQKrq/dX2UKGgGR7/M5NGmUGFBaAdLA2gIR0CkUFiiyprDdX2UKGgGR7+33ueBg/keaAdLAmgIR0CkUBx2jfvXdX2UKGgGR7/eGdI5HVgAaAdLBGgIR0CkUOnzpX6qdX2UKGgGR7/MzmfXf642aAdLA2gIR0CkUKdW6shgdX2UKGgGR7/QTF2mpEQYaAdLA2gIR0CkUGSq2jO+dX2UKGgGR7/LzNliBoVVaAdLA2gIR0CkUCiUX531dX2UKGgGR7/BXU6PsAvMaAdLAmgIR0CkULLYGt6pdX2UKGgGR7+/pV0cOskqaAdLAmgIR0CkUHDFAE+xdX2UKGgGR7++JsO5J9RaaAdLAmgIR0CkUDWmP5pKdX2UKGgGR7+EQK8cuJ1raAdLAWgIR0CkULuwHJLedX2UKGgGR7/bNn5BTn7paAdLBGgIR0CkUQMjNY8udX2UKGgGR7+4Gnn+yZ8baAdLAmgIR0CkUH3JYDDCdX2UKGgGR7/EW56MR6F/aAdLAmgIR0CkUMTzd1uBdX2UKGgGR7/U6fapPykLaAdLA2gIR0CkUEYEGJN1dX2UKGgGR7/A29cry1/laAdLAmgIR0CkUQxD1GsndWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d817a859a524cca16b613313953c7dc94b44216f37a34490e020d101a2e4882
3
+ size 44734
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f85c371b5eecfbf9ed2d9035514e12eb99ebd8a27559606a5916b7556fa2b0b
3
+ size 46014
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c71e517f910>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c71e5176080>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694299626434282273, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAO4ONPu4cIbxsXNY+oSVIPgoY8L4wjES+p0xsv0wauL8ESrO/17PFPlZT5j7Louu9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAM4AkP5G6nL8JGlY//8bnPgoZnb9mepG/t203v3Mdh7/1NFa/3sI9P3IsAz9LQCW/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA7g40+7hwhvGxc1j5Rk/I+AmhIuxooxD6hJUg+ChjwvjCMRL5QHay+vsLSvyFPqr+nTGy/TBq4vwRKs79bbj+/nNp5v7Wzcb/Xs8U+VlPmPsui671wUQy+MBPTP4LOvL+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.27639183 -0.00983356 0.41867387]\n [ 0.19545604 -0.4689334 -0.19194102]\n [-0.9230446 -1.4383025 -1.4006963 ]\n [ 0.3861377 0.44985455 -0.1150566 ]]", "desired_goal": "[[ 0.64258116 -1.2244436 0.83633476]\n [ 0.4526901 -1.2273266 -1.1365478 ]\n [-0.71651787 -1.0555862 -0.83674556]\n [ 0.7412547 0.51239693 -0.6455123 ]]", "observation": "[[ 0.27639183 -0.00983356 0.41867387 0.47378018 -0.00305796 0.38311845]\n [ 0.19545604 -0.4689334 -0.19194102 -0.33616114 -1.6465681 -1.3305398 ]\n [-0.9230446 -1.4383025 -1.4006963 -0.74777764 -0.97599196 -0.94414836]\n [ 0.3861377 0.44985455 -0.1150566 -0.13702941 1.649023 -1.4750521 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAe+unPDIxKz0kx449ZONtPcHmGbzJgoA9rb2cPWP1Ar29cAw+1b/ZPX0ouL3ppgY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.02049803 0.04179496 0.06971577]\n [ 0.05807818 -0.00939339 0.06274945]\n [ 0.07653365 -0.0319723 0.13714881]\n [ 0.10632292 -0.08992098 0.13149609]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv7Xvttygf2eMAWyUSwKMAXSUR0CkT8Ig/1QJdX2UKGgGR7/OwTufEn9faAdLA2gIR0CkTwAnc+JQdX2UKGgGR7/QfYjB2wFDaAdLBGgIR0CkT0BZZB9kdX2UKGgGR7+4/2TPjXFtaAdLAmgIR0CkTwgvlEJCdX2UKGgGR7/P1DBuXNTtaAdLA2gIR0CkT9CF0xM4dX2UKGgGR7/P+OOsDGLlaAdLA2gIR0CkT09OZb6hdX2UKGgGR7/L8iwB5ooNaAdLA2gIR0CkT92JBPbgdX2UKGgGR7/b3Ytg8bJfaAdLBGgIR0CkTxv2f02+dX2UKGgGR7/iLyc0+C9RaAdLCGgIR0CkT5+DFqBVdX2UKGgGR7/OEal1r6+GaAdLA2gIR0CkT1zcZccEdX2UKGgGR7/SqZML4N7TaAdLA2gIR0CkT+0zj3mFdX2UKGgGR7+2OPvKEFnqaAdLAmgIR0CkT6qAavRrdX2UKGgGR7/QE/jbSJCTaAdLA2gIR0CkTyt2C/XYdX2UKGgGR7+/5YYBNmDlaAdLAmgIR0CkT7Jkf9xZdX2UKGgGR7/Yy4nWrfcfaAdLBGgIR0CkT2+23KB/dX2UKGgGR7/CQDFId2gWaAdLAmgIR0CkTzOLaVUudX2UKGgGR7+EH6dlNDc/aAdLAWgIR0CkT7bsniNsdX2UKGgGR7/WWilBQemvaAdLBGgIR0CkUABFVktmdX2UKGgGR7+64x1xKg7HaAdLAmgIR0CkT3r876pHdX2UKGgGR7+olWwNb1RMaAdLAWgIR0CkUATsQd0adX2UKGgGR7/VZqmCROk+aAdLA2gIR0CkT0MiKR+0dX2UKGgGR7/c9FF2FFlTaAdLBGgIR0CkT4wkxASndX2UKGgGR7/R3ocJdB0IaAdLA2gIR0CkT1AVwgkkdX2UKGgGR7/XrrPdEb5uaAdLBGgIR0CkUBkKeCkHdX2UKGgGR7+3depn6EamaAdLAmgIR0CkT5fJvHcUdX2UKGgGR7/DCaZx7zClaAdLAmgIR0CkT1utOmBOdX2UKGgGR7/CSoOx0MgEaAdLAmgIR0CkUCHyEtdzdX2UKGgGR7+u/gzguRLcaAdLAmgIR0CkT6Dcdo38dX2UKGgGR7+/YBeXzDoAaAdLAmgIR0CkT2SWRigCdX2UKGgGR7/lKcEvCdjHaAdLCmgIR0CkT+fcWTHKdX2UKGgGR7/NBnjABT4taAdLA2gIR0CkUDFTWGypdX2UKGgGR7+SgPEsJ6Y3aAdLAWgIR0CkT+6d+XqrdX2UKGgGR7/Ce+VTrE9/aAdLAmgIR0CkT2+o99tudX2UKGgGR7/UUAksz2vjaAdLA2gIR0CkT7A6dUbUdX2UKGgGR7+m6NEPUaybaAdLAWgIR0CkT3QUQCjldX2UKGgGR7+l3ljmSyMUaAdLAWgIR0CkT7SSFGoadX2UKGgGR7/JXEIgNgBtaAdLA2gIR0CkUD6iCaqkdX2UKGgGR7/MAMlTm4iHaAdLA2gIR0CkT/vo3aSLdX2UKGgGR7/AWTot+TePaAdLAmgIR0CkT7z0QK8ddX2UKGgGR7/NRjz7MxGlaAdLA2gIR0CkT4DBVMmGdX2UKGgGR7++VeKKpDNRaAdLAmgIR0CkUAYPPLPldX2UKGgGR7/RmQr+YMOPaAdLA2gIR0CkUE0daMaTdX2UKGgGR7/Fpdrwe/5+aAdLA2gIR0CkT8t7a7EpdX2UKGgGR7/R9NN8E3bVaAdLA2gIR0CkT49JBgNPdX2UKGgGR7/R2itaIN3GaAdLA2gIR0CkUBL4WUKRdX2UKGgGR7/UWAwwj+rEaAdLA2gIR0CkUFoaDPGAdX2UKGgGR7+k3sHB1s+FaAdLAWgIR0CkUGGw7kn1dX2UKGgGR7/MAsCkoF3ZaAdLA2gIR0CkT6B6KLsKdX2UKGgGR7/JKEnLJSzgaAdLA2gIR0CkUCRjjJdTdX2UKGgGR7/VO32EkB0ZaAdLBGgIR0CkT+GzByjpdX2UKGgGR7/SY3eenQ6ZaAdLA2gIR0CkUG8ZLqUvdX2UKGgGR7/MuHN5dGAkaAdLA2gIR0CkT60mlZX/dX2UKGgGR7+MAiml67d0aAdLAWgIR0CkUHNMoMKDdX2UKGgGR7/VxkNFz+3paAdLA2gIR0CkUDCj+JgtdX2UKGgGR7/OnqFAVwglaAdLA2gIR0CkT+3ztkWidX2UKGgGR7+5LUTcqOLjaAdLAmgIR0CkT7eHSF4+dX2UKGgGR7/Be4TbnHNpaAdLAmgIR0CkUDq8L8aXdX2UKGgGR7+dSEUTL4etaAdLAWgIR0CkT7vJRwZPdX2UKGgGR7/PI6r/82rGaAdLA2gIR0CkUIISDh99dX2UKGgGR7/C9B8hLXcyaAdLA2gIR0CkT/x8+iaidX2UKGgGR7+g3FUADJU6aAdLAWgIR0CkT8CW/rSmdX2UKGgGR7+6/ag2606YaAdLAmgIR0CkUEUu14PgdX2UKGgGR7+4bn5i3G4raAdLAmgIR0CkUIyeI2wWdX2UKGgGR7/CidJ8OTaCaAdLAmgIR0CkUFELH+6zdX2UKGgGR7++CkGiYb84aAdLAmgIR0CkUJh2GIsRdX2UKGgGR7/eVLi++M6zaAdLBGgIR0CkUBLronrqdX2UKGgGR7/TxUvPC2tuaAdLBGgIR0CkT9a11GLDdX2UKGgGR7/At5D7ZWaMaAdLAmgIR0CkUFs/yGzsdX2UKGgGR7+7ixVyWAwxaAdLAmgIR0CkUBylFc6edX2UKGgGR7/HJEH+qBEsaAdLA2gIR0CkUKZeJHiFdX2UKGgGR7/QILgGbCrMaAdLA2gIR0CkT+STyJ9BdX2UKGgGR7+eQlruYx+KaAdLAWgIR0CkUKzOgQHzdX2UKGgGR7/Rz7di2DxtaAdLA2gIR0CkUGosqaw2dX2UKGgGR7+7FMqSX+l1aAdLAmgIR0CkUCdxp+MIdX2UKGgGR7/NKwIMSbpeaAdLA2gIR0CkT/OrhisodX2UKGgGR7/QZrYXfqHHaAdLA2gIR0CkULnIyTIOdX2UKGgGR7/XX2M85jpcaAdLA2gIR0CkUHdnCfpVdX2UKGgGR7/SbTtsvZh8aAdLA2gIR0CkUDTKs+3ZdX2UKGgGR7/VJkXk5p8GaAdLA2gIR0CkUASZa3ZxdX2UKGgGR7/QvRqoIfKZaAdLA2gIR0CkUMqxLTQWdX2UKGgGR7/XA7xNIsiCaAdLBGgIR0CkUIxcu8K5dX2UKGgGR7/U/1QIldC3aAdLBGgIR0CkUEm65Gz9dX2UKGgGR7/Sl9Brvb48aAdLA2gIR0CkUBG34Kx+dX2UKGgGR7/Q5iExqO94aAdLA2gIR0CkUNfaQFLWdX2UKGgGR7/IgW8AaNuMaAdLA2gIR0CkUJtQKrq/dX2UKGgGR7/M5NGmUGFBaAdLA2gIR0CkUFiiyprDdX2UKGgGR7+33ueBg/keaAdLAmgIR0CkUBx2jfvXdX2UKGgGR7/eGdI5HVgAaAdLBGgIR0CkUOnzpX6qdX2UKGgGR7/MzmfXf642aAdLA2gIR0CkUKdW6shgdX2UKGgGR7/QTF2mpEQYaAdLA2gIR0CkUGSq2jO+dX2UKGgGR7/LzNliBoVVaAdLA2gIR0CkUCiUX531dX2UKGgGR7/BXU6PsAvMaAdLAmgIR0CkULLYGt6pdX2UKGgGR7+/pV0cOskqaAdLAmgIR0CkUHDFAE+xdX2UKGgGR7++JsO5J9RaaAdLAmgIR0CkUDWmP5pKdX2UKGgGR7+EQK8cuJ1raAdLAWgIR0CkULuwHJLedX2UKGgGR7/bNn5BTn7paAdLBGgIR0CkUQMjNY8udX2UKGgGR7+4Gnn+yZ8baAdLAmgIR0CkUH3JYDDCdX2UKGgGR7/EW56MR6F/aAdLAmgIR0CkUMTzd1uBdX2UKGgGR7/U6fapPykLaAdLA2gIR0CkUEYEGJN1dX2UKGgGR7/A29cry1/laAdLAmgIR0CkUQxD1GsndWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (659 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.24351965487003327, "std_reward": 0.036780513271848225, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-09T23:30:59.914374"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3dbaa61de3ac45f4222ae19701167bf5f754692c4fe3b6d073071be7412607ec
3
+ size 2623