|
|
|
|
|
from typing import List, Optional, Sequence, Tuple, Union
|
|
|
|
|
|
import torch
|
|
|
from mmengine.model import BaseDataPreprocessor, stack_batch
|
|
|
|
|
|
from mmaction.registry import MODELS
|
|
|
from mmaction.utils import SampleList
|
|
|
|
|
|
|
|
|
@MODELS.register_module()
|
|
|
class ActionDataPreprocessor(BaseDataPreprocessor):
|
|
|
"""Data pre-processor for action recognition tasks.
|
|
|
|
|
|
Args:
|
|
|
mean (Sequence[float or int], optional): The pixel mean of channels
|
|
|
of images or stacked optical flow. Defaults to None.
|
|
|
std (Sequence[float or int], optional): The pixel standard deviation
|
|
|
of channels of images or stacked optical flow. Defaults to None.
|
|
|
to_rgb (bool): Whether to convert image from BGR to RGB.
|
|
|
Defaults to False.
|
|
|
to_float32 (bool): Whether to convert data to float32.
|
|
|
Defaults to True.
|
|
|
blending (dict, optional): Config for batch blending.
|
|
|
Defaults to None.
|
|
|
format_shape (str): Format shape of input data.
|
|
|
Defaults to ``'NCHW'``.
|
|
|
"""
|
|
|
|
|
|
def __init__(self,
|
|
|
mean: Optional[Sequence[Union[float, int]]] = None,
|
|
|
std: Optional[Sequence[Union[float, int]]] = None,
|
|
|
to_rgb: bool = False,
|
|
|
to_float32: bool = True,
|
|
|
blending: Optional[dict] = None,
|
|
|
format_shape: str = 'NCHW') -> None:
|
|
|
super().__init__()
|
|
|
self.to_rgb = to_rgb
|
|
|
self.to_float32 = to_float32
|
|
|
self.format_shape = format_shape
|
|
|
|
|
|
if mean is not None:
|
|
|
assert std is not None, 'To enable the normalization in ' \
|
|
|
'preprocessing, please specify both ' \
|
|
|
'`mean` and `std`.'
|
|
|
|
|
|
self._enable_normalize = True
|
|
|
if self.format_shape == 'NCHW':
|
|
|
normalizer_shape = (-1, 1, 1)
|
|
|
elif self.format_shape in ['NCTHW', 'MIX2d3d']:
|
|
|
normalizer_shape = (-1, 1, 1, 1)
|
|
|
else:
|
|
|
raise ValueError(f'Invalid format shape: {format_shape}')
|
|
|
|
|
|
self.register_buffer(
|
|
|
'mean',
|
|
|
torch.tensor(mean, dtype=torch.float32).view(normalizer_shape),
|
|
|
False)
|
|
|
self.register_buffer(
|
|
|
'std',
|
|
|
torch.tensor(std, dtype=torch.float32).view(normalizer_shape),
|
|
|
False)
|
|
|
else:
|
|
|
self._enable_normalize = False
|
|
|
|
|
|
if blending is not None:
|
|
|
self.blending = MODELS.build(blending)
|
|
|
else:
|
|
|
self.blending = None
|
|
|
|
|
|
def forward(self,
|
|
|
data: Union[dict, Tuple[dict]],
|
|
|
training: bool = False) -> Union[dict, Tuple[dict]]:
|
|
|
"""Perform normalization, padding, bgr2rgb conversion and batch
|
|
|
augmentation based on ``BaseDataPreprocessor``.
|
|
|
|
|
|
Args:
|
|
|
data (dict or Tuple[dict]): data sampled from dataloader.
|
|
|
training (bool): Whether to enable training time augmentation.
|
|
|
|
|
|
Returns:
|
|
|
dict or Tuple[dict]: Data in the same format as the model input.
|
|
|
"""
|
|
|
data = self.cast_data(data)
|
|
|
if isinstance(data, dict):
|
|
|
return self.forward_onesample(data, training=training)
|
|
|
elif isinstance(data, (tuple, list)):
|
|
|
outputs = []
|
|
|
for data_sample in data:
|
|
|
output = self.forward_onesample(data_sample, training=training)
|
|
|
outputs.append(output)
|
|
|
return tuple(outputs)
|
|
|
else:
|
|
|
raise TypeError(f'Unsupported data type: {type(data)}!')
|
|
|
|
|
|
def forward_onesample(self, data, training: bool = False) -> dict:
|
|
|
"""Perform normalization, padding, bgr2rgb conversion and batch
|
|
|
augmentation on one data sample.
|
|
|
|
|
|
Args:
|
|
|
data (dict): data sampled from dataloader.
|
|
|
training (bool): Whether to enable training time augmentation.
|
|
|
|
|
|
Returns:
|
|
|
dict: Data in the same format as the model input.
|
|
|
"""
|
|
|
inputs, data_samples = data['inputs'], data['data_samples']
|
|
|
inputs, data_samples = self.preprocess(inputs, data_samples, training)
|
|
|
data['inputs'] = inputs
|
|
|
data['data_samples'] = data_samples
|
|
|
return data
|
|
|
|
|
|
def preprocess(self,
|
|
|
inputs: List[torch.Tensor],
|
|
|
data_samples: SampleList,
|
|
|
training: bool = False) -> Tuple:
|
|
|
|
|
|
batch_inputs = stack_batch(inputs)
|
|
|
|
|
|
if self.format_shape == 'MIX2d3d':
|
|
|
if batch_inputs.ndim == 4:
|
|
|
format_shape, view_shape = 'NCHW', (-1, 1, 1)
|
|
|
else:
|
|
|
format_shape, view_shape = 'NCTHW', None
|
|
|
else:
|
|
|
format_shape, view_shape = self.format_shape, None
|
|
|
|
|
|
|
|
|
if self.to_rgb:
|
|
|
if format_shape == 'NCHW':
|
|
|
batch_inputs = batch_inputs[..., [2, 1, 0], :, :]
|
|
|
elif format_shape == 'NCTHW':
|
|
|
batch_inputs = batch_inputs[..., [2, 1, 0], :, :, :]
|
|
|
else:
|
|
|
raise ValueError(f'Invalid format shape: {format_shape}')
|
|
|
|
|
|
|
|
|
if self._enable_normalize:
|
|
|
if view_shape is None:
|
|
|
batch_inputs = (batch_inputs - self.mean) / self.std
|
|
|
else:
|
|
|
mean = self.mean.view(view_shape)
|
|
|
std = self.std.view(view_shape)
|
|
|
batch_inputs = (batch_inputs - mean) / std
|
|
|
elif self.to_float32:
|
|
|
batch_inputs = batch_inputs.to(torch.float32)
|
|
|
|
|
|
|
|
|
if training and self.blending is not None:
|
|
|
batch_inputs, data_samples = self.blending(batch_inputs,
|
|
|
data_samples)
|
|
|
|
|
|
return batch_inputs, data_samples
|
|
|
|