ninyx commited on
Commit
c433041
1 Parent(s): 64a6a98

Model save

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: peft
4
+ tags:
5
+ - trl
6
+ - sft
7
+ - generated_from_trainer
8
+ base_model: mistralai/Mistral-7B-Instruct-v0.2
9
+ datasets:
10
+ - generator
11
+ metrics:
12
+ - bleu
13
+ - rouge
14
+ model-index:
15
+ - name: Mistral-7B-Instruct-v0.2-advisegpt-v0.6
16
+ results: []
17
+ ---
18
+
19
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
20
+ should probably proofread and complete it, then remove this comment. -->
21
+
22
+ # Mistral-7B-Instruct-v0.2-advisegpt-v0.6
23
+
24
+ This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the generator dataset.
25
+ It achieves the following results on the evaluation set:
26
+ - Loss: 0.0767
27
+ - Bleu: {'bleu': 0.9584832765902116, 'precisions': [0.9778312591422885, 0.9625878953932084, 0.9518774970032065, 0.9430684559898991], 'brevity_penalty': 0.9997177244264667, 'length_ratio': 0.9997177642587203, 'translation_length': 1289338, 'reference_length': 1289702}
28
+ - Rouge: {'rouge1': 0.9761023152523122, 'rouge2': 0.9590922549283836, 'rougeL': 0.9747297976860183, 'rougeLsum': 0.9758442544146716}
29
+ - Exact Match: {'exact_match': 0.0}
30
+
31
+ ## Model description
32
+
33
+ More information needed
34
+
35
+ ## Intended uses & limitations
36
+
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 2e-05
49
+ - train_batch_size: 3
50
+ - eval_batch_size: 1
51
+ - seed: 42
52
+ - gradient_accumulation_steps: 10
53
+ - total_train_batch_size: 30
54
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
+ - lr_scheduler_type: cosine
56
+ - num_epochs: 3
57
+ - mixed_precision_training: Native AMP
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge | Exact Match |
62
+ |:-------------:|:------:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------:|:--------------------:|
63
+ | 0.067 | 0.9998 | 809 | 0.0945 | {'bleu': 0.9492918853166353, 'precisions': [0.9733554685833311, 0.9543042005762523, 0.9412361771045687, 0.9307382413966919], 'brevity_penalty': 0.9994904502180469, 'length_ratio': 0.9994905799944483, 'translation_length': 1289045, 'reference_length': 1289702} | {'rouge1': 0.9712558044405124, 'rouge2': 0.9500703853191179, 'rougeL': 0.9690578078497468, 'rougeLsum': 0.9708044674114953} | {'exact_match': 0.0} |
64
+ | 0.0527 | 1.9995 | 1618 | 0.0779 | {'bleu': 0.9568445996007577, 'precisions': [0.977026202258449, 0.961055539100332, 0.9498195483213825, 0.9405540074014527], 'brevity_penalty': 0.9998193217903225, 'length_ratio': 0.9998193381106644, 'translation_length': 1289469, 'reference_length': 1289702} | {'rouge1': 0.9753094821779227, 'rouge2': 0.9574822736836266, 'rougeL': 0.9737984768450723, 'rougeLsum': 0.9750220632065946} | {'exact_match': 0.0} |
65
+ | 0.0471 | 2.9993 | 2427 | 0.0767 | {'bleu': 0.9584832765902116, 'precisions': [0.9778312591422885, 0.9625878953932084, 0.9518774970032065, 0.9430684559898991], 'brevity_penalty': 0.9997177244264667, 'length_ratio': 0.9997177642587203, 'translation_length': 1289338, 'reference_length': 1289702} | {'rouge1': 0.9761023152523122, 'rouge2': 0.9590922549283836, 'rougeL': 0.9747297976860183, 'rougeLsum': 0.9758442544146716} | {'exact_match': 0.0} |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - PEFT 0.10.0
71
+ - Transformers 4.40.2
72
+ - Pytorch 2.3.0+cu121
73
+ - Datasets 2.19.1
74
+ - Tokenizers 0.19.1