Model save
Browse files- README.md +74 -0
- adapter_model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- trl
|
6 |
+
- sft
|
7 |
+
- generated_from_trainer
|
8 |
+
base_model: mistralai/Mistral-7B-Instruct-v0.2
|
9 |
+
datasets:
|
10 |
+
- generator
|
11 |
+
metrics:
|
12 |
+
- bleu
|
13 |
+
- rouge
|
14 |
+
model-index:
|
15 |
+
- name: Mistral-7B-Instruct-v0.2-advisegpt-v0.5
|
16 |
+
results: []
|
17 |
+
---
|
18 |
+
|
19 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
20 |
+
should probably proofread and complete it, then remove this comment. -->
|
21 |
+
|
22 |
+
# Mistral-7B-Instruct-v0.2-advisegpt-v0.5
|
23 |
+
|
24 |
+
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the generator dataset.
|
25 |
+
It achieves the following results on the evaluation set:
|
26 |
+
- Loss: 0.0840
|
27 |
+
- Bleu: {'bleu': 0.9537910015397628, 'precisions': [0.9763005593772222, 0.9591762297332277, 0.9471223357463351, 0.9370695448087227], 'brevity_penalty': 0.9989373668126428, 'length_ratio': 0.9989379310075293, 'translation_length': 1022387, 'reference_length': 1023474}
|
28 |
+
- Rouge: {'rouge1': 0.9741038510844018, 'rouge2': 0.9550445541823809, 'rougeL': 0.9723656951648176, 'rougeLsum': 0.9736935611588988}
|
29 |
+
- Exact Match: {'exact_match': 0.0}
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 2e-05
|
49 |
+
- train_batch_size: 3
|
50 |
+
- eval_batch_size: 1
|
51 |
+
- seed: 42
|
52 |
+
- gradient_accumulation_steps: 10
|
53 |
+
- total_train_batch_size: 30
|
54 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
+
- lr_scheduler_type: cosine
|
56 |
+
- num_epochs: 3
|
57 |
+
- mixed_precision_training: Native AMP
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Bleu | Exact Match | Validation Loss | Rouge |
|
62 |
+
|:-------------:|:------:|:----:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:--------------------:|:---------------:|:---------------------------------------------------------------------------------------------------------------------------:|
|
63 |
+
| 0.069 | 0.9999 | 829 | {'bleu': 0.9459206747141892, 'brevity_penalty': 0.998656611989374, 'length_ratio': 0.9986575135274565, 'precisions': [0.9726768417963018, 0.9521542081327253, 0.9380288226144853, 0.9265355643009697], 'reference_length': 1023474, 'translation_length': 1022100} | {'exact_match': 0.0} | 0.0990 | {'rouge1': 0.9702189356306301, 'rouge2': 0.9472171244648081, 'rougeL': 0.9677029434775739, 'rougeLsum': 0.9695684693436178} |
|
64 |
+
| 0.0501 | 1.9999 | 1658 | {'bleu': 0.9537910015397628, 'brevity_penalty': 0.9989373668126428, 'length_ratio': 0.9989379310075293, 'precisions': [0.9763005593772222, 0.9591762297332277, 0.9471223357463351, 0.9370695448087227], 'reference_length': 1023474, 'translation_length': 1022387} | {'exact_match': 0.0} | 0.0840 | {'rouge1': 0.9741105562035488, 'rouge2': 0.9550205654651982, 'rougeL': 0.9723363685950056, 'rougeLsum': 0.9737013621980013} |
|
65 |
+
| 0.0479 | 2.9999 | 2487 | 0.0850 | {'bleu': 0.9548514568958526, 'precisions': [0.9767648848122783, 0.9601353822381405, 0.9483682511725553, 0.9385079979703334], 'brevity_penalty': 0.9989676875356347, 'length_ratio': 0.9989682200036347, 'translation_length': 1022418, 'reference_length': 1023474}| {'rouge1': 0.9746456572659052, 'rouge2': 0.9560608145101823, 'rougeL': 0.9729518327172596, 'rougeLsum': 0.9742472834405176}| {'exact_match': 0.0} |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- PEFT 0.10.0
|
71 |
+
- Transformers 4.40.2
|
72 |
+
- Pytorch 2.3.0+cu121
|
73 |
+
- Datasets 2.19.1
|
74 |
+
- Tokenizers 0.19.1
|
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 872450448
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:780a8185b44ae3cec05448cacf336e524b251c6feccebc5c06ceea170a8520b2
|
3 |
size 872450448
|