nileshpp commited on
Commit
fb4100f
·
1 Parent(s): 00df679

Upload 6 files

Browse files
Files changed (6) hide show
  1. README.md +74 -0
  2. config.json +124 -0
  3. special_tokens_map.json +1 -0
  4. spiece.model +3 -0
  5. tokenizer.json +0 -0
  6. tokenizer_config.json +1 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ tags:
4
+ - summarization
5
+ ---
6
+
7
+ ### Pegasus Models
8
+ See Docs: [here](https://huggingface.co/transformers/master/model_doc/pegasus.html)
9
+
10
+ Original TF 1 code [here](https://github.com/google-research/pegasus)
11
+
12
+ Authors: Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu on Dec 18, 2019
13
+
14
+ Maintained by: [@sshleifer](https://twitter.com/sam_shleifer)
15
+
16
+ Task: Summarization
17
+
18
+ The following is copied from the authors' README.
19
+
20
+ # Mixed & Stochastic Checkpoints
21
+
22
+ We train a pegasus model with sampled gap sentence ratios on both C4 and HugeNews, and stochastically sample important sentences. The updated the results are reported in this table.
23
+
24
+ | dataset | C4 | HugeNews | Mixed & Stochastic|
25
+ | ---- | ---- | ---- | ----|
26
+ | xsum | 45.20/22.06/36.99 | 47.21/24.56/39.25 | 47.60/24.83/39.64|
27
+ | cnn_dailymail | 43.90/21.20/40.76 | 44.17/21.47/41.11 | 44.16/21.56/41.30|
28
+ | newsroom | 45.07/33.39/41.28 | 45.15/33.51/41.33 | 45.98/34.20/42.18|
29
+ | multi_news | 46.74/17.95/24.26 | 47.52/18.72/24.91 | 47.65/18.75/24.95|
30
+ | gigaword | 38.75/19.96/36.14 | 39.12/19.86/36.24 | 39.65/20.47/36.76|
31
+ | wikihow | 43.07/19.70/34.79 | 41.35/18.51/33.42 | 46.39/22.12/38.41 *|
32
+ | reddit_tifu | 26.54/8.94/21.64 | 26.63/9.01/21.60 | 27.99/9.81/22.94|
33
+ | big_patent | 53.63/33.16/42.25 | 53.41/32.89/42.07 | 52.29/33.08/41.66 *|
34
+ | arxiv | 44.70/17.27/25.80 | 44.67/17.18/25.73 | 44.21/16.95/25.67|
35
+ | pubmed | 45.49/19.90/27.69 | 45.09/19.56/27.42 | 45.97/20.15/28.25|
36
+ | aeslc | 37.69/21.85/36.84 | 37.40/21.22/36.45 | 37.68/21.25/36.51|
37
+ | billsum | 57.20/39.56/45.80 | 57.31/40.19/45.82 | 59.67/41.58/47.59|
38
+
39
+ The "Mixed & Stochastic" model has the following changes:
40
+ - trained on both C4 and HugeNews (dataset mixture is weighted by their number of examples).
41
+ - trained for 1.5M instead of 500k (we observe slower convergence on pretraining perplexity).
42
+ - the model uniformly sample a gap sentence ratio between 15% and 45%.
43
+ - importance sentences are sampled using a 20% uniform noise to importance scores.
44
+ - the sentencepiece tokenizer is updated to be able to encode newline character.
45
+
46
+
47
+ (*) the numbers of wikihow and big_patent datasets are not comparable because of change in tokenization and data:
48
+ - wikihow dataset contains newline characters which is useful for paragraph segmentation, the C4 and HugeNews model's sentencepiece tokenizer doesn't encode newline and loose this information.
49
+ - we update the BigPatent dataset to preserve casing, some format cleanings are also changed, please refer to change in TFDS.
50
+
51
+
52
+ The "Mixed & Stochastic" model has the following changes (from pegasus-large in the paper):
53
+
54
+
55
+ trained on both C4 and HugeNews (dataset mixture is weighted by their number of examples).
56
+ trained for 1.5M instead of 500k (we observe slower convergence on pretraining perplexity).
57
+ the model uniformly sample a gap sentence ratio between 15% and 45%.
58
+ importance sentences are sampled using a 20% uniform noise to importance scores.
59
+ the sentencepiece tokenizer is updated to be able to encode newline character.
60
+
61
+
62
+ Citation
63
+ ```
64
+
65
+
66
+ @misc{zhang2019pegasus,
67
+ title={PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization},
68
+ author={Jingqing Zhang and Yao Zhao and Mohammad Saleh and Peter J. Liu},
69
+ year={2019},
70
+ eprint={1912.08777},
71
+ archivePrefix={arXiv},
72
+ primaryClass={cs.CL}
73
+ }
74
+ ```
config.json ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "../output_dir/",
3
+ "activation_dropout": 0.1,
4
+ "activation_function": "relu",
5
+ "add_bias_logits": false,
6
+ "add_final_layer_norm": true,
7
+ "architectures": [
8
+ "PegasusModel"
9
+ ],
10
+ "attention_dropout": 0.1,
11
+ "bos_token_id": 0,
12
+ "classif_dropout": 0.0,
13
+ "classifier_dropout": 0.0,
14
+ "d_model": 1024,
15
+ "decoder_attention_heads": 16,
16
+ "decoder_ffn_dim": 4096,
17
+ "decoder_layerdrop": 0.0,
18
+ "decoder_layers": 16,
19
+ "decoder_start_token_id": 0,
20
+ "dropout": 0.1,
21
+ "encoder_attention_heads": 16,
22
+ "encoder_ffn_dim": 4096,
23
+ "encoder_layerdrop": 0.0,
24
+ "encoder_layers": 16,
25
+ "eos_token_id": 1,
26
+ "extra_pos_embeddings": 1,
27
+ "force_bos_token_to_be_generated": false,
28
+ "forced_eos_token_id": 1,
29
+ "gradient_checkpointing": false,
30
+ "id2label": {
31
+ "0": "LABEL_0",
32
+ "1": "LABEL_1",
33
+ "2": "LABEL_2"
34
+ },
35
+ "init_std": 0.02,
36
+ "is_encoder_decoder": true,
37
+ "label2id": {
38
+ "LABEL_0": 0,
39
+ "LABEL_1": 1,
40
+ "LABEL_2": 2
41
+ },
42
+ "length_penalty": 0.8,
43
+ "max_length": 256,
44
+ "max_position_embeddings": 1024,
45
+ "model_type": "pegasus",
46
+ "normalize_before": true,
47
+ "normalize_embedding": false,
48
+ "num_beams": 8,
49
+ "num_hidden_layers": 16,
50
+ "pad_token_id": 0,
51
+ "scale_embedding": true,
52
+ "static_position_embeddings": true,
53
+ "task_specific_params": {
54
+ "summarization_aeslc": {
55
+ "length_penalty": 0.6,
56
+ "max_length": 32,
57
+ "max_position_embeddings": 512
58
+ },
59
+ "summarization_arxiv": {
60
+ "length_penalty": 0.8,
61
+ "max_length": 256,
62
+ "max_position_embeddings": 1024
63
+ },
64
+ "summarization_big_patent": {
65
+ "length_penalty": 0.7,
66
+ "max_length": 256,
67
+ "max_position_embeddings": 1024
68
+ },
69
+ "summarization_billsum": {
70
+ "length_penalty": 0.6,
71
+ "max_length": 256,
72
+ "max_position_embeddings": 1024
73
+ },
74
+ "summarization_cnn_dailymail": {
75
+ "length_penalty": 0.8,
76
+ "max_length": 128,
77
+ "max_position_embeddings": 1024
78
+ },
79
+ "summarization_gigaword": {
80
+ "length_penalty": 0.6,
81
+ "max_length": 32,
82
+ "max_position_embeddings": 128
83
+ },
84
+ "summarization_large": {
85
+ "length_penalty": 0.8,
86
+ "max_length": 256,
87
+ "max_position_embeddings": 1024
88
+ },
89
+ "summarization_multi_news": {
90
+ "length_penalty": 0.8,
91
+ "max_length": 256,
92
+ "max_position_embeddings": 1024
93
+ },
94
+ "summarization_newsroom": {
95
+ "length_penalty": 0.8,
96
+ "max_length": 128,
97
+ "max_position_embeddings": 512
98
+ },
99
+ "summarization_pubmed": {
100
+ "length_penalty": 0.8,
101
+ "max_length": 256,
102
+ "max_position_embeddings": 1024
103
+ },
104
+ "summarization_reddit_tifu": {
105
+ "length_penalty": 0.6,
106
+ "max_length": 128,
107
+ "max_position_embeddings": 512
108
+ },
109
+ "summarization_wikihow": {
110
+ "length_penalty": 0.6,
111
+ "max_length": 256,
112
+ "max_position_embeddings": 512
113
+ },
114
+ "summarization_xsum": {
115
+ "length_penalty": 0.8,
116
+ "max_length": 64,
117
+ "max_position_embeddings": 512
118
+ }
119
+ },
120
+ "torch_dtype": "float32",
121
+ "transformers_version": "4.16.0.dev0",
122
+ "use_cache": true,
123
+ "vocab_size": 96103
124
+ }
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>", "mask_token": "<mask_2>", "additional_special_tokens": ["<mask_1>", "<unk_2>", "<unk_3>", "<unk_4>", "<unk_5>", "<unk_6>", "<unk_7>", "<unk_8>", "<unk_9>", "<unk_10>", "<unk_11>", "<unk_12>", "<unk_13>", "<unk_14>", "<unk_15>", "<unk_16>", "<unk_17>", "<unk_18>", "<unk_19>", "<unk_20>", "<unk_21>", "<unk_22>", "<unk_23>", "<unk_24>", "<unk_25>", "<unk_26>", "<unk_27>", "<unk_28>", "<unk_29>", "<unk_30>", "<unk_31>", "<unk_32>", "<unk_33>", "<unk_34>", "<unk_35>", "<unk_36>", "<unk_37>", "<unk_38>", "<unk_39>", "<unk_40>", "<unk_41>", "<unk_42>", "<unk_43>", "<unk_44>", "<unk_45>", "<unk_46>", "<unk_47>", "<unk_48>", "<unk_49>", "<unk_50>", "<unk_51>", "<unk_52>", "<unk_53>", "<unk_54>", "<unk_55>", "<unk_56>", "<unk_57>", "<unk_58>", "<unk_59>", "<unk_60>", "<unk_61>", "<unk_62>", "<unk_63>", "<unk_64>", "<unk_65>", "<unk_66>", "<unk_67>", "<unk_68>", "<unk_69>", "<unk_70>", "<unk_71>", "<unk_72>", "<unk_73>", "<unk_74>", "<unk_75>", "<unk_76>", "<unk_77>", "<unk_78>", "<unk_79>", "<unk_80>", "<unk_81>", "<unk_82>", "<unk_83>", "<unk_84>", "<unk_85>", "<unk_86>", "<unk_87>", "<unk_88>", "<unk_89>", "<unk_90>", "<unk_91>", "<unk_92>", "<unk_93>", "<unk_94>", "<unk_95>", "<unk_96>", "<unk_97>", "<unk_98>", "<unk_99>", "<unk_100>", "<unk_101>", "<unk_102>"]}
spiece.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0015189ef36359283fec8b93cf6d9ce51bca37eb1101defc68a53b394913b96c
3
+ size 1912529
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"pad_token": "<pad>", "eos_token": "</s>", "unk_token": "<unk>", "mask_token": "<mask_2>", "mask_token_sent": "<mask_1>", "offset": 103, "additional_special_tokens": ["<mask_1>", "<unk_2>", "<unk_3>", "<unk_4>", "<unk_5>", "<unk_6>", "<unk_7>", "<unk_8>", "<unk_9>", "<unk_10>", "<unk_11>", "<unk_12>", "<unk_13>", "<unk_14>", "<unk_15>", "<unk_16>", "<unk_17>", "<unk_18>", "<unk_19>", "<unk_20>", "<unk_21>", "<unk_22>", "<unk_23>", "<unk_24>", "<unk_25>", "<unk_26>", "<unk_27>", "<unk_28>", "<unk_29>", "<unk_30>", "<unk_31>", "<unk_32>", "<unk_33>", "<unk_34>", "<unk_35>", "<unk_36>", "<unk_37>", "<unk_38>", "<unk_39>", "<unk_40>", "<unk_41>", "<unk_42>", "<unk_43>", "<unk_44>", "<unk_45>", "<unk_46>", "<unk_47>", "<unk_48>", "<unk_49>", "<unk_50>", "<unk_51>", "<unk_52>", "<unk_53>", "<unk_54>", "<unk_55>", "<unk_56>", "<unk_57>", "<unk_58>", "<unk_59>", "<unk_60>", "<unk_61>", "<unk_62>", "<unk_63>", "<unk_64>", "<unk_65>", "<unk_66>", "<unk_67>", "<unk_68>", "<unk_69>", "<unk_70>", "<unk_71>", "<unk_72>", "<unk_73>", "<unk_74>", "<unk_75>", "<unk_76>", "<unk_77>", "<unk_78>", "<unk_79>", "<unk_80>", "<unk_81>", "<unk_82>", "<unk_83>", "<unk_84>", "<unk_85>", "<unk_86>", "<unk_87>", "<unk_88>", "<unk_89>", "<unk_90>", "<unk_91>", "<unk_92>", "<unk_93>", "<unk_94>", "<unk_95>", "<unk_96>", "<unk_97>", "<unk_98>", "<unk_99>", "<unk_100>", "<unk_101>", "<unk_102>"], "model_max_length": 1024, "special_tokens_map_file": null, "full_tokenizer_file": null, "name_or_path": "../output_dir/", "sp_model_kwargs": {}, "tokenizer_class": "PegasusTokenizer"}