Niksa Praljak commited on
Commit
f782d11
·
1 Parent(s): efd5a17

update all README.md

Browse files
README.md CHANGED
@@ -62,7 +62,7 @@ cd BioM3_PenCL
62
  ```bash
63
  python run_PenCL_inference.py \
64
  --json_path "stage1_config.json" \
65
- --model_path "BioM3_PenCL_epoch20.bin"
66
  ```
67
 
68
  ### Example Input Data
 
62
  ```bash
63
  python run_PenCL_inference.py \
64
  --json_path "stage1_config.json" \
65
+ --model_path "./weights/PenCL/BioM3_PenCL_epoch20.bin"
66
  ```
67
 
68
  ### Example Input Data
weights/Facilitator/README.md ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ ### **`weights/Facilitator/README.md`**
5
+
6
+ ```markdown
7
+ # Facilitator Pre-trained Weights
8
+
9
+ This folder will contain the pre-trained weights for the **Facilitator** model. The Facilitator model is part of the BioM3 pipeline and serves as a key component for further alignment or generation tasks.
10
+
11
+ ---
12
+
13
+ ## **Downloading Pre-trained Weights**
14
+
15
+ The Google Drive link for downloading the Facilitator pre-trained weights will be added here soon.
16
+
17
+ ---
18
+
19
+ ## **File Details**
20
+
21
+ - **File Name**: Facilitator pre-trained weights (TBD).
22
+ - **Description**: Pre-trained weights for the Facilitator model.
23
+
24
+ ---
25
+
26
+ ## **Usage**
27
+
28
+ Once available, the pre-trained weights can be loaded as follows:
29
+
30
+ ```python
31
+ import torch
32
+ model = YourFacilitatorModel() # Replace with your model class
33
+ model.load_state_dict(torch.load("weights/Facilitator/Facilitator_weights.bin", map_location="cpu"))
34
+ model.eval()
35
+
weights/PenCL/README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ ### **`weights/PenCL/README.md`**
5
+
6
+ ```markdown
7
+ # PenCL Pre-trained Weights
8
+
9
+ This folder contains the pre-trained weights for the **PenCL** model (Stage 1 of BioM3). The PenCL model aligns protein sequences and text descriptions to compute joint latent embeddings.
10
+
11
+ ---
12
+
13
+ ## **Downloading Pre-trained Weights**
14
+
15
+ To download the **PenCL epoch 20 pre-trained weights** as a `.bin` file from Google Drive, use the following command:
16
+
17
+ ```bash
18
+ pip install gdown
19
+ gdown --id 1Lup7Xqwa1NjJpoM2uvvBAdghoM-fecEj -O BioM3_PenCL_epoch20.bin
20
+
21
+ ---
22
+
23
+ ## **Usage**
24
+
25
+ Once available, the pre-trained weights can be loaded as follows:
26
+
27
+ ```python
28
+ import json
29
+ import torch
30
+ from argparse import Namespace
31
+ import Stage1_source.model as mod
32
+
33
+ # Step 1: Load JSON Configuration
34
+ def load_json_config(json_path):
35
+ """
36
+ Load a JSON configuration file and return it as a dictionary.
37
+ """
38
+ with open(json_path, "r") as f:
39
+ config = json.load(f)
40
+ return config
41
+
42
+ # Step 2: Convert JSON Dictionary to Namespace
43
+ def convert_to_namespace(config_dict):
44
+ """
45
+ Recursively convert a dictionary to an argparse Namespace.
46
+ """
47
+ for key, value in config_dict.items():
48
+ if isinstance(value, dict):
49
+ config_dict[key] = convert_to_namespace(value)
50
+ return Namespace(**config_dict)
51
+
52
+ if __name__ == '__main__':
53
+ # Path to configuration and weights
54
+ config_path = "stage1_config.json"
55
+ model_weights_path = "weights/PenCL/BioM3_PenCL_epoch20.bin"
56
+
57
+ # Load Configuration
58
+ print("Loading configuration...")
59
+ config_dict = load_json_config(config_path)
60
+ config_args = convert_to_namespace(config_dict)
61
+
62
+ # Load Model
63
+ print("Loading pre-trained model weights...")
64
+ model = mod.pfam_PEN_CL(args=config_args) # Initialize the model with arguments
65
+ model.load_state_dict(torch.load(model_weights_path, map_location="cpu"))
66
+ model.eval()
67
+ print("Model loaded successfully with weights!")
68
+
69
+
weights/ProteoScribe/README.md ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ ### **`weights/ProteoScribe/README.md`**
5
+
6
+ ```markdown
7
+ # ProteoScribe Pre-trained Weights
8
+
9
+ This folder will contain the pre-trained weights for the **ProteoScribe** model. ProteoScribe enables advanced functional annotation or protein generation tasks.
10
+
11
+ ---
12
+
13
+ ## **Downloading Pre-trained Weights**
14
+
15
+ The Google Drive link for downloading the ProteoScribe pre-trained weights will be added here soon.
16
+
17
+ ---
18
+
19
+ ## **File Details**
20
+
21
+ - **File Name**: ProteoScribe pre-trained weights (TBD).
22
+ - **Description**: Pre-trained weights for the ProteoScribe model.
23
+
24
+ ---
25
+
26
+ ## **Usage**
27
+
28
+ Once available, you can load the weights into your model using PyTorch:
29
+
30
+ ```python
31
+ import torch
32
+ model = YourProteoScribeModel() # Replace with your model class
33
+ model.load_state_dict(torch.load("weights/ProteoScribe/ProteoScribe_weights.bin", map_location="cpu"))
34
+ model.eval()
35
+
weights/README.md ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Weights Directory
2
+
3
+ This folder contains the pre-trained weights for the **BioM3** project models. The weights are stored as `.bin` files for different components of the BioM3 pipeline:
4
+
5
+ 1. **PenCL**: Pre-trained weights for the PenCL model (Stage 1).
6
+ 2. **Facilitator**: Pre-trained weights for the Facilitator model (Stage 2).
7
+ 3. **ProteoScribe**: Pre-trained weights for the ProteoScribe model (Stage 3).
8
+
9
+ ---
10
+
11
+ ## **Purpose**
12
+
13
+ The weights provided here enable users to quickly load and run inference with the pre-trained models for text-protein sequence alignment, functional annotation, and other tasks.
14
+
15
+ Each subfolder includes:
16
+ - Instructions for downloading the desired `.bin` files.
17
+ - Information on integrating the weights into your workflows.
18
+
19
+ ---
20
+
21
+ ### **Prerequisites**
22
+
23
+ To download pre-trained weights, you must install `gdown`:
24
+
25
+ ```bash
26
+ pip install gdown
27
+